Publications 451-500: Years 2016-2024

  SAVE> SAVE> SAVE>
500. Time-reversal Symmetry Breaking and Fragile Magnetic Superconductors  
W. E. Pickett  
Not yet submitted pdf; arxiv:xxx.yyy
DOI: https:
500. Why Mg2IrH6 Is Predicted to Be a High-Temperature Superconductor, But Ca2IrH6 Is Not  
X. Wang, W. E. Pickett, M. Hutcheon, R. P. Prasankumar, and E. Zurek  
Angew. Chem. Intl. Ed. e2024126&7 (2024) pdf; arxiv:xxx.yyy
DOI: https://doi.org/10.1002/anie.2024126&7
499. Geometrical Doping at the Atomic Scale in Oxide Quantum Materials  
M. Choi, H. Jeon, K. Eom, J. Seo, S. Roh, I. Seo, S. H. Oh, J. Hwang, Y. Lee, W. E. Pickett, C. Panagopoulos, C.-B. Eom, and J. Lee  
ACS Nano 17, 14814 (2023) [Sept] pdf; arxiv:xxx.yyy
DOI: https://doi.org/10.1021/acsnano.3c03038
498. Absence of strong magnetic fluctuations or interactions in the normal state of LaNiGa2,  
P. Sherpa, I. Vinograd, Y. Shi, S. A. Sreedhar, C. Chaffer, T. Kissikov, M.-C. Jung, A. S. Botana, A. P. Dioguardi, R. Yamamoto, M. Hirata, G. Cnti, S. Nemsak, J. R. Badger, P. Klavins, I. Vishik, V. Taufour, and N. J. Curro  
Submitted (2023) arXiv:2311.06988 pdf
Suppl. Info.
497. Symmetry Enforced Fermi Surface Degeneracies Observed in the purported time-reversal symmetry-braeaking Superconductor LaNiGa22 with ARPES  
M. Staab, R. Prater, S. Sreehar, J. Byland, E. Mann, D. Zacharia, Y. Shi, H. Bowman, M.-C. Jung, A. S. Botana, W. E. Pickett, V. Taufour, and I Vishik  
Phys, Rev. B 110, 165115 (2024) arXiv:2312.11464 pdf
Suppl. Info. DOI: https://doi.org/10.1103/PhysRevB.110.165115
496.Colloquium: Room Temperature Superconductivity: the Roles of Theory and Materials Design  
W. E. Pickett  
Rev. Mod. Phys. 95, 021001 (2023) pdf
arXiv:2204.05930 nsf/dmr
DOI: https://doi.org/10.1103/RevModPhys.95.021001
495. A d8 anti-Hund's Singlet Insulator in an Infinite-layer Nickelate  
H.-S. Jin, W. E. Pickett, and K.-W. Lee  
J. Phys. Materials 5, 024008 (2022); pdf; arxiv:2112.14010
DOI: https://doi.org/ NSF/DMR
494. Low Valence Nickelates: Launching the Nickel Age of Superconductivity  
A. S. Botana, K.-W. Lee, M. R. Norman, V. Pardo, and W. E. Pickett  
Frontiers in Physics 9, 813532 (2022); pdf; https://doi.org/10.3389/fphy.2021.813532 arXiv:2111.01296
DOI: https://doi.org/10.3389/fphy.2021.813532 NSF/DMR
493. Dirac lines and loop at the Fermi level in the Time-Reversal Symmetry Breaking Superconductor LaNiGa2  
J. R. Badger, Y. Quan, M. C. Staab, S. Sumita, A. Rossi, K. P. Devlin, K. Neubauer, D. S. Shulman, J. C. Fettinger, P. Klavins, S. M. Kauzlarich, D. Aoki, I. M. Vishik, W. E. Pickett, and V. Taufour  
Commun. Phys. 5, 22 (2022). pdf arxiv:2109.06983
DOI: https://doi.org/10.1038/s42005-021-00771-5. NSF/DMR
492. Nonsymmorphic Band Sticking in a Topological Superconductor  
Y. Quan, V. Taufour, and W. E. Pickett  
Phys. Rev B 105, 064517 (2022). ; arxiv:xxxx
DOI: https://doi.org/10.1103/RevModPhys.95.021001 NSF/DMR
491. The Dawn of the Nickel Age of Superconductivity (an invited commentary)  
W. E. Pickett  
Nature Reviews Physics 3, 7 (2021) pdf ; arxiv:2107.11936
DOI: https://doi.org/xxxx NSF/DMR
490. Field-induced Bose-Einstein Condensation and Supersolid Phase in the Kondo Necklace  
W.-L. Tu, E.-G. Moon, K.-W. Lee, W. E. Pickett, and H.-Y. Lee,  
Commun. Phys. 5, 130 (2022) ; arxiv:2107.11936
DOI: https://doi.org/xxxx NSF/DMR
489. MoB2 under Pressure: Superconducting Mo Enhanced by Boron  
Y. Quan, K.-W. Lee, and W. E. Pickett  
Phys. Rev. B 104, 224504 (2021) ; arxiv:2109.01724
DOI: https://doi.org/10.1103/PhysRevB.104.224504 NSF/DMR
488. Two-band Conduction and Nesting Instabilities in Superconducting Ba2CuO3+d: a First Principles Study  
H.-S. Jin, W. E. Pickett, and K.-W. Lee,  
Phys. Rev. B 104, 054516 (2021) ; arxiv:2104.07258
Suppl. Info. DOI: https://doi.org/10.1103/PhysRevB.104.054516 NSF/DMR
487. The 2021 Room-Temperature Superconductivity Roadmap  
L. Boeri, ... W. E. Pickett ... 38 other authors  
J. Phys.: Condens. Matter 34, 183002 (2022) [Oct] pdf; arXiv:
DOI: https://doi.org/ NSF/DMR
486. The Dawning of the Age of Nickelate Superconductivity  
W. E. Pickett  
Nat. Rev. Phys. 3, 85 (2020) [Oct] pdf; arXiv:
DOI: https://doi.org/10.1038/s42254-020-00257-3 NSF/DMR
485. Li2xBC3: Prediction of a second MgB2-class high-temperature superconductor  
Y. Quan and W. E. Pickett  
Phys. Rev. B 102, 144504 (2020) [Oct] pdf; arXiv:
DOI: https://doi.org/10.1103/PhysRevB.102.144504 NSF/DMR
484. Proposed Ordering of Textured Spin singlets in a Bulk Infinite-layer Nickelate  
H.-S. Jin, W. E. Pickett, and K.-W. Lee  
Phys. Rev. Research 2, 033197 (2020) pdf; arXiv:2007.03185
DOI: https://doi.org/10.1103/PhysRevResearch.2.033197 NSF/DMR
483. UTe2: a Nearly Insulating Half-filled j=5/2 5f3 Heavy Fermion Metal  
A. B. Shick, S.-I. Fujimori, and W. E. Pickett  
Phys. Rev. B 103, 125136 (2021) pdf; arXiv:2103.11410
DOI: https://doi.org/10.1103/PhysRevB.103.125136 NSF/DMR
482. Fluctuation-frustrated Flat Band Instabilities in NdNiO2  
M.-Y. Choi, W. E. Pickett, and K.-W. Lee  
Phys. Rev. Research 2, 033445 (2020) pdf; arXiv:2005.03234
DOI: https://doi.org/10.1103/PhysRevResearch.2.033445 NSF/DMR
481. Role of 4f states in infinite-layer NdNiO2  
M.-Y. Choi, K.-W. Lee, and W. E. Pickett  
Phys. Rev. B 101, 020503(R) (2020) pdf; arXiv:1911.02999
Suppl. Info. DOI: https://doi.org/10.1103/PhysRevB.101.020503 NSF/DMR
480. Spin-Orbit Coupling Induced Degeneracy in the Anisotropic Unconventional Superconductor UTe2  
A. B. Shick and W. E. Pickett  
Phys. Rev. B 100, 134502 (2019) pdf; arXiv:1908.01558
DOI: https://doi.org/10.1103/PhysRevB.100.134502 NSF/DMR
479. Compressed Hydrides as Metallic Hydrogen Superconductors  
Y. Quan, S.Ghosh, and W. E. Pickett  
Phys. Rev. B 100, 184505 (2019) pdf; arXiv:1906.02695
DOI: https://doi.org/10.1103/PhysRevB.100.184505 NSF/DMR
478. Strong Particle-Hole Asymmetry in a 200 kelvin Superconductor  
S. S. Ghosh, Y. Quan, and W. E. Pickett  
Phys. Rev. B 100, 094521 (2019) pdf; arXiv:1906.02799
DOI: https://doi.org/10.1103/PhysRevB.100.094521 NSF/DMR
 
477. The Quest for Room-Temperature Superconductivity in Hydrides  
W.E. Pickett and M. Eremets  
Physics Today 72, 51-57 (2019) [May] pdf; arXiv:
DOI: https://doi.org/ NSF/DMR
 
476. Noncentrosymmetric Compensated Half-metal Hosting Pure Spin Weyl Nodes, Triple Nodal Points, Nodal Loops, and Nexus Fermions  
H.-S. Jin, Y.-J. Song, W.E. Pickett, and K.-W. Lee  
Phys. Rev. Mater. 3, 021201 (2019) pdf; arXiv:1812.05273
Suppl. Info. DOI: https://doi.org/10.1103/PhysRevMaterials.3.021201 NSF/DMREF
 
475. Pressure-tuned Frustration of Magnetic Coupling in Elemental Europium  
S.-T. Pi, S. Y. Savrasov, and W.E. Pickett  
Phys. Rev. Lett. 122, 057201 (2019) pdf; arXiv:1806.01960
Suppl. Info. DOI: https://doi.org/10.1103/PhysRevLett.122.057201 NSF/DMR
 
474. Probing hole-doping of the weak antiferromagnet TiAu with first principles methods  
M. Mathew, W. F. Goh, and W.E. Pickett  
J. Phys.: Condens. Matt. 31, 074005 (2019) pdf; arXiv:
DOI: https://doi.org/10.1088/1361-648X/aaf689 NSF/DMR
Named a Key Scientific Article by Advances in Engeneering pdf Original
 
473. Coemergence of Dirac and multi-Weyl Topological Excitations in Pnictide Antiperovskites  
W. F. Goh and W.E. Pickett  
Phys. Rev. B 98, 125147 (2018) pdf; arXiv:
DOI: https://doi.org/10.1103/PhysRevB.98.125147 NSF/DMREF Suppl. Info.
 
472. Coexistence of Triple Nodal Point, Nodal Lines, and Unusual Flat Band in intermetallic PbPd3  
K.-H. Ahn, W.E. Pickett, and K.-W. Lee  
Phys. Rev. B 98, 035130 (2018) pdf; arXiv:1803.08172
DOI: DOE/CMMT Suppl. Info.
 
471. Superconducting Phases in Lithium Decorated Graphene LiC6  
R. Gholami, R. Moradian, S. Moradian, and W. E. Pickett  
Sci. Rep. 8, 13795 (2018) pdf; arXiv:1804.07411
DOI: https://doi.org/10.1038/s41598-018-32050-9 NSF/DMR
 
470. Local Moment Instability of Os in Honeycomb Li2.15Os0.85O3  
M. K. Wallace, P. G. LaBarre, J. Li, S.-T. Pi, W.E. Pickett, D. S. Dessau, D. Haskel, A. P. Ramirez, and M. A. Subramaniun  
Sci. Rep. 8, 6605 (2018) pdf; arXiv:
DOI: NSF/DMREF Suppl. Info. Abstract Figure
 
469. Hard Line on Sanctions Harms Science Diplomacy  
W.E. Pickett and L. H. Greene  
APS News The Back Page, 8 March (2018) pdf; arXiv:
DOI: https: assorted Support
 
468. Atomic-layer-resolved composition and electronic structure of the cuprate
Bi2Sr2CaCu2O8+d from soft x-ray standing-wave photoemission
 
C.-T. Kuo, S. C. Lin, G. Conti, S,-T. Pi, L. Moreschini, A. Bostwick,
J. Meyer-Ilse, E. Gullikson, J. B. Kortright, S. Nemsak, J. E. Rault,
P. LeFevre, F. Bertran, A. F. Santander-Syro, I. A. Vartanyants,
W.E. Pickett, R. Saint-Martin, A. Taleb-Ibrahimi, and C. S. Fadley,
 
Phys. Rev. B 98, 155133 (2018) pdf; arXiv:1801.05142
DOI: https://doi.org/10.1103/PhysRevB.98.155133 DOE/NNSA (S.-T.Pi); DOE/CMMT(WEP) Suppl. Info.
 
467. High Seebeck Coefficient and Unusually Low Thermal Conductivity near
Ambient Temperatures in Layered Compound Yb2-xEuxCdSb2
 
J. Cooley, P. Promkhan, S. Gandopadhyay, D. Donadio, W. E. Pickett,
B. R. Ortiz, E. S. Toberer, and S. M. Kauzlarich
 
Chem. Mater. 30, 484-493 (2018) pdf; arXiv:
DOI:10.1021/acs.chemmater.7b04517 DOE/NNSA Suppl. Info.
 
xxx. Room Temperature Superconductivity Revolution: Foreshadowed by Victorians, Enabled by Millenials  
W. E. Pickett  
(2018) Not submitted for publication. pdf; arXiv:1801.00165
DOI: NSF
 
466. Local Nematic Susceptibility in Stressed BaFe2As2
from NMR Electric Field Gradient Measurements
 
T. Kissikov, R. Sarkar, M. Lawson, B. T. Bush, E. I. Timmons,
M. A. Tanatar, R. Prozorov, S. L. Bud'ko, P. C. Canfield, R. M. Fernanedz,
W. F. Goh, W. E. Pickett, and N. J. Curro
 
Phys. Rev. B 96, 241108(R) (2017) pdf; arXiv:1710.09547
DOI:10.1103/PhysRevB.96.241108 DOE/NNSA
 
465. Survey of the Class of Isovalent Antiperovskite Alkaline-earth Pnictide Compounds  
Wen Fong Goh and Warren E. Pickett  
Phys. Rev. B 97, 035202 (2017) pdf; arXiv:1710.10716
DOI:10.1103/PhysRevB.97.035202 NSF/DMREF
 
464. Study of Simulation Cell Size in Mean-field Studies of Interacting Lattice Models  
Yueguang Shi and Warren E. Pickett  
Commun. Comp. Phys. 25, 651668 (2019) pdf; arXiv:
DOI: DOE/NNSA
 
463. Perovskite ThTaN3: a Large Thermopower Topological Crystalline Insulator  
M.-C. Jung, K.-W. Lee, and W. E. Pickett  
Phys. Rev. B 97, 121104(R) (2018) pdf; arXiv:1709.01224
DOI: https://doi.org/10.1103/PhysRevB.97.121104 DOE/BES Suppl. Info.
 
462. Design of Chern Insulating Phases in Honeycomb Lattices  
W. E. Pickett, K.-W. Lee, and R. Pentcheva  
Physica C 549, 99 (2018) pdf; arXiv:1802:07411
DOI:doi.org/10.1016/j.physc.2018.02.048 NSF/DMREF
 
461. Accidental Degeneracy in k-space, Geometrical Phase, and the Perturbation of π by Spin-orbit Interactions  
P. B. Allen and W.E. Pickett,  
Physica C 549, 102 (2018) pdf; arXiv:2004.02874
DOI: DOE/BES Version with cleaner references
 
460. A Maximally Particle-Hole Asymmetric Spectrum Emanating from a semi-Dirac Point  
Y. Quan and W.E. Pickett,  
J. Phys.: Condens. Matt 30, 075501 (2018) pdf; arXiv:
DOI:10.1088/1361-648X/aaa521 NSF/DMREF
 
459. Fermiology and Electron Dynamics of Trilayer Nickelate La4Ni3O10  
H. Li, X. Zhou, T. Nummy, J. Zhang, V. Pardo, W. E. Pickett, J. Mitchell, and D. Dessau,  
Nat. Commun. 8, 704 (2018) pdf preprint
DOI:10.1038/s41467-017-00777-0 DOE/BES
Supplemental Material
Addendum: Nat. Commun. 9, 1952 (2018)
 
458. Single nodal loop of accidental degeneracies in minimal symmetry: triclinic CaAs3  
Y. Quan, Z. P. Yin, and W. E. Pickett,  
Phys. Rev. Lett. 118, 176402 (2017) pdf; arXiv:1703.04249
DOI:10.1103/PhysRevLett.118.176402 NSF/DMREF Suppl. Info.
 
457. Competing magnetic instabilities in the weak itinerant antiferromagnetic TiAu  
Wen Fong Goh and W. E. Pickett,  
Phys. Rev. B 95, 205124 (2017) pdf; arXiv: NSF/DMR
DOI:10.1103/PhysRevB.95.205124
 
456. Electronic coupling between a FeSe monolayer film and SrTiO3 substrate  
Y. N. Huang and W.E. Pickett,  
Phys. Rev. B 95, 165107 (2017) pdf; arXiv: NSF/DMR
DOI:doi.org/10.1103/PhysRevB.95.165107 Suppl. Info.
 
455. Magnetic Order-Disorder Transitions on a 1/3-Depleted Square Lattice  
H.-M. Guo, T. Mendes, W.E. Pickett, and R.T. Scalettar,  
Phys. Rev. B 95, 045131 (2017) pdf; arXiv:1610.06459
DOI:10.1103/PhysRevB.95.045131 DOE/BES
 
454. A mechanism for weak itinerant antiferromagnetism: mirrored van Hove singularities  
Wen Fong Goh and W. E. Pickett,  
EPL (Europhys. Lett.) 116, 27004 (2016) pdf; arXiv: NSF/DMR
DOI: Suppl. Info.
 
453. All 3d electron-hole bilayers in CrN/ScN(111) multilayers for thermoelectric applications  
A. S. Botana, W. E. Pickett, and V. Pardo,  
Phys. Rev. Applied 7, 024002 (2017) pdf; arXiv:1705.04534
DOI:10.1103/PhysRevApplied.7.024002 DOE/BES
 
452. Wide gap Chern Mott insulating phases achieved by design  
H. Guo, S. Gangopadhyay, O. Koeksal, R. Pentcheva, and W. E. Pickett,  
npj Quantum Materials 2, 4 (2017) pdf; arXiv: NSF/DMREF
DOI:10.1038/s41535-016-0007-2 Suppl. Info.
 
451. Tuning ferromagnetic BaFe2(PO4)2 through a high Chern topological phase  
Y.-J. Song, K.-H. Ahn, W. E. Pickett, and K.-W. Lee,  
Phys. Rev. B 94, 125134 (2016) pdf; Suppl. Info. Correction: PRB 96, 079909-1 (2017). arXiv:1609.00067 DOE
DOI:10.1103/PhysRevB.94.125134
 
 
Last updated: 3/10/2003 WEP