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Roughly a dozen reports of time-reversal-symmetry breaking (TRSB) states in superconducting
(SC), otherwise conventional, Fermi liquid materials have been supported by muon spin relaxation
(µSR) data. The detected fields inferred from the current interpretation of depolarization data,
around 10−5T = 0.1-1 G, correspond to magnetizations of the order of 10−3 µB/atom and lie near
the limit of resolution of the experiment. [Note: for B∼1 G, µBB∼8×10−8 eV.] These materials
comprise a new class of fragile moment superconductors. The measured SC state parameters (except-
ing only µSR spontaneous fields) are representative of low Tc singlet BCS SCs, whereas proposed
triplet phases possess highly unusual coherence lengths and critical fields, and strong sensitivity to
disorder, properties that have not been observed. While construction of plausible order parameters
has been a priority, possible origins of the magnetic fields have received little attention at the atomic
level, being based on inert spins in a near-ideal crystal. While it is recognized that the muon does
affect the sample by displacing somewhat nearby atoms, the measurement process, changing the
system from sample→ sample + µ+, has not received full scrutiny. This report provides a survey of
the environment of the muon from (say) 1 pm distance from the muon, where the dipolar magnetic
field magnitude is of the order of 104T, to around 100 nm, typically the scale of the penetration
depth. A progression of points can be stated. Deposition of the polarized muon, coupled to the solid
by its vector potential, breaks TRS already in the normal state. Its magnetic field polarizes electron
spins, whose vector potentials in turn impose a magnetic field at the muon site, i.e. a self-created
magnetic field. Determination of the magnitude of this material-dependent field will be challenging,
as it depends on some combination of (i) muon site asymmetry, (ii) quantum uncertainty of the
muon position, (iii) non-linear susceptibility, and (iv) electron parallel-spin pair correlation near the
muon site. Superconductivity introduces qualitative changes beyond the energy gap: (a) a quantum
of magnetic flux with corresponding vortex centered on the muon, (b) associated toroidal supercur-
rents striving to shield the bulk of the superconductor from the muon’s magnetic field, by creating
an opposing magnetic field within the vortex with some non-zero value at the muon’s site, and (c)
bound Yu-Shiba-Rusinov states in the SC energy gap that may provide coupling of the muon to the
order parameter, in addition to the muon-vortex coupling. Supposing that the µSR inference of a
small field within the bulk of the SC obtains, broader scenarios than the current one of non-unitary
triplet pairing are constructed. The unusual topological superconductor LaNiGa2 is used as a case
study, first for a BCS singlet phase, then for an exotic TRSB phase, with scenarios for the order
parameter ranging from (i) possible singlet pairing with an anisotropic orbital pair state to (ii)
triplet pairing based on valley symmetry breaking specific to the non-symmorphic crystal symmetry
of LaNiGa2.
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I. INTRODUCTION

A recent manuscript on nanostructured
superconductivity1 giving an overview of the vari-
ous ways in which the superconducting state can be
distorted when the bulk condensate is impeded by
structural disruptions, begins with the sentence “the
relevant length scales for superconductivity are of the
order of nanometers.” This statement is appropriate for
the emphasis of that paper. Practically all of the the-
oretical characteristic description and the experimental
interpretation of SC properties have been, and still are,
done at the Ginzburg-Landau level of the coherence
length ξ (several nanometers) and the penetration depth
(usually hundreds of nanometers).

From another perspective, one observes that the
materials-level theory of the SC gap ∆ and critical tem-
perature Tc is formulated at the atomic (sub-nm, Å) level
and is accurate to any realistic expectation2 for these
properties for conventional bulk superconductors. While
the study of unconventional superconductors has pro-
gressed considerably on the basis of symmetry require-
ments satisfying both theoretical constraints and exper-
imental data, there are sub-nm electronic processes that
need clarification for pairing and condensate formation,
along with symmetry considerations.

A. Roles of Symmetries

Exotic superconductivity (SC), broadly characterized
by symmetry-breaking order parameter(s) (OPs) beyond
U(1) symmetry breaking, i.e. beyond a spin-singlet,
crystal-symmetric order parameter), has been attracting
avid interest in solids for some decades.3 There are an as-
sortment of normal state symmetries that are available to
be broken4 along with unitary (particle conserving) U(1)
symmetry, its breaking giving Cooper pairing of electrons
that disappear into the superconducting condensate, as
long as the symmetries can be coupled. Symmetries in-
clude point group symmetry of the Brillouin zone and of
the energy gap ∆(T ) (viz. s-like, d-like, etc.), singlet spin
pairing, spin rotation symmetry, atomic orbital/electron
band indifference, translational symmetry, and perhaps
more intricate types. 5–14

One of the more elusive forms is that of time rever-
sal symmetry breaking (TRSB) which, while alarming in
name, is actually the simple appearance of a magnetic
field and a magnetic component of the OP in an other-
wise non-magnetic material, which breaks spin rotation
symmetry. Several standard Fermi liquid type metals
display spontaneous magnetic fields of 0.1-1 G, based on
µSR depolarization data; a list is provided in Sec. ??.
The example of LaNiGa2 will be given special attention in
this article. This superconductivity hosting fragile mag-
netism raises many questions, several of which are ad-
dressed here, including some that are not discussed in
the literature.

One issue is ‘what broken symmetries?’, based on the

observation of broken TRS.4 In the normal state the full
symmetry group is U(1)⊗G⊗S⊗T in terms of the space
group G (comprised of translation and point group, giv-
ing equivalence of atoms on a given sublattice; often in-
version is considered separately) spin rotation symmetry
S (or its orbital magnetization analog), and time rever-
sal T . At Tc, pairing breaks U(1) symmetry, i.e. two
electrons form a bound pair and disappear into the con-
densate. If the magnetization causing a spontaneous field
is spin in origin, S is broken. If it is orbital (currents) in
nature, then crystal symmetry G of the electronic system
is broken, such as two or more symmetry-related atoms
or unit cells becoming inequivalent. Either breaks time
reversal symmetry T .

If the material involves transition metal atoms (espe-
cially in ionic materials), or 4f or 5f atoms, the appear-
ance of some sort of magnetic order is not so unexpected,
and there are various examples, viz. in heavy fermion
superconductors.15 There are numerous examples of pro-
posed breaking of the space group symmetry, viz. d-wave
character of the order parameter in some cuprates, and
others for more enigmatic (viz. uranium) compounds.

B. Experimental constraints

In conventional s-p metals (standard non-magnetic
Fermi liquids), however, spin polarization (TRS break-
ing) leading to an internal magnetic field, costs energy
which occurs without obvious compensating gain in en-
ergy, and it is less clear how to recover that energy cost
from violation of singlet pairing to parallel spin (triplet)
pairing, which is commonly assumed to provide the mag-
netic signal as reported from several µSR (muon spin
resonance, rotation, or relaxation) experiments.

An example that will be addressed in this paper is
LaNiGa2, which has recently been synthesized and char-
acterized in single crystal form16–21 with a space group
(Cmcm) distinct from that reported on powder samples
four decades earlier (Cmmm).30 The electronic struc-
tures in these two space groups are similar, viz. the Ni 3d
bands are filled in both. However, the multisheeted Fermi
surfaces are different, and the differing space groups lead
to an essential distinction. µSR experiments have de-
tected spin relaxation characteristic of a small (∼0.2 G)
magnetic field31 at the position of the muon, with on-
set at the superconducting transition at Tc=2 K: evident
TRSB coupled to Cooper pairing. This magnitude of
field is near to the stated detection limit of 10−5 T and
corresponds to a a magnetic moment of no more than
10−2 µB/atom. A plausible resolution is that other su-
perconductors also experience a spontaneous field but it
is below the detectable limit, leading to misidentification
as conventional BCS superconductors.

Full consideration of the properties of LaNiGa2 point
to a conventional singlet pairing, weak coupling Type II
SC, so much of the published description and the lan-
guage in this paper will rely on such an implication. On
the other hand, the reported spontaneous field appearing
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below Tc have led theorists to conclude it to be another
example of the small class of probable superexotic SCs,
being unique due to requiring TRSB hence triplet pair-
ing, with an additional broken symmetry such as two
orbital or two band character32 to host the additional
degree of freedom that encounters an additional hurdle:
hosting a nonunitary spectrum of quasiparticles,33 – all
of this in spite of being quite typical normal state Fermi
liquid metals. So far, the two topological diabolical Dirac
points (DPs) pinned to the Fermi surface of LaNiGa2

17,18

even when spin-orbit coupling (SOC) is included has not
been included as a part of the picture. Regarding the lat-
ter, density functional theory (DFT) calculations for the
Cmcm structure17,18 revealed an extended planar zone
boundary degeneracy (before including SOC) not previ-
ously encountered in TRSB materials. The pair of de-
generate points provide a distinct platform for broken
symmetry, as discussed toward the end of this article.

C. Previous overviews

A pedagogical and handbook-style monograph on
muon spin rotation spectroscopy in solids was published
by Schenck22 in 1985, discussing several areas including
the technique and applications in muons in metals. This
introduction has been followed by a number of books,
lecture notes, and reports on µSR spectroscopy.23–29

The µSR experiment and analysis has been described
by several authors associated with one of the present
five muon facilities. Representatives include a descrip-
tion by Blundell26, contrasting the pictures of the muon
as a heavy position or alternatively as a light proton, a
contemporary view of µSR theory and data on selected
materials by Hillier et al.,36, and a broad discussion pro-
vided in a recent monograph (an Introduction, for serious
readers) by Blundell and co-authors.29 For recent tech-
niques, Blundell and Lancaster provided a description of
‘DFT+µ’ method for finding muon stopping position(s)
in a crystal.37 More on the package and an easy-to-use
interface ‘MuFinder’ for the researcher is described by
Huddart et al.38 Calculation of the muon anharmonic-
ity and zero point positional uncertainty for solid N2 has
been described by, for example, Gomilsek et al.39

After a few discoveries of heavy fermion compounds,
Heffner reviewed in 1992 µSR studies of this class of
quantum materials, with emphasis on uranium supercon-
ductors.15 This class of highly unconventional materials,
discovered in the early 1980s, have strongly renormalized
properties in the normal state and are not the topic of
this article. An extensive review of µSR data and theory
was provided by Balatsky, Vekhter, and Zhu in 2006.34

Reviews on exotic order parameters moore generally
are relevant to pasts of this paper. In 1991 Sigrist and
Ueda6 provided a review of the theory of unconventional
superconductivity, extending from the generalization of
BCS theory35 to symmetry classification and its relation
to Ginzburg-Landau theory, to symmetry-breaking in-
cluding the non-unitary possibility for triplet supercon-

ductors, to crystal symmetry lowering effects (structural
transformations, consequences of surfaces and interfaces,
and more. Sigrist has provided following reviews in 1999
on broken time-reversal symmetry,147, on unconventional
SCs,10 and on an extension specifically aimed at non-
centrosymmetric SCs,11. Wysokinski provided in 2019
an overview13 of time-reversal symmetry breaking with
focus on Sr2RuO4.

An overview on the interplay between inhomogeneities
and SC order parameters, especially TRSB ones, by An-
derson, Kreisel, and Hirschfeld, addresses topics of rel-
evance to µSR experiments.40 They provide a brief but
informative description of the zero field experiment that
has provided evidence of TRSB SC phases in several oth-
erwise conventional intermetallic compounds. Among
the situations they discuss is that defects in a TRSB
SC can produce local magnetic fields from spin disrup-
tion and from orbital currents. This article will provide
some discussion of effects of magnetic impurities, viz. the
muon, in a superconductor.

D. Purpose of this discussion

Electron pairing and related symmetries are fundamen-
tal to the formalism of the superconducting state and
its excitations. OP character is intimately tied to the
symmetry of the Cooper pair of fermions: the exchange
of electron coordinates must lead to a π phase change.
Surveying the symmetries in the µSR studies referenced
above, one can notice that TRSB is observed in (i) cu-
bic, tetragonal, octahedral, and hexagonal point groups,
(ii) in centrosymmetric, or not, materials, (iii) in sym-
morphic, or non-symmorphic, crystal systems. A viable
presumption could be to suppose there is some universal
nature of, or proclivity toward, TRSB at Tc, with certain
attribute(s) that determines whether it happens, or not.
Since there are no identifiable similarities or distinctions
in the group of fragile magnetic superconductors, allow-
able OP symmetries have been pursued case by case by
theorists.

In this paper the focus is on surveying a more com-
plete picture of the multiscale behavior (sub-atomic to
coherence length ξ(T )) of the SC+µ+ system, identi-
fying properties that may either complicate analysis or
contribute to a microscopic mechanism for coupling of
an emergent magnetic moment to the pairing OP. It has
been understood, and established by DFT studies,42 that
the µ+ ion density disturbs the sample locally. Coming
to rest at a favorable interstitial position away from posi-
tive atomic cores, its H-atom-like electron density causes,
analogously to the proton, a relaxation of neighboring
atoms by up to a few tenths of an Angstrom (nearly
0.6 Åin an ionic insulator).38,43 The current understand-
ing is that this charge disturbance, without any magnetic
character, will not influence conclusions about TRS.42

An overview by Ghosh et al. mentions some of the mi-
croscopic complications of interest here.44 These aspects
arise from the realization that the muon is a significant
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local perturbation of the sample beyond charge effects.
These authors mention that (i) the inferred magnetiza-
tion depends on the choice of presumed pairing symme-
try, (ii) the field at the muon site in the SC state in-
cludes the possibility of a muon self-induced field, and
(iii) the strong local perturbation changes the local crys-
tal structure, the electronic structure, local symmetry,
and induced magnetization. These features, yet to be
understood, form some of the primary points of this ar-
ticle.

Late in this paper alternative possibilities to the
present picture of this class of fragile magnetic supercon-
ductors are suggested. The present picture is that of a
TRSB order parameter based on the detection of a mag-
netic depolarization onset below Tc characteristic of a
(perpendicular component of) magnetic field of 0.1-1 G,
just above the limit of detection. The other viewpoint
– not specifically stated before, but indicating there is
some other explanation for this signal – is based on (1)
recognition that deposition of the polarized muon into the
sample already breaks TRS of the coupled system, (2) the
environment of the muon is already magnetically active
in the normal state, (3) the superconducting properties
such as coherence lengths, critical fields, etc. are charac-
teristic of many low Tc BCS SCs whereas triplet SCs are
likely to display quite different properties, and (4) one
member of this class of fragile magnetic SCs, LaNiGa2,
has been found by Ghimire et al.21 to be insensitive to
disorder induced by electron irradiation, whereas triplet
SCs are predicted to be highly sensitive to, even quickly
destroyed by, disorder. The objective here is to review,
and perhaps extend somewhat, the general behavior of
a conventional metal with an implanted polarized muon,
in both the normal and SC states.

II. ORGANIZATION OF THE PAPER

What has not been addressed in much detail is the
effect of the µ+ magnetic moment of the muon+sample
system that enters through its vector potential, the ki-
netic aspect of a magnetic moment. Its free-space mag-

netic intensity ~Hµ(~r) is that of a point dipole, with dis-
tance dependence 1/r3 and the textbook angular depen-
dence shown in Fig. 1. It will induce spin polarization
as commonly treated in other contexts, as well as orbital
currents of Fermi surface electrons that may give orbital-
generated magnetic polarization. After some background
information on the muon in Sec. III, magnetic field com-
plications are introduced in Sec. IV. Subsection III A
specifically addresses aspects of a model homogeneous
electron gas+µ+ (HEG+µ) system in the normal state,
discovering complexities, including anomalies in the the-
ory (a divergent integral in first approximation) that ob-
viate precise quantification of the behavior in the vicinity
of the muon.

Near-muon quantum effects – positional uncertainty,
non-linear susceptibility, electron pair correlation – in
Sec. V are shown to regularize the theory, but leave

the big question as a highly numerical (and not yet well
posed) challenge due to the r−3 increase of the field near
the muon. Another essential aspect – anisotropy (ver-
sus the isotropic HEG) – that is material specific, is
treated in Sec. VI. The unique case of the topological
superconductor46 LaNiGa2 is the topic of Sec. VII, after
which Sec. VIII provides a summary of the main points
regarding the turbulent normal state.

Passing into the SC state is the topic of Sec. IX, with
the strong magnetism-superconductivity conflict provid-
ing a complex picture of the system in the SC state.
Detailed behavior is challenging to quantify because the
length scale associated with the largest impact of the
muon (say, the Bohr radius aB , within which behavior be-
comes nonlinear) is much smaller than the length scale of
the SC OP. The supercurrent as described by Ginzburg-
Landau theory has a minimum scale of variation of the
coherence length ξ(T ), with field variation on the scale
of the (larger, in Type II SCs) London penetration depth
λL(T ). (Type I SCs have these length scales in the op-
posite order.)

The possibility of Kondo screening of the muon mo-
ment is addressed in Sec. XI. For an isolated muon such
screening might be extremely challenging to detect. How-
ever, study of a magnetic impurity in a SC initially by
Yu, Shiba, and Rusinov and more recently using den-
sity functional methods in specific superconductors reveal
that bound states within the SC gap form upon enter-
ing the SC state, and their character may provide clues
to the coupling of the muon moment to the SC order
parameter.

Specific aspects of pairing follow. Issues concerning
pairing symmetry form the focus of Sec. XII, where pos-
sible OPs are contrasted with the current model (for
LaNiGa2). Sec. XIV S gives an overview of pairing mech-
anisms (“pairing glue”) without finding any more likely
candidate than the conventional, practically universal in
such materials, phonon-exchange process of pair binding.

Section XIV S provides an overview on the implica-
tions of this paper to the underlying issues: the mech-
anism (the “glue”) and the order parameter. The for-
mer centers on singlet versus triplet pairing. The latter
gives an overview of much discussed but incompletely un-
derstood processes involving spin fluctuations or orbital
polarization versus the conventional lattice polarization
(phonons) in promoting the SC state, in possible TRSB
materials. Any of these is difficult to prove or to defi-
nitely rule out, it is just a matter of deciding what picture
accounts best for the available data.

Consideration of energetics of a few kinds18 has not
turned up any likely candidates for the mechanism be-
hind the transition, viz. the SC condensation energy gain
from superconductivity is much less than the cost of pro-
ducing even a tiny magnetic polarization.18 Having left
several details to the plethora of Appendices A-S, a dis-
cussion and final summary is given in Sec. XIII.
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III. THE MUON DIPOLAR MAGNETIC FIELD

Little attention has been given to the effect on the
normal state of the magnetic moment of the muon (here
denoted ~µ), whose dipolar magnetic field47 extends to
interatomic distances, polarizing the electron gas in its
neighborhood as it diverges approaching the site of the
muon. The characterization of Jackson48 was
“Usually the books are a little vague about the nature
of these intrinsic magnetic moments, letting the word
‘intrinsic’ imply that it is beyond the realms of present
knowledge or none of your business, or both.”
He went on in his CERN document to describe the theo-
retical description of intrinsic magnetic dipole moments,
consistent with experimental data from elementary par-
ticle studies. The conclusion is included below.

The conventional dipole vector potential and magnetic
intensity for an isolated muon is (some expressions fol-
lowing will incorporate ~µ = µ(0, 0, 1) defining the z-
direction)

~Aµ(~r) = = ∇× ~µ

r
=
~µ× r̂
r2

=
µ

r3
(−y, x, 0)

~Hµ
tot(~r) = ∇× ~Aµ(~r) =

3r̂(r̂ · ~µ)− ~µ
r3

+
8π

3
µδ(~r)

= ~Hµ
dip + ~Hµ

con (1)

with dipole and contact terms. This form has amplitude

µ/r−3 times an angular term of order unity; ~A ∼ µ/r−2.
The field lines are pictured in Fig. 1 and more about its
algebraic form and symmetry elements are provided in
Appendix XIV D. Since only non-magnetic metals are
discussed here, the choice of H versus B will be primar-
ily conventional, except when both are used in a single
equation with a distinction to be made.

It can readily be shown, and is intuitively clear, that
in the midst of a electronic system, the contact will give
rise to an interaction term

Hµ−el = −µ · [ 8π
3
~m(0)] (2)

in terms of the electronic magnetization density m(~r).
Involving only an infinitesimal amount of electron den-
sity, this contact term will not affect the electronic den-
sity and induced magnetic field so it will be put aside
for later consideration, and we drop the superscript dip

and tot on ~B. This contact term does enter proton NMR
spectroscopy, which is not possible for isolated and short
lifetime muons.

The factor 8π/3 can be found, confusingly, in some
literature to be replaced by −4π/3. Jackson has
described48 how the correct 8π/3 factor for the muon
(and any elementary particle now known) is consistent
with experimental information that concludes that the
point magnetic moment must be considered as the limit
of a tiny circulating current. A −4π/3 factor instead
arises if the dipole results from the limit of a bound pair
of north-south monopoles (as could conceivably occur in
an elementary particle, but apparently does not).

FIG. 1. Plot of constant magnetic field lines of a point dipole
oriented in the ŷ direction of this plot, plotted in the x-z
plane; distances along the axes are in arbitrary units relative
to the magnitude of the point dipole at the origin. The lines
with arrows indicate the direction of the field at that point.
The blue shading indicates lines of constant | ~B| field, which
is an angular modulation of 1/r3 falloff.

The polarization of the electron density will in turn
produce an additional magnetic field in the region arising
from the dipolar vector potentials of the partially aligned
electrons; see Sec. IV and Appendix. XIV E.

A. Charge effects, broadly

The immediate local environment of the muon is that
of a positive charge in a slowly varying electron gas,
where it attracts one unit charge of electron density to
its vicinity. A first approximation is that of the con-
stant electron density (jellium) plus the attracted den-
sity of the µ+ effective 1s orbital, centered at the muon’s
site and spherically symmetric, is given approximately
by n(r)=no+n

µ
1s(r), where no is the value of the uniform

jellium density and n1s is an effective 1s orbital density of
the µ+ attracted from the conduction electron reservoir.
Neutrality apart from decaying Friedel oscillations will be
achieved within a few times the Thomas-Fermi screen-
ing length. At interstitial densities of densely packed
intermetallic compounds characteristic of most SCs, hy-
bridization of the 1s orbital with itinerant metallic states
will ensure that the muon “atomic density” will not
be spin polarized due to electron gas exchange effects.
(Some DFT studies indicate muon bound states below
the bottom of the conduction band,42 in which case sin-
gle occupation and hence magnetic polarization effects
might arise.) The self-consistent density will be some-
what more spread out than the atomic 1s density due to
mixing with the itinerant planewave states.

Within a crystal, this effect is not as simple as for the
proton, because the minima of the muon’s potential in
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the solid must account for the quantum uncertainty of
the spatial position of the light mass muon, which ex-
pands the region over which the simple Hartree poten-
tial is sampled. This effect is structure- and material-
dependent. The region of interest will first be consid-
ered to be a spherically symmetric system responding
to the axial muon magnetic. At this level this discus-
sion is identical to that of a proton in a HEG,49 except
that the proton’s nuclear magnetic moment (tradition-
ally neglected in defect studies) is smaller by a factor of
nine and its local density and potential (and perhaps the
muon’s equilibrium site) has been modified by quantum
corrections.

B. Spin effects: magnetic polarization of the metal

The dipole magnetic field intensity, from Ap-
pendix XIV D describing its origin in the vector potential
and its symmetry properties, is

~Hµ(~r) =
3r̂(r̂ · ~µ)− ~µ

r3

=
3µ

r3
(
xz

r2
,
yz

r3
,
z2

r2
− 1

3
), (3)

arising from the muon’s magnetization ~Mµ(~r) = ~µδ(~r).
The contact term (8π/3)~µδ(~r) affects only an infinites-
imal a good description until high fields introduce non-
linear magnetization. Here N(E) is the electron density
of states per unit volume, and the Pauli spin suscepti-
bility χsp has the symmetry of the density. The Stoner
enhancement S(n), typically between from 1.3 to below
2,50 should not affect the physics for interstitial densities
of metallic Fermi liquid compounds.

C. Orbital currents, fields, and polarization

The muon-induced electron currents will produce an
orbital susceptibility χorb. For the HEG and a uni-
form magnetic field the value of this (Landau diamag-
netic) susceptibility is χorb = −(1/3)χsp. In much of
the following discussion a net paramagnetic susceptibil-
ity χp = χsp +χorb will be accounted for, with nonlinear
effects and current contributions discussed separately. In
normal density Fermi liquid metals χp is of the order of
10−3 − 10−4. This small polarization is relevant because
the observed spontaneous field reported in these metals
is extremely small.

For the muon’s strongly non-uniform near-field, the
orbital effect will be that given by Maxwell’s equations,
adapted for transport on periodic Fermi surfaces and sub-
ject to quantum conditions. Initially upon muon depo-

sition, Maxwell’s equation involves a displacement ( ~D)

current and electric current ~J as

∇× ~Hµ =
4π

c
~Jµ +

1

c

∂ ~D

∂t

The displacement current term results as the system
rapidly (on an electronic time scale) thermalizes to steady
state, where the time derivative vanishes and the normal
state electrical resistivity (not included in this equation)
will damp the current density to a steady state zero value.
Thus there will be no current contributions to a magnetic
field in the normal state at low T. Thermally excited

electrons will continue to experience the force −e~vk × ~B,
giving some circulating current around the muon which
contribute to Hall effect-like physics. The change occur-
ring in the SC state is addressed in Sec. X.

IV. NORMAL STATE: CRYSTAL + µ+

A. The induced spin polarization

After deposition of the muon, the HEG+µ+ system is
a coupled system in which TRS is broken by the muon
magnetic field, before lowering the temperature into the
SC state. Why then is it that TRSB, i.e. a field at the
µ+ site, is not detected?

Away from the extremely strong (diverging but short
range) field region near the muon, the induced magneti-
zation at position ~r can be expressed as

~M ind(~r) = µB [n↑(~r)− n↓(~r)]→ χp(n(r)) ~Bµ(~r). (4)

where the last line is the textbook linear response of a
metal, and is often realistic to multi-tesla-scale fields.
[Recall that µBB at one tesla is 0.7 K in temperature
units.] In this HEG approximation, which is formalized

by density functional theory,50,51 ~M ind is parallel to ~Bµ

at each point, hence it and the entire system satisfies
the same cylindrical and reflection symmetries given for
~Bµ in Appendix XIV D. The induced field at the muon
~Bind(0) will, by symmetry, align with the muon moment.
It will then not provide any torque on the muon moment,
hence be undetectable by depolarization studies. Discus-
sion of the fact that the muon lies as a low symmetry
position is discussed later.

B. The induced magnetic field

Each electron carries a magnetic moment of one µB ,
thus each volume element of induced magnetization
~M ind(~r)∆V will produce the same form of magnetic field

intensity from the incremental moment ~M ind∆V as given
by the dipole expression in Appendix X B Eq. (43), ex-

cept that the initial origin ~0 will be assumed by ~r (the
position of ∆V ) and the position of a given field point

will be ~r′. Some details are presented in Appendix X B
The net result of the polarization is the magnetic flux

density

~B(~r) = ~Hµ(~r) + 4π ~M ind(~r)

= ~Hµ(~r) + 4πχp ~H
µ(~r)

= [1 + 4πχp(~r)] ~H
µ(~r), (5)
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The result is a textbook-like result, reminding again that
this local linear response enhancement is good except
within a very small volume surrounding the muon, to
be addressed later. The polarization response is compar-
atively small, however, the muon does not experience its
own field, and small magnetic fields are the topic of this
paper.

The field seen by the muon will not include its own field
Hµ, and that is the field of interest just now. Integrating
the incremental moment over all space, the field intensity

created by ~M ind(~r′) will be

~Hind(~r′) =

∫
d3r

3R̂[ ~M ind(~r) · R̂]− ~M ind(~R)

|R|3
. (6)

where ~R ≡ ~r′ − ~r. Simplification occurs because we are
only interested in the field at the muon site, i.e. at

~r′ → 0, so ~̂R → −r̂, and that the source is a point (the
muon). Renaming the integration variable to ~r, substi-
tuting M ind from Eq. (4), and simplifying as shown in
Appendix XIV G, leads to the field at the muon site (in
spherical coordinates r, θ, φ; ν = cosφ)

Hind(0) = 2πµ

∫ ∞
0

χp(n(r))
r2dr

r6

∫ 1

−1

dν(3ν2 + 1).(7)

The angular integral gives a factor of two. The integrand,
with r−3 factors entering twice, is badly infrared diver-
gent as written. Incorporating an ad hoc cutoff from a
muon effective radius would regularize the integral, but
would leave a result sensitive to the choice of cutoff. Cor-
rections inside this cutoff due to the finite muon radius
and relativistic extensions of the theory are negligible for
small Z point charges.52 The following Sec. V will re-
place the ad hoc radius with additional processes from
a non-linear susceptibility and a quantum many-body
viewpoint that alleviate this divergence.

V. QUANTUM EFFECTS NEAR THE MUON

The infrared divergence of the integral for Hind
z (0)

(Eq. 7) is daunting and obviously unphysical. Additional
factors must be entering the physics. Three quantum
factors serve to regularize point motion, contains infor-
mation on how a confined quantum particle samples a
region around the classical position. In its ground state
the muon will sample a region around the minimum of
the Coulomb potential, the minimum being the classical
ground state position. For an ideal harmonic oscillator
the shape of the region of the ground state wavefunc-
tion would be an (in orthorhombic symmetry, distorted)
ellipsoid. This uncertainty is sometimes important for
interstitial protons, and the effect will be larger for a
muon with its order of magnitude smaller mass. With a
lower symmetry environment the shape of the potential
well will be less regular in shape,42 and may even involve
a quantum oscillation between two classically-preferred
sites.38

Until recently, this QPU of the muon position had not
become a mainstay of µSR analysis. Finding the classi-
cal muon position has been made more efficient, with a
user-friendly platform, since the advent of the µSR anal-
ysis application MuFinder.38 With only the underlying
crystal structure as input, the algorithm chooses likely
sites for the muon, calculates the energy of the system
including relaxation (structural and electronic) of nearby
atoms, and iterates to the minimum energy structure.
The results can be used in the analysis of µSR data, espe-
cially for nuclear magnetic fields and for magnetic solids.
QPU of the muon has now been realized as important for
the interpretation of some specific µSR data.

The factor of 207 difference in muon and electron
masses allows one to invoke the adiabatic approxima-

tion: for each point ~R within the muon ground state nor-

malized wavefunction Ψ(~R), the electron density n(~r; ~R)

and polarization (magnetization) m(~r; ~R) can be evalu-

ated, and from it the magnetic intensity Hind(~r; ~R). The
physical magnetic intensity then is the expectation value:

~̄Hind(~r) =

∫
d3RΨ(~R)∗Hind(~r; ~R)Ψ(~R). (8)

Here ~r is measured from the classical muon position ~Ro.
This field is then evaluated at the muon minimum en-
ergy position. The precise description becomes involved,
but because the muon will sample regions where the inte-

grand is not divergent, the divergence at ~r = ~Ro will be
somewhat ameliorated. The effect will be to introduce
into the integral something like an r2 dr factor in the in-
tegrand that reduces the divergence by two powers of r.
A more rigorous formulation of the phenomenon would
be required for any numerical evaluation.

A. Region of vanishing susceptibility

The diverging magnetic field at the muon site will
completely spin polarize the nearby conduction electrons
along the lines of its dipolar field, modulo quantum re-
strictions. Specifically, inside some small radius the frac-
tional spin polarization will become ±1, with sign deter-
mined by the sign of the magnetic field at that point,
and will vary rapidly from +1 to -1 with azimuthal angle
When the polarization

P (~r) =
n↑(~r)− n↓(~r)
n↑(~r) + n↓(~r)

(9)

approaches ±1, any additional longitudinal field will pro-
duce no extra polarization. Specifically,

χp(n(r))→ χp(n(r),m(r))→ χ(n(r),±1) (10)

and the fully polarized region m→ ±1 no longer can be
further polarized, i.e. the longitudinal magnetic suscep-
tibility goes to zero as some (probably even) power of
the distance r from the muon site. This saturation of the
polarization, hence vanishing of the susceptibility, will re-
sult in a reduction of the divergence, by (most probably)
another factor of r−2.
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B. Electronic pair correlation

From variational49,53,54 and quantum55 Monte Carlo
calculations on correlated wave functions (Gutzwiller-
Slater determinants) at full polarization, the probability
of parallel spin electrons (all electrons in this limit) being
at the same point vanishes (Pauli repulsion). The pair
correlation function in three dimensions increases from
zero quadratically; a many-body treatment of the sys-
tem thus further reduces the divergence of the integral
by canceling a factor of r−2, producing a convergent re-
sult. The magnitude seems not to be amenable to any
simple estimate, as the various factors can vary consid-
erably from material to material.

C. Summary of quantum effects

The conclusion from divergent Eq. 7 and recognition
that these three quantum corrections renders it finite is
that there is a self-field from magnetic polarization that
is non-zero at the muon site. In the isotropic HEG model,
the field aligns with the muon moment, leaving no per-
pendicular component to propel dynamics. Due to the
low symmetry of the muon’s environment, this field will
no longer align with the muon’s moment, with the de-
viation depending on the degree of anisotropy. There is
no clear evidence from µSR of such a field in the nor-
mal state, which might be simply taken to be a part the
background depolarization (90-97% of the signal in the
SC state) that is ascribed to fields from randomly ori-
ented nuclear and electron moments. (Given the 100%
polarization of the muon moment, experiments on sin-
gle crystals might reveal such an orientation-dependent

depolarization.) This −µ · ~Bind(0) interaction also pro-
vides a spin flip excitation, requiring energy of the order
of 2µ[Bindz (0) + Bsponz (0)]. For order of magnitude, this
amounts to roughly 1 µeV for the (LaNiGa2) 0.2 G field
inferred from µSR. The rather involved theory of depo-
larization in a thermodynamic background is referenced
in Sec. ??. Such a small rotation energy should make the
muon susceptible to thermalization at 1 K (kBT ∼0.1
meV).

VI. ANISOTROPY

A. Spatial anisotropy

The detected spontaneous magnetic field (10% or less
above the background) is near detection limits, making
nominally second order effects of possible importance. In
some cases the signal onset is identified as ∼20% below
Tc, suggesting a transition within the SC state but pos-
sibly reflecting the weak signal. The muon sits in an
interstitial site between a handful of atoms, at a local
minimum in the Coulomb potential. In most of the pre-
ceding discussion we have taken the vicinity of the muon,
before considering magnetic fields and crystallinity, as

isotropic. This is a simplification, as the actual symmetry
experienced by the muon will be low38,43 with additional
consequences. Moreover, DFT studies have established
that the quantum zero-point uncertainty of the muon’s
position can be substantially larger38,42,43 than that of a
proton, where large anharmonicity and quantum uncer-
tainty have been reported to be important in the muon’s
choice of site. Thus the quantum muon samples a region
which has next to zero spatial symmetry, with near 100%
likelihood.

The conclusion is that the net magnetic field of the
muon will no longer have the symmetry of the point
dipole. This result is relevant because the value of the
inferred spontaneous magnetic field is small, quite close
to the stated sensitivity of around 10−5 T for current
µSR technology. This anisotropy field is present upon
entering the SC state. Induced spin polarization or or-
bital currents will respond to the anisotropy, producing
a field at the muon site that may become amenable to
DFT studies.56 The region is not limited by any sym-
metry, hence the field at the muon is almost certainly
non-zero.

It may be premature to speculate further. What seems
clear is that it is essential for quantitative studies to (i)
determine the site, and symmetry if any, of the muon,
(ii) calculate the quantum uncertainty of the muon posi-
tion, then (iii) determine the resulting field at the muon
given this uncertainty. Intuitively the field would be some
smeared version of the standard DFT result, however in-
tuition about such quantum effects can be incorrect,57

and quantum corrections or perhaps formulations should
be applied when necessary. This point along with several
others raised here are left for further study.

B. Magnetocrystalline anisotropy

The spontaneous (presumed) uniform magnetic field
~B(0) extending at the muon site has been interpreted as
the signature of a triplet OP. Verified triplet pairing in
Fermi liquid metals is lacking, although promising candi-
dates have been suggested. Neglecting for now the sepa-
rate issue of how the supercurrent in a triplet SC copes
with an intrinsic field, the spontaneous magnetization

giving rise to the ~B field is a vector field and will have an
easy axis, requiring energy to rotate it to another direc-
tion. This should be a clearer property in an orthorhom-
bic structure such as that of LaNiGa2 than in a cubic
crystal, where symmetry limits effects of anisotropy.

Poling a “ferromagnetic superconductor” (aligning the
magnetic domains) may be a new adventure in µSR stud-
ies for experimentalists, as there are no moments except
in the SC state. One approach would be to reduce the
applied field from aboveHc2(T ) below Tc, a common pro-
cedure. Differences in magnetization for fields along each
of the axes of a single crystal might reveal the magnetic
anisotropy, and if so, provide clues into the microscopic
origin: spin imbalance, orbital currents, or some more
involved type of TRSB.
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VII. A CASE STUDY: LANIGA2

A. Material parameters of LaNiGa2

The fully gapped superconducting state of LaNiGa2,
with critical fields Hc2(0)=0.27, 0.09, 0.24 T for uni-
form applied fields along the three crystal axes (Ap-
pendix XIV N), typical of singlet SCs, must accommo-
date the ‘external’ magnetic field from the muon via
superconducting magnetic shielding currents, analogous
to the simpler case of the Meissner effect at a surface.
LaNiGa2 is Type II,17 – anisotropic Abrikosov indices
κ=3.38,28.9,4.00 along the three crystal axes – like sev-
eral other orthorhombic SCs. A straightforward accom-
modation in a singlet pairing system would occur by
threading one flux quantum vortex centered on the muon
at z=0, with supercurrents adjusting as necessary to pro-
vide screening of the bulk SC from the magnetic field
within the vortex.

For the reported spontaneous field (at T=0) of
2×10−5T for LaNiGa2, the radius of a unit vortex is
10µm (see Appendix XIV B). The vortex would be
pinched (narrow) at z=0 near the muon due to its rel-
atively larger magnetic field will compress the flux den-
sity. A macroscopically large vortex area will occur at
large |z| where there is only the tiny emergent field to
confine the flux quantum Φo. In simple sample geome-
try, the toroidal field lines would exit the sample at large
|z|, wrap around the sample with miniscule flux density,
and re-enter the vortex at the bottom of the sample to
maintain continuous field lines.

Standard Meissner expulsion of magnetic fields applies
to singlet pairing, where a magnetic field is pair-breaking,
hence reducing Tc consistent with observation. The ma-
terials parameters of LaNiGa2 seem to be in line with
singlet pairing, with the exception of indications from
µSR. In a triplet SC, a magnetic field will likely (i) tend
to rotate any spontaneous SC magnetization into the ap-
plied field direction, thereby (ii) increasing | ↑↑> pairing
versus | ↓↓> pairing, engendering a susceptibility process
not available with singlet pairing, and (iii) also creating
polarized supercurrents. Each of these effects may de-
pend on the type of OP.58 To quantify the energy cost
of converting spin-down pairs to spin-up pairs would re-
quire a specific Hamiltonian. Studies of the properties of
triplet phases are in early stages. One option is that co-
herence lengths can become unpredictable and the upper
critical field can become arbitrarily large, which seem far
from observations.

B. Non-symmorphic symmetry of LaNiGa2

There are now ten or more superconducting Fermi liq-
uid metals identified as displaying spontaneous magnetic
fields, thus labeled as requiring TRSB OPs,6 supported
so far only by µSR data. We look more specifically at
the case of the topological superconductor LaNiGa2.

Recent studies of single crystals of LaNiGa2

FIG. 2. (a) The structure of LaNiGa2 from Badger et al.,
determined from single crystal XRD. (b) The structure ob-
tained in 1982 by Yarmolyuk and Grin30 from powder XRD.
The difference lies in (i) the Ni-Ga layer in the center (and top
and bottom) layer of this plot, with Ni repositioning, and (ii)
repositioning of Ga between the La layers, together resulting
in a non-symmorphic operation and the Cmcm space group.

revealed16–18 its space group to be Cmcm, with a non-
symmorphic crystal symmetry, versus the 1982 assign-
ment of symmorphic Cmmm space group based on pow-
der xray data.30 The structural similarity and differences
are pictured in Fig. 2. The non-symmorphic space group
operation results in a double degeneracy (beyond spin
symmetry) across an entire face of the Brillouin zone, a
well known non-symmorphic symmetry consequence, but
a full planar degeneracy is an unusual occurrence in an
exotic SC, justifying characterization as an exotic topo-
logical superconductor.

Upon including spin-orbit coupling (SOC), this pla-
nar degeneracy is lifted throughout the zone except along
a single symmetry line (the Z-T line).17,18 Any pair of
bands cutting the Fermi energy along this line has a Dirac
point degeneracy in the normal state at that point, on
the Fermi surface, independent of doping, i.e. indepen-
dent of the position of EF . It is highly unusual – al-
most an improbability – to have diabolical points that
remain pinned to the Fermi surface as it varies due to
external influences, doping, etc., remaining on the Fermi
surface as long as the structural symmetry is retained.
This symmetry-related pair of points has four-fold de-
generacy and the topological character of anisotropic 3D
Dirac points. The Fermi surfaces, symmetry point label-
ings, and Z-T line are shown in Fig. 3.

This degeneracy is only lifted finally by the opening
of the SC gap.17 Assuming a triplet OP, the bands that
are involved open with two bandgaps, given by the ex-
pression (see Sec. XIV O, Eq. (65) for the BdG quasi-
particle bands. This pair of bands, finally split only by
pairing, form a basis for the discussion of a two-band
system, however there is no extended two-band near-
degeneracy. [”Two-orbital” language is also used, but
two different but special, symmetry-related atomic or-
bitals are problematic to separate from the s-p orbitals
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FIG. 3. Top panel: the five Fermi surfaces of Cmcm LaNiGa2,
illustrating the degeneracies on the node surface (the pink
plane in the lower panel). The green and red Fermi surfaces
(FS2 and FS3) merge together on the light green loop, while
the blue and brown Fermi surfaces (FS4 and FS5) merge on
the vertical blue line. The red dots pinpoint where the loop
of degeneracies cross the Z-T lines, leading to 3D Dirac point
character at those dots. Bottom panel: symmetry labels of
Cmcm Brillouin zone, with the node surface shown in pink.

of La, Ni, Ga1, Ga2. (Point group symmetry guarantees
in general degeneracy of atomic orbitals around each sub-
lattice.) Ghosh et al. proposed Hund’s coupling in the
Ni 3d orbitals to account for triplet pairing,33 but the
density of states N(E) indicates that the Ni d bands are
rather narrow and fully occupied, lying in the -3 eV to -
1.5 eV range and contributing only mildly at EF through
mixing with Ga s-p orbitals.

VIII. SUMMARY: NORMAL STATE

A. Magnetic polarization around the muon

In the initial HEG picture, the induced ~B-field descrip-
tion is fixed to the direction of the muon’s spin and is

strongly local. Being aligned with the muon moment, the
induced field produces no torque on the muon’s magnetic
moment. The pinning of the electronic (spin+orbital, in
principle) magnetization to the µ+ spin direction leads to
a slightly renormalized value of the total moment µeff

in the vicinity of the muon, a change that might be de-
tectable in an appropriate spectroscopic study. The mag-
nitude of this renormalization of the local moment is im-
plicit in the formalism in this section, but has not been
estimated quantitatively.

Anisotropy of the muon site and the electron density
will engender a self-induced magnetic field that is not
pinned to the direction of the muon moment, thus pro-
viding a mechanism for muon polarization decay. The
first-pass (classical) expression is infrared divergent, and
will be regularized by a radius cutoff within which quan-
tum and high magnetic fields will replace the divergent
integral. This may simply to the background depolariza-
tion that is not quantified or particularly relevant in a
ZF experiment.

B. Experimental considerations relating to SC

The focus falls on a few central items. The TRSB mag-
netic field (following sections), whose origin may be the
muon itself, has been the main subject of the preceding
section. Now the theoretical foundations can give way to
experimental aspects of the sample+muon system.

1. Origin of the magnetic field

The scale of measured values (typically a few tenths of
gauss, see the listing in Sec. IX A), unusually small and
near the limit of detection of a spontaneous field, has
been noted in several reports. In LaNiGa2 this measured
value corresponds to a moment of the order of 10−2µB
per f.u. This is a uniquely small value for spin polariza-
tion, one that would not be expected to appear sponta-
neously on its own, as for a ferromagnetic (Stoner) in-
stability nor for any other known origin. Orbital polar-
ization can be characterized similarly; a recent model of
orbital polarization will be mentioned later. For refer-
ence, the internal field in ferromagnetic bcc Fe is around
2 T – in essence, 2 T per Fe atom with a moment per
atom of∼2µB , versus the 4-5 orders of magnitude smaller
value for LaNiGa2, which has no magnetic tendencies in
the normal state.21 In terms of the inferred spontaneous
TRSB field, LaNiGa2 is fairly typical of the other identi-
fied TRSB SCs while having one of the smallest reported
fields.

Moments of orbital-loop origin in non-magnetic com-
pounds have been suggested from a variety of models59,60

directed at cuprates59 initially and later to a variety of
models, particularly to kagome materials.61,62 Experi-
ments on cuprates have put stringent limits on orbital
loop currents. They are expected to be small in magni-
tude, thus challenging to detect as well as being mysteri-
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ous in origin, and suggestions have been directed only to
quantum materials, specifically strongly correlated met-
als. Any self-generated field experienced by a muon will
be only a local field, not necessarily the uniform field
that is pursued in the study of SC OPs. Some of these
questions will be addressed in the following sections.

2. Magnitude of the induced field

While it seems reasonable to expect the miniscule
spontaneous fields of the order of 10−5T to provide an
essential clue to the underlying physics, the reality has
some similarity to the search for dark matter – proceed-
ing with little guidance and focus. The electromagnetic
environment and spin density distribution near the muon
appears to be strongly turbulent, with large polarization
undergoing rapid angular variation, making it a numer-
ical problem with unknown implications. The conven-
tional picture, encoded in a proposed OP discussed later,
is that the measured field is that of a uniform bulk po-
larization, of spin and/or orbital origin, of the electron
density in the bulk, which onsets only at, or sometimes
below, Tc. Several details of the near-field region, includ-
ing relativistic and quantum corrections, are necessary to
regularize an otherwise divergent muon self-induced mag-
netic field at the muon site.

IX. SUPERCONDUCTING STATE:
A MAGNETIC MOMENT IN A

SUPERCONDUCTOR

A. Reported instances of time
reversal symmetry breaking at Tc

The raison d’etre of this article has been to look more
closely at the process of depositing a positive muon into a
superconducting metal and interpreting the observations
of depolarization, and consistently forming a picture of
the symmetry of the order parameter and mechanism of
pairing along with relevant properties of the supercon-
ducting state. Concerns are the weakness of the experi-
mental signal, and just what changes in the sample arise
due to pairing into a coherent condensed phase with a
gap opening (sometimes with points or lines of nodes).

There are now more than a dozen superconducting
Fermi liquid metals labeled as magnetic, requiring TRSB
OPs,6 all supported by µSR depolarization data. This
representative list includes a variety of materials types,
each followed by the reported spontaneous field, or by
NA if the field was not available.
• skutterudite PrOs4Sb12 (1.2 G)63

• non-centrosymmetric I 4̄3m Re6Zr (NA)64

• nickel carbide LaNiC2 (0.1 G)136, (NA)66, (NA)67

• Dirac silicides (Nb,Ta)OsSi (0.83 G, 0.17 G)68

• kagome structure antimonide KV3Sb5 (0.3 G),69

• quasiskutterudite Lu3Os4Ge13 (1.1 G),70

• putative frustrated superconductor Re2Hf (1.2 G),71

• non-centrosymmetric intermetallic La7Pd3 (NA)72

• rocksalt structure monosilicide ScS (NA)73

• topological superconductor LaNiGa2 (0.2 G).31

The common feature of all of these experiments is the
muon.

References to a few more examples, including sisters
of some of the above, can be found in Ghosh et al.33.
Sumiyama et al.66 noted that inferred fields in LaNiC2

are sample dependent; one value of 0.1 G was given by
Hillier et al.136

As mentioned, and acknowledged in several reports,
the inferred field borders on the lower limit of detection.
Also, reported analysis involving fitting of a few parame-
ters to theoretical functional forms is not uniform. A few
examples of the type of theory and forms of depolariza-
tion expressions are given in Appendix XIV C 2. What
is less obvious in reports, but can be an associated con-
cern, is that the SC state zero field depolarization rate at
its maximum at T=0 is a small fraction of the value in
the normal state above Tc, which is magnetic noise that
remains in the SC state. For example, for Re6Zr with
Tc=6.8 K, the maximum signal at T=0 is 3% above the
normal state value, with the associated field value not
being provided. For LaNiGa2, the sample case we have
chosen for this article, with Tc=2 K, the increase is 6%
above the normal state value as T → 0.

A broader picture, briefly. A few µSR studies of cor-
related superconductors can be noted. In the prominent
class of heavy fermion superconductors,
• UPt3 has been reported from zero field depolarization
as TRSB, but at the low field limit of detection (0.1
G)74

• the well-studied heavy fermion SC system
U1−xThxBe13 reported also from µSR an increased
depolarization below Tc for x = 0.019 − 0.035 but did
not report a value for the inferred TRSB field.75

On the other hand, measurements on two cuprates,
where there have been theoretical suggestions59 of or-
bital loop derived magnetic fields, have shown noth-
ing. For the cuprate high temperature SCs (80-93 K)
YBa2Cu3O7 and Bi2Sr2CaCu2O8, no additional depo-
larization was detected below Tc, however their experi-
mental lower limit of detection of a spontaneous field was
stated as 0.8 G.76

B. Organization of the following sections

A few questions will be addressed in the following sec-
tions. For example, given the experimental indication
of TRSB, why does the proposed exotic state of, say,
LaNiGa2 involve a combination of (i) breaking of U(1)
symmetry [given], (ii) avoidance of singlet spin pairing
[uncommon], (iii) change of magnetic symmetry [uncom-
mon], (iv) broken orbital/band symmetries at Tc [un-
common], and in LaNiGa2 may do so in (v) a nonuni-
tary manner [uncommon]? One ‘given’ and four ’uncom-
mons’ multiply to a ‘highly uncommon’ occurrence – a
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rare sighting. The topological band character of LaNiGa2

does give a distinction from the other cases listed in
Sec. IX A, but most of the above questions extend to
other members of this class of fragile magnetic supercon-
ductors.

A primary question, addressed by several supercon-
ductor theory groups more widely is: what type of order
parameter is consistent with the measured constraints,
and precisely what are the constraints? It has been un-
derstood since not long after BCS theory appeared that a
magnetic impurity diminishes a singlet order parameter
locally and degrades SC properties, that is, a magnetic
moment has a detrimental effect on singlet superconduc-
tivity locally. The muon is a magnetic impurity. A triplet
OP will respond differently from a singlet state, in ways
that depend on details of the triplet OP.58 The follow-
ing sections deal with the electronic behavior underlying
these questions, then addressing them to some extent.

This second partition of this paper began with
Sec. IX A providing an introduction to several super-
conductors reported to show TRSB. Sec. X provides a
description of the supercurrent vortex generated by the
muon’s magnetic field. This discussion is extended in
Sec. X C to bring in the effects of flux quantization. The
corresponding (“Ampere’s law”) field at the muon’s site
is the topic of Sec. IV. The interaction of the muon
moment with the opening of the gap, leading to in-gap
states, is the topic of Sec. XI. The topic addressed in
Sec. XII is the structure of the order parameter, consid-
ering possibly singlet, possibly triplet, pairing together
with ingredients to satisfy fermion antisymmetry. Sec-
tion XIV S contains a few observations on the microscopic
physics – the SC pairing glue – about which little can be
promoted beyond electron-phonon coupling. A summary
and some discussion are provided in Sec. XIII.

X. SUPERCURRENT, ITS FIELD, AND
FLUX QUANTIZATION

The interaction of the muon with the condensate oc-
curs in selected ways. The dipolar vector potential (and
resulting magnetic field) is strongly position dependent,
thus stimulating supercurrents. This effect and related
quantities are the topic of this section. One of the Lon-
dons brothers’ equations states the relationship of a dissi-
pationless electronic fluid to a magnetic field. Given the
point magnetic moment’s magnetic field, the muon is sur-
rounded by a magnetic vortex, described in the following
subsection. This circulating current produces a field at
the muon’s site, which is the topic of Appendix X B. A
further effect is that a magnetic impurity such as a muon
creates localized states within the gap, so the muon is
directly coupled to the gap opening. There is a con-
cern: the London equation supposes a superfluid density
in a superconducting state without saying (or knowing)
much about (i) superconductivity, viz. the order param-
eter with its pairing strength and character, and the co-
herence length distance scale, which governs (together

with boundary conditions) the variation of the gap in in-
homogeneous situations, or (ii) modern electronic struc-
ture theory. The London theory did introduce the field
penetration depth, which will appear shortly. The field
dependence of the muon varies (strongly) at a smaller
length scale, being confined over first or second inter-
atomic distances, where the disturbance of the supercon-
ducting state may still not be understood. Specifically,
how the OP vanishes as the muon is approached remains
an enigma, as it extends consideration below the London
and Ginzburg-Landau length scales to the atomic level.
The discussion will carry on with the available formalism.

A. Supercurrent

Due to the lack of electrical resistivity, a persistent su-

percurrent ~Js arises in response to the total normal state

magnetic field ~Btot = ~Hµ + ~Bind, following (at least
within a quasiclassical Green’s function treatment77,78)
the London equation for an inhomogeneous magnetic
field. In the Coulomb (divergenceless) gauge the relation
becomes

∇× ~Js(~r, T ) = − 4π

λ2
L(T )

[ ~Bµ(~r, T ) + ~Bind(~r)]

= − 4π

λ2
L(T )

[~∇× ~Aµ(~r) + ~Bind(~r)] (11)

for an ‘external’ field, such as that of the muon. The
induced polarization is an ‘external’ field in this context,
but being much smaller than the muon field it can be
neglected. Applying the condition that Js vanishes when
~A→ 0, one obtains the remarkably simple solution (since
~Aµ is given)

~Js(~r, T ) = − 4π

λ2
L(T )

~Aµ(~r). (12)

The ~r dependence is that of ~A while the amplitude depen-
dence is that of λ2

L(T )−2, which becomes non-zero below
Tc and approaches its T=0 value rapidly below Tc.

The situation is complex. The supercurrent ~Js seeks to
shield the bulk of the SC from the supercurrent-driving
~Bµ field. Given the circular form of ~Aµ(~r), the super-
current density forms a vortex around the muon, with
the field magnitude becoming ever smaller, hence its di-
ameter becoming ever larger, as |z| becomes large. This
vortex will be entirely different from the textbook form
that enters a Type II superconductor in an applied con-
stant magnetic field. These statements are illuminated
in the following subsection. In addition, the near region
where the muon’s field approaches and then exceeds the
critical field of the superconductor, the London super-
fluid density (see below) vanishes thus the supercurrent
density vanishes, applying a boundary condition on the
supercurrent density.

The result is that when the field exceeds Hc2 of the
host, a normal electronic state (in a field) will return
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inside that radius, with resistance damping the cur-
rent. For our example LaNiGa2 a rough average of
the anisotropic Hc2 values is ∼0.2 T. Using convenient
units for the muon moment µ=0.448 T Å3, the critical
superconducting-normal radius is roughly 1.3 Å. This
is the distance by which the supercurrent must have de-
creased to zero, or perhaps drops rapidly to zero as the
order parameter may do.

1. Comments on the superfluid density. Some back-
ground is warranted, for this paper but also because this
property is measured by another (applied field) µSR tech-
nique, separate from the presently discussed zero field
measurement. The London brothers derived their pene-
tration depth λL as

1

λ2
L(T )

= 4πe2ns(T )

m
(13)

in terms of a resistance-less superfluid density ns(T ) and
electron mass m (band masses were not yet understood).
Note that the penetration depth diverges as T → Tc
from below, as a result of the vanishing ns. The Gorter-
Casimir two fluid model gives the temperature depen-
dence as

λ2
L(0)

λ2
L(T )

= 1− T

Tc

p

, (14)

with exponent p=4. Often experimental data is fit to
this expression with p as the fitting parameter, provid-
ing some information about the T-dependence of the gap
2∆(T ).

In his classic book Tinkham79 described ns as a phe-
nomenological parameter, while Schrieffer (in his classic
book80) emphasized that only electrons near the Fermi
surface experience any dynamical effects due to excita-
tions on the superconductivity energy scale. Phenomeno-
logically, one might expect the “superelectron density” to
be nsc = 2∆(T )N(0), i.e. the number of electrons that
have disappeared from the energy region 2∆ centered
on EF into the condensate that provides conductivity
at T=0 (there are no excited quasiparticles). Combin-
ing expressions from the BCS paper gives roughly this
value for the number of paired electrons in the BCS wave-
function. For the parameters of LaNiGa2, this estimate
gives ns(0) ≈ 2×10−3 electrons/f.u. Experimentally, the
emphasis is on T -dependence; an absolute magnitude is
rarely quoted from analysis of experiment.

2. Some background. The zero-frequency normal state
electromagnetic (T -independent) penetration depth λn
in terms of Fermi surface quantities is81

c2

λ2
n

=
4π

3
e2N(0)v2

F ≡ Ω2
p (15)

in terms of the Fermi level DOS N(0) and velocity vF .
Ωp is the Drude plasma frequency, which is a property of
the normal state Fermi surface, and for conventional in-
termetallic compounds is a few to several eV. Since Fermi
surface properties are a given for any specific metal, one
might consider this equation to give its conversion into a
length scale.

Ωp became so named because for the homogeneous
electron gas (where the density n determines kF , EF , vF ,
and any combination), the expression for the conductiv-
ity Omega2τ (see just below) is nearly the same as mea-
sured for monovalent alkali metals Li-Cs with spherical
Fermi surfaces. Ω2 has nearly the same value as the op-
tical plasmon frequency

ω2
p =

4π

3
ne2/m, (16)

the position of the peak in the electronic energy loss
function and involves excitations of all electrons in the
band(s). For some context, for a transport scattering
time of τ , the d.c. conductivity is σ(T ) = Ω2

pτ(T )/4π,
which is the connection for which Ωp is most often calcu-
lated. The connection with the free electron expression
then gives the correspondence

N(0)v2
F /3→ N(0)vx,eff ↔ (n/m)eff (17)

as an effective value of the density/mass ratio for the nor-
mal state: effective density of electrons involved in trans-
port and a band effective mass. (vF ,meff are anisotropic
in general.) For intermetallic Fermi liquid metals ~Ωp is
on the order of a few eV.

Once one makes the association of superconducting
electron density ns as N(0) × 2∆, one is left with an
anisotropic effective mass expression

mx,eff =
6∆

v2
x,eff

. (18)

All of these expressions involving, or obtained from, use
of ns are phenomenological, lacking formal justification.
The number of superconducting electrons is an evasive
quantity.

B. Field at the muon site

The supercurrent Js produces its magnetic field ~Bs(~r).
~Js will, from all levels (each contributes a circular sheet

of current loops) along the ẑ axis, produce a field ~Bs(~r)

that strives to cancel ~Btot at a distance beyond the co-
herence length, that is, in the bulk material. The muon
experiences the combined field

~Btot(0) = ~Bind(0) + ~Bspon(0) + ~Bs(0), (19)

the last two fields arising only below Tc.

We consider the dominant member ~Aµ, which leads to
~Bind and to ~Bs. From electrodynamics, the field due to
a current, and its value at the muon site, is

~Bs(~r) =
1

c

∫
~Js(~r′)× ~r − ~r′

|~r − ~r′|3

= − 4πc

λ2
L(T )

∫
~Aµ(~r′)× (~r − ~r′)

|~r − ~r′|3
d3r′,

~Bs(0) =
4π

λ2
L(T )

∫
~Aµ(~r′)× ~r′

|~r′|3
d3r′. (20)
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With ~Aµ = (~µ×~r)/r3, ~µ = (0, 0, µ), the integral for the x
or y coordinates gives zero, consistent with the symmetry
allowing only a z component. In cylindrical coordinates
the integral over φ gives 2π, leaving the integral

Bsz(0) = −2c2

λ2
L

∫
ρdρ dz

ρ2

(ρ2 + z2)3

= −4πc2

λ2
L

∫ ∞
−∞

dz

∫ ∞
0

w dw

(w + z2)3

= −4πc2

λ2
L

∫ ∞
−∞

dz[− 1

4(w + z2)2
|∞0 ]

=
2πc2

λ2
L

∫ ∞
0

dz

z4
. (21)

This divergent (at z=0) integral reflects the same need
for including quantum treatment and high field physics
as in the normal state (see Sec. IV) plus the more general
limitations that (i) the supercurrent expressions do not
apply in the normal state very near the muon position
and (ii) the London equation itself becomes questionable
on atomic distances. Physically, the result will be non-
zero and would be sensitive to any chosen ad hoc cutoff
at very small |z|.

This result returns one to the same (an)isotropy dis-
cussion as for the normal state. For the homogeneous
electron gas with cylindrical symmetry of the system,
the field at the muon site will align with the muon mo-
ment, thereby providing no torque and no depolarization.
Again, the low symmetry of the muon site will cause the
field to deviate from the z direction, thereby providing a
mechanism of depolarization for any host.

The conclusion at this point is that there is a non-
vanishing depolarizing magnetic field at the muon site
that turns on as the material become superconducting.
The T-dependence arises from that of λ(T ):

Bsz(0, T )

Bsz(0, T = 0)
=
λL((0)

λ(T )

=

√
1− (

T

Tc
)4) ≈ 2

√
1− T

Tc
, (22)

for T not far below Tc. This increase toward the max-
imum value at T=0 occurs rapidly below Tc. At T =
0.75Tc the field will already have reached 86% of its value
at T=0; most of the T-dependence occurs just below Tc.

C. Flux quantization

Magnetic flux penetrating a type II singlet supercon-
ductor (T<Tc, Hc1<H<Hc2) consists of roughly evenly
distributed vortices containing one flux quantum Φo, con-
fined by circulating supercurrents that shield the bulk
regions of the SC. Studying magnetic impurities within
Ginzburg-Landau theory, Ashcroft and Krusch found82

that for a δ-function impurity in a Type II SC and within
a range of model parameters, a strongly localized mag-
netic impurity behaves similarly to a quantized flux vor-
tex, the two being related by a “singular” (but treatable)

gauge transformation in their model. Local quasiparticle
states arising from carrier confinement by a SC vortex
have been studied by Gygi and Schlüter,83–85 and by Su
et al.86 for a topological SC. The magnetic field from the
muon’s moment will likewise be surrounded by super-
current enclosing a single flux quantum Φo vortex, not
externally driven but rather arising from the muon itself,
as discussed just above.

With no source or sink for the field, the vortex will
extend to the sample surface at large |z|. Each cross-
sectional area at height z will contain a flux quantum
confined within a radius that is z-dependent. see Sec. ??
for some explicit values of field versus radius. Supposing
there is a uniform 0.2 G field, as reported for LaNiGa2,
present in the absence of the muon, at large |z| the vortex
radius will be ∼ 10µm, a mesoscopic area within which
the SC OP would be reduced toward zero. Quenching of
the order parameter by the muon’s moment would lead
to a gapless system, though likely not evident in current
probes. If this scenario were correct, the vortex at the
surface might be detectable, very weak and possibly re-
quiring more time than the mean lifetime of the muon.

However, 0.2 G is much less than Hc1, in which case
the flux might be confined within a bubble within the
sample. This lower critical field is given by

Hc1 =
Φ0

4πλ2
L

(ln
λ

ξ
+ 0.50). (23)

Both length scales are direction-dependent for LaNiGa2.
Using the experimental values in Sec. XIV N, Hc1 ≈ 100
G for fields applied along the a and c axes, and roughly
twice as large for the b axis. For standard singlet-paired
SCs, such a small field, if from an external source, would
be entirely excluded, with only the muon’s field and that
of the supercurrent remaining, both amounting to a local
disturbance. If the spontaneous field is persistent and
uniform, then triplet pairing scenarios come into play.

XI. KONDO PHYSICS; YSR STATES

A. Magnetic moment coupled to pairing

The Kondo picture of a magnetic impurity in an elec-
tron gas addresses the coupling of the spin degree of free-
dom of a magnetic impurity coupled to itinerant electrons

through an on-site interaction JK
∑
j,s
~S ·~sj,s in terms of

the exchange parameter JK and the impurity and elec-

tron spin operators ~S,~sJ , s. As Cooper pairing begins, an
itinerant electron in the area is frustrated between anti-
aligning with another electron (for singlet pairing), or
with anti-aligning with the impurity spin. The coupling
is taken to anti-aligning in sign, which without pairing
leads to a collective singlet forming between the impu-
rity and the electrons. This interaction will be discussed
in Sec. XI.

A magnetic impurity also imposes a vector potential
that couples differently to the conduction electrons – a
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magnetic interaction over a region versus an on-site ex-
change coupling. Research into effects of the electronic
exchange interaction has extended over decades. The in-
teraction between the muon magnetic moment and the
electronic system involves differences.

Early work addressed data on superconducting sam-
ples containing a collection, perhaps a sublattice, of
small magnetic particles,87,88 and effects that arise due
to anisotropy and a Type-II state.89. A related empha-
sis was the interaction between a dipole and the super-
conducting surface.90 It can be noted that some super-
conductors with dense lattices of rare earth ions with
large moments showed little coupling to itinerant elec-
trons, i.e. potential Cooper pairs. High Tc cuprates,
viz. RBa2Cu3O7−δ, R=rare earth (except for Pr), with
Tc∼80-100 K, display little evidence of coupling, with the
4f moments finally ordering antiferromagnetically only
around 1 K. The rare earth R class RNi2B2C, on the
other hand, displays a rich competition between SC and
antiferromagnetic order in the 10-20 K range, even show-
ing coexisting superconductivity and magnetic order in
the H-T phase diagram.91

As noted earlier, the vector potential of a magnetic mo-
ment drives circular currents around its axis that form
the vortex. In a conventional superconductor, the ex-
change coupling of the atomic moment interacts with and
depresses the OP in its vicinity. Spatial variation of the
vector potential drives supercurrents, or as often stated,
a magnetic field stimulates supercurrents that oppose the
field, as in the Meissner effect.

Check this paragraph. Another issue arises from
the 3µ/r3 scaling of the magnetic field near the muon
moment. When this field exceeds the critical field, the
OP must vanish. The muon then will always exist in
a small normal state region of space. This change from
near-full OP to a normal region will occur on a very much
smaller length scale than ξ (the small length scale in Type
II SCs), which brings up the (possibly) unexplored ques-
tion of how this crossover occurs on the Å scale. How-
ever, scanning tunneling microscopy spectra and S-I-S
tunneling characteristics demonstrate that a bulk gap ex-
tends to very near a surface or interface, where there is
an abrupt change from full amplitude OP to vanishing
OP. How the increasingly large near-field might affect
a muon’s detection of relaxation-inducing fields, and in-
deed the reaction of the OP to such a rapidly varying
field, are areas yet to be illuminated.

Neglecting details, the classic picture of a magnetic
moment in a metal in the normal state is that of the
Kondo effect: if the exchange coupling between the net
local moment and the itinerant electrons is antiferro-
magnetic in sign, many-body screening of the moment
(“spin screening”) produces an effective local moment-
conduction electron singlet that becomes evident in sev-
eral normal state properties (resistivity, magnetization,
heat capacity, some others). The singlet correlations set
in and finally saturate at a temperature well below the
Kondo temperature TK where the singlet evolution be-
gins, and at low temperature the material is a strongly

enhanced Fermi liquid. Evidence of Kondo screening has
not been reported and would not be expected for a sparse
concentration of µ+ moments, especially considering that
the muon moment is two orders of magnitude smaller
than atomic moments. Several Kondo compounds be-
come superconducting, a topic that is not a part of this
paper.

1. Kondo singlet versus Cooper singlet

An early approach to this coupled local moment – pair-
ing order parameter issue is embodied in the 1970 results
of Zittartz and Müller-Hartman,92 (ZMH) who extended
earlier works at the model Hamiltonian level that had
been influential in understanding the normal state Kondo
effect. One might anticipate that the opening of the SC
gap interrupts the essential low energy Kondo physics,
and the quantum aspects of the spin can be treated less
explicitly. What is known is that Kondo lattice materi-
als – crystals with a sublattice of magnetic moments –
can enter the now well studied Kondo heavy Fermi liq-
uid superconducting phase. Kuster and collaborators56

have shown how to probe this question for the case of
magnetic atoms on surfaces.

Appending the Kondo Hamiltonian with a BCS ‘pair-
ing potential’ term, ZMH established within this model
that as the gap opens, bound states involving the local
moment appear within the gap but near the gap edges.
The character of these states should include strong local
moment character, but only much more recent studies
have clarified both their energetic and orbital character.

According to this level of theory, a single muon im-
purity couples to the electron cloud that is beginning to
pair into Cooper singlets, with the outcome being, be-
sides other spectral changes, a pair of magnetic moment-
derived localized bound states within the gap, at energies
near the gap edges at ±∆(T ). This connection provides
a mechanism of coupling of the SC order parameter to
an impurity spin. As derived in Sec. IV (not considering
Kondo coupling), the µ+ moment creates a strongly spin
polarized region around the muon that is changing sign
with polar angle θ, with field far greater than the critical
field. This electronic magnetization near the muon, hav-
ing strong polarization (varying with direction) acts to
obviate singlet SC pairing in that region (but not neces-
sarily encouraging triplet pairing), thereby reducing the
gap magnitude, to the extent that any OP can be treated
on the Angström level. The magnetic ion’s (muon’s) field
likely dominates, providing a moment-quasiparticle cou-
pling of a new character. Study of the SC-Kondo model
has since that time been addressed by more recent many-
body techniques, see for example Sykora and Meng’s cal-
culation of the interplay between the Kondo singlet state
and the induced YSR states.93 Some results of the study
by Choi and Muzikar78 of a Kondo impurity in an exotic
superconductor are discussed in Appendix XIV L.
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2. Yu-Shiba-Rusinov states

A magnetic impurity in a gapped SC interferes with the
singlet OP that according to the ZMH-type of model and
solution leads to bound YSR (Yu-Shiba-Rusinov94–97)
states within the SC gap 2∆ but, according to early stud-
ies, near the gap edges at ±∆. Such states are analogous
to shallow donor and acceptor states in semiconductors,
and might someday play a similar role in SC electron-
ics. For some time after the Kondo effect was elucidated,
it was considered that the SC gap inhibited zero-energy
processes (which dominate the Kondo effect) as being
frozen out, and the moment could be considered as classi-
cal. As theoretical interest and experimental capabilities
have progressed, quantum behavior of the impurity spin
has become a topic of study, while the internal structure
of the state raised interest. This area of study should
be regarded as ongoing, with relevance to this article to
be determined. The status as of 2006 was reviewed by
Balatsky, Vekhter, and Zhu.34

Previous studies treated the impurity moment-electron
coupling, implicitly (point contact coupling) in early
work but increasingly explicitly in more recent studies,
as interatomic electronic exchange akin to (but more
broadly than) the rules of Goodenough98, Kanamori,99,
and Anderson100 between the impurity state mixing with
orbitals of itinerant states. This direction of study ne-
glected the smaller effect of the orbital behavior near the
dipolar field of the moment. In studying the muonic im-
purity at the sub-atomic level, both effects become rele-
vant. The environment in µSR studies provides a direct
coupling between the muon vector potential (orbital ef-
fects) and the SC condensate. Coupling of the muon is
of a distinct character due to the fact that the coupling
is through the vector potential which reduces the gap,
rather than through (say, 3d) atomic orbitals. Hydrogen
interstitials introduce similar formal considerations, but
with an order of magnitude smaller effect.

3. µYSR states

As mentioned, the muon is a close cousin of intersti-
tial hydrogen. Given a more-or-less singly occupied 1s
orbital of the muon, there will be no electronic (spin)
moment (which from DFT calculations is magnetically
inactive) and a 1s orbital has no orbital moment. Re-
garding this point: it seems that DFT studies of proton
and muon interstitials37,39,42,43 have rarely searched for
spin polarized states of the muon. Interest in an “ultra-
deep donor” state in ultra-pure semiconductors received
a boost from a simple type of correlated electron calcu-
lation applied to the H 1S orbital in Ge, which identified
such a spin-polarized state a few eV (note: not a few
meV) below the gap in Ge.101 Screening in metals alters
the physics of such states. Back to the main topic: the
muon vector potential field will interact with the OP and
it can be expected to give rise to defect states within the
gap, which will here be denoted µYSR states.

The induced currents for the bare muon (without the
smaller induced electronic magnetic intensity, neglected
for now) are, by Eq. 12 and for an isotropic host, circular
currents around the ẑ-axis decreasing as z−4 away from
the muon. Magnetic field lines do not terminate, so the
current vortex must enclose one unit of quantized flux (its
increasing magnetic field will put it, in a certain range, in
the Type II regime, before destroying pairing when the
field exceeds Hc2). The radius of the vortex increases in
radius in the x-y plane accordingly, see Appendix XIV B
for values.

Low symmetry of the muon site will affect analysis.
The non-circular environment will allow a non-zero ex-
pectation value of the magnetic moment operator, hence
non-zero orbital magnetization. Change of direction of
the muon spin will result in a change of rotation of the or-
bital currents, which provides new information but again
may complicate analysis.

The study of YSR states has progressed to DFT stud-
ies of 3d ions. Fe, with its large moment, has been the
preferred atom within or on the surface, of conventional
SCs such as Pb and Nb, revealing a great amount of detail
that can occur in such cases. Some cases are addressed
in Appendix XIV M. In-gap states due to a muon, with
only the moment’s vector potential and with the unpo-
larized 1s orbital not involved, have yet to be studied,
although a few groups may soon have the capability (see
App. XIV M).

XII. IMPLICATIONS FOR THE PAIRING
SYMMETRY

Construction of plausible exotic OPs relies on the guid-
ing principles of antisymmetry of the Cooper pair and
the BCS form of the nonlinear gap equation, which be-
comes linear at Tc. For elements and intermetallic com-
pounds that display conventional Fermi liquid behavior
without any unusual magnetic tendencies, superconduc-
tivity is initially assumed and then (frequently) verified
to be due to phonon-induced pairing of electrons – sin-
glet and s-wave pairing. When properties, in the normal
or SC state, are unexpected, an exotic (ı.e. non-BCS)
OP is anticipated. µSR is the primary technique provid-
ing evidence of TRSB (a spontaneous magnetic field) in
nominally conventional metals.

The two central subclasses of OP are (spin) singlet
pairing and (spin) triplet pairing, the only two classes to
be obtained from two spin-half electrons. These distinc-
tions provide the first line of attack in constructing pos-
sible OPs. Beyond that, symmetry in momentum space
(‘orbital symmetry’, beyond s-wave) provides the second
consideration. For TRSB, spin (more generally, mag-
netic) symmetry becomes the issue, along with accompa-
nied symmetry breaking. To complete the antisymmetric
character of the Cooper pair, further symmetries are con-
sidered as possibilities: space group, inversion, orbitals,
bands, etc.
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A. Spin singlet scenarios

1. Ubiquitous electron-phonon coupling

I. Generalities. Electron-phonon coupling (EPC) is
distinctive given that it (i) is always in play, and (ii) is
always attractive for s-wave pairing (the kernel in the gap
equation does not change sign), with coupling strength
λ moderated by a retarded Coulomb repulsion µ∗, typ-
ically falling in the 0.10-0.16 range.102,103 For low Tc’s,
say below 5K, it has been difficult but is recently be-
coming possible, to verify theoretically2 that SC derives
from EPC. The difficulty is that calculating low Tc re-
quires precise knowledge of both λ and µ∗, neither of
which is normally available. An added complication is
that the fundamental Coulomb repulsion is µ, whereas
µ∗ is a renormalization that depends on the frequency
cutoff used in solving the Eliashberg equations.104

Taken together (they are each always present), The
combination λk − µ∗ contains some richness, based on
the k-dependence of λk and the near-independence of µ∗

on wavevector (it involves higher energy processes that
serve to average out the dependence on k near the Fermi
surface). If λk is strongly anisotropic, the net interac-
tion λk − µ∗ can change sign on the Fermi surface, and
non-s-wave orbital behaviors may become favored. For
µ∗ ≈0.10-0.16 and weak but anisotropic λk, a change in
sign of λk − µ∗ in the kernel introduces the possibility of
a exotic gap symmetry, denoted p-wave, d-wave, or even
more involved combinations of symmetries, such as S+id.
While a few p-wave and d-wave SCs have been suggested
for quantum materials, some with several types of sup-
port, none has been established in the weakly-correlated
Fermi liquid metals that are the topic of this article. Sim-
ple Fermi liquid SCs, with conventional µ∗ and low Tc
are commonly and successfully interpreted to arise from
EPC, partly due to other experimental information on λ
and partly due to the ubiquity of the phonon mechanism.

A pairing strength λ= 0.4-0.5 in an s-p electron com-
pound can account for a Tc up to 5K or so (but is sensi-
tive to µ∗), a range including all TRSB SCs in the class
of fragile magnetic superconductors. Given the seemingly
necessary exotic OP, an additional channel for symmetry-
breaking is anticipated. While weak for EPC, this value
of coupling may be strong compared to additional can-
didates, hence alternatives should be complementary to,
rather than competitive with, EPC. More visually ex-
pressed, they might be simply additional (but “perpen-
dicular”) to EPC. Of course, possible phonon coupling to
additional degrees of freedom cannot be overlooked.

II. Conventional BCS calculations. Subedi and
Singh105 calculated the phonon spectrum, the Eliash-
berg spectral function α2F (ω), and Tc for LaNiC2, a
sister compound to LaNiGa2 with closely related compo-
sition, an orthorhombic space group, and similar value
of Tc=2.7K. It has a different point group, but one that
also has only 1D irreps. The µSR identification as TRSB
is based on extraction of a smaller spontaneous field of
0.1 G, a value that is sometimes stated as the lower limit

of detectability. The coupling strength is λ=0.52, and
using a standard value of the retarded Coulomb repul-
sion µ∗=0.12, Tc=3K was obtained. This is excellent
agreement with experiment, and provides the strength
of electron-phonon coupling that must be confronted by
other competing pairing mechanisms.

Related calculations on LaNiGa2 were reported by
Tütüncü and Srivastava.106 They assumed the Cmmm
space group understood at the time to be the structure,
rather than the more recently discovered Cmcm struc-
ture. The electronic structure is similar to the Cmcm
result, for example the Ni 3d states are filled and lie in
the same energy range. The Fermi surfaces for both are
large and multisheeted, but different. Based on a lim-
ited Q-mesh for the phonons, they obtained λ≈0.7, and
choosing µ∗=0.17 for their estimate, giving Tc very close
to the 2 K experimental value. Calculations using the
more recently determined Cmcm space group have not
been reported.

III. This picture so far. It should be mentioned that
quoted calculated values of Tc, when small, are sensitive
to (i) the choice of the parameter µ∗, and (ii) a precise,
well converged calculation of λ. In any case, the mod-
est values of λ indicate weak coupling. These results for
two TRSB superconductors provide a strong indication
that the pairing is BCS (spin singlet, phonon mediated),
and that other origins of the spontaneous magnetic field
should be sought. In this scenario, the reported sponta-
neous magnetic fields from µSR spectroscopy would be
attributed to the field generated by the supercurrents
that onset at Tc.

2. Spin singlet pairing more generally

Occam’s razor directs one toward the simplest form of
OP consistent with observations. We consider first sin-
glet pairing due to phonon glue, which is the presump-
tion underlying experimental identification of materials
properties and which lie within familiar ranges for weak
coupling SCs . Cooper’s demonstration that the Fermi
surface is unstable to formation of bound singlet pairs of
(+k, ↑;−k, ↓) character is the underpinning of the the-
ory of superconductivity, subject only to the necessity
of a net-attractive effective interaction. Phonons are al-
ways present, and they always prefer zero momentum
singlet pairs, subject to interruptions from other pairing
mechanisms that are usually weak in conventional Fermi
liquids. Calculations on LaNiC2

105 and LaNiGa2
106 are

discussed in Section XII A 1.
Singlet pairing alone involves only a scalar (in general,

complex) OP, the gap ∆kn depending on position on the
Fermi surface (wavevector k, band n). The k-dependence
can incorporate a component of broken crystal symmetry
(p-like, d-like, f -like) plus additional out of phase compo-
nents of higher symmetry, viz. s+id. Less fundamentally,
in accounting for data on TRSB it has become common
to incorporate into the theory an additional degree of
freedom whose symmetry can be broken, such as a pair
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of similar (but not degenerate) bands, or atomic orbitals
on symmetry-related atoms (degenerate by default).

1. An exotic singlet scenario. Addressing the TRSB
feature more generally, the Dirac point (DP) degener-
acy of LaNiGa2

17,18, pinpointed in Fig. 3, suggests a
symmetry-driven fragile platform for a broken symme-
try that could account for a small magnetic field in the
SC state. The symmetry would be that of the mirror
x→−x operation in the Cmca space group that connects
the two DPs. (We choose, as common, the special crys-

tallographic ~b axis as the OP ẑ-axis, and the Z-T di-
rection as the x̂ direction.) The ~τ space in the current
model has not broken any true symmetry in the ‘near
degenerate FS’ picture, and only a nondescript degen-
eracy in the ‘degenerate orbitals on equivalent atoms’
picture. The broken symmetry involving the pair of DPs
provides an obvious candidate for delicacy toward spon-
taneous change, closely analogous to the pair of DPs in
graphene.107

This picture comes with a challenge: the overall odd
symmetry of the OP. Singlet spin is odd; the broken DP
pair is odd (think of splitting to energies ±η). The prod-
uct of the three OP components being odd requires the
third – k-space behavior – to be odd. Yet data shows a
gapless SC spectrum, typically associated with an s-like
behavior. This hurdle can be surmounted by an OP of
px + ipz type, somewhat natural given the Cmca struc-
ture:

∆orb
k = α sin kx + iβ sin kz,

∆orb
k [∆orb

k ]† = α2 sin2 kx + β2 sin2 kz, (24)

with non-zero real constants α, β. While there has been
substantial theoretical discussion of complex combina-
tions of different character, little has been established
about what the origin might be. In very stable crys-
tals, this symmetry breaking can involve simply lowering
the symmetry of the electronic state with negligible im-
pact on the lattice symmetry, making XRD an ineffective
probe.

The absence of anisotropic pairing states in conven-
tional Fermi liquid metals raises questions about why
they are so disfavored. For example, the antisymmetric
p-wave state should gain energy due to the two mem-
bers of the Cooper pair having a reduced short-range
Coulomb repulsion. Foulkes and Györffy108 looked at
the scattering vertex function Γ, given schematically by
Γ = I − IGGΓ, where I is the irreducible scattering ver-
tex and G is the single particle Green’s function. Assum-
ing that I does not depend on relative spin orientations,
they compared λ0 the coupling strength for an s-wave
kernel, for its p-wave counterpart λ1. A key point is that
for p-wave, µ∗ will be much reduced and might be neg-
ligible, so the effective couplings may be similar. They
took into consideration the accepted lore that anisotropic
pairs are strongly affected by impurity scattering, requir-
ing very clean metals. Reducing Tc,1 proportional to the
transport broadening ~/τ , an accepted approximation,
they suggested that p-wave pairing might occur in Pd,
W, or Rh samples, but requiring residual resistivity ra-

tios between 103 to 105, representative of extremely pure
crystals. This work provided at least the plausibility of
p-wave pairing in conventional metals. Other works have
suggested that phonon pairing in conjunction with other
interactions can generate odd-pairing for certain choices
of parameters.109,110.

3. A degeneracy-inspired singlet order parameter

Supposing a system where TRS is broken already in the
normal state, the question of the type of order parame-
ter should not be considered closed. LaNiGa2 has unique
degeneracies that make it a special case.16–20 Due to its
non-symmorphic space group and Fermi surface geome-
try giving rise to a pair of diabolical point degeneracies
that are not lifted by SOC, and only separated by the
gap-opening SC state, a singlet but exotic order param-
eter can be constructed, incorporating this unique Fermi
surface point degeneracy.

The Cooper pair symmetry, required to satisfy the
fermionic antisymmetry under exchange of electron co-
ordinates, allows an uncommon product of odd (spin) ×
odd (orbital) × odd (other) = odd pair. The nodeless gap
is another primary condition. Singlet pairing is odd upon
exchange of electron coordinates. By choosing an orbital
combination of px + ipz for the OP (somewhat natural
for an orthorhombic structure with a special y-axis), the
orbital symmetry is odd but a nodeless gap is retained:
symbolically, |px+ipz|2 = p2

x+p2
z has no zeroes. However,

the Dirac point symmetry Da≡Db by mirror symmetry
can be broken into a non-zero odd combination. Intro-
ducing a generalized degree of freedom ua, ub on each,viz.
perpendicular displacements ξa, ξb, the space is isomor-
phic to the spin space of the Cooper pair, with coupled
displacement described by a set of vector Pauli matrices
denoted τ . The combination [ξa−ξb]/

√
2 is a DP singlet,

which with the above representation would be a twisting
of the a − b “bond” in the kx − kz plane. This pro-
vides a breaking of non-symmorphic symmetry, perhaps
electronic rather than structural, and reduces the Dirac
point symmetry. With an appropriate coupling term in
the OP and BdG Hamiltonian, this transformation could
break spin symmetry or stimulate orbital currents. The
topological nature of these Dirac points in momentum
space might give more exotic properties arising from the
symmetry breaking process.

B. Spin triplet pairing

1. Challenges to triplet pairing

A more detailed understanding of the interaction and
present interpretation, based on TRSB, of triplet pair-
ing appears to confront a few common expectations and
challenges: (i) that low Tc, weak coupling SCs commonly
conform to Cooper’s (BCS) singlet S=0 and zero momen-
tum pairing instability, (ii) triplet correlations will need



20

to dominate singlet correlations to break TRS, implying
a relatively strong coupling (of unclear origin), (iii) mag-
netic impurities diminish singlet pairing; triplet states
are predicted to be highly sensitive to defects even non-
magnetic ones, (iv) there are questions relating to the su-
perconducting state coexisting with an intrinsic magnetic
field;58 (v) only a select few intermetallic compounds of
seemingly similar non-magnetic Fermi liquid character
are identified as breaking TRS, and all are low Tc mate-
rials.

This class of fragile magnetic superconductors may be
analogous to the situation in EPC, where a small differ-
ence in a weak-coupling λ can account for the difference
between low Tc SC, or none; a smaller that detectable
spontaneous field will result in assignment of a similar
SC state to a different class. As mentioned in the Intro-
duction, due to the supercurrent derived magnetic field
discussed in Sec. X, all implanted muons should incur ad-
ditional depolarization below Tc, but with some the field
would be enough smaller that it lies below detectability
and thus is not included in the class of fragile magnetic
superconductors.

Triplet S=1 pairing in this class has the sole justifi-
cation that it accounts for the signal of TRS breaking,
as long as remaining symmetry restrictions can be ad-
dressed. For triplet pairing, equal Sz=± 1 occupations
provide a degeneracy from which symmetry can be bro-
ken (very slightly) by some small perturbation. As men-
tioned, many properties of this class do not seem consis-
tent with triplet pairing. It is also a challenge to identify
a mechanism to justify equal spin pairing, one that over-
rides Cooper’s strong favoring of both singlet pairing and
zero momentum pairs. Some generalities of triplet OPs,
of which the INT model32,33 discussed below is one, are
provided in Appendix XIV O.

2. The INT model

Weng et al. described32, and Ghosh et al. refined33

Internally (antisymmetric) Nonunitary Triplet pairing
(INT) spin-triplet picture for LaNiC2 and LaNiGa2 in
which there is parallel-spin pairing (the Sz=0 channel
is neglected). For the magnetization, | ↑↑> (Sz = +1)
occupation exceeds (slightly) that of | ↓↓> (Sz = −1).
Without going into further details (see Appendix XIV O),
this one-parameter model is based on an electronic quasi-
degeneracy – nearly-degenerate FSs – or alternatively on
an active atomic orbital on symmetry-related atoms; ei-
ther could account for the necessary additional symmetry
to be broken. From small structure in λL(T ) and cv(T )
they argued that a “two gap” (or “two band”) charac-
ter might be responsible. (Data for cv(T ) obtained on
single crystals17 since these papers were published are
consistent with a single, somewhat anisotropic, gap.)

This viewpoint can be supported more naturally by
the observation just above that pair of DPs in LaNiGa2,
discovered in electronic structure calculations18 after its
correct space group was revealed by single crystal XRD17

and confirmed by ARPES data, provide an exact (but
material dependent) degeneracy that would be suscepti-
ble to instability by spontaneous crystal symmetry break-
ing. The remainder of the analysis carries through:
triplet pairing, symmetric k-dependence, odd symmetry
in the orbital space.

C. Orbital magnetism scenario

Spontaneous orbital magnetism in crystalline solids, if
it would arise in zero field, is generally expected to be
much smaller than spin magnetization. Given the re-
ported field values of 0.1-1 G, the orbital magnetization
would need to be that of the spin magnetization discussed
earlier, of the order of 10−3µB/f.u.45 Orbital currents
have been discussed mostly in the context of quantum
(strongly correlated) materials, and not yet observed.
Several independent searches in the layered cuprates have
placed stringent limits on the magnitude of such currents,
however they remain of strong theoretical interest.

As mentioned in Sec. X, an orbital supercurrent is
driven by the muon moment, leading to a vortex extend-
ing (more or less, depending on local symmetry of lack
thereof) along the axis of the moment. This supercur-
rent primarily sustains the vortex, producing a field at
the muon site and also in the neighboring environment,
but in a roughly circular region. In a susceptible system a
vortex might trigger an orbital current state in the bulk.

Weak spontaneous fields that are proposed theoreti-
cally are not pictured in terms of large cyclotron orbits
such as arise from strong applied fields, but rather from
small currents circulating on the nanoscopic scale. It is
challenging to reconcile singlet pairing with an intrinsic
internal field: its perfect diamagnetism would strive to
compensate somehow or expel the spontaneous field –
but the spontaneous field OP is proposed (at least for
simplicity) to be uniform. This issue is beyond the scope
of this paper.

First, the formulation of a microscopic theory of or-
bital moments, which possess and angular momentum,
in a periodic solid is far from obvious. Robbins et al.111

have applied developments that occurred in the theory
of polarization in crystals to address this challenge for
the normal state, then extended the theory of the orbital
moment in a superconductor to the formulation and ap-
plication of a modern DFT-based band structure code
(viz. BdG formulation for a SC) to explore such effects
in real materials.

This work required a careful formulation of orbital mo-
mentum because in the usual angular momentum opera-

tor ~L = ~r× ~p, the position operator ~r is tricky to handle
in an extended, periodic system, and the orbital moment
will be a periodic quantity. Assuming a chiral, p-wave OP
for Sr2RuO4, Robbins et al. derive an orbital moment of
3×10−4µB per f.u., which they suggest accounts for a
field of 0.3G, i.e. again not far from the measurement
limit. The formalism they develop can be expected to be
of great use in modeling and understanding orbital mo-
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ments in superconductors. The proposal by Robbins et
al. of orbital currents is discussed in Appendix XIV S 2,
see also the specific proposal by Ghosh et al.45 of TRSB
loop supercurrent order.

D. FFLO possibility.

This possibility has hardly been discussed in the litera-
ture, and upon further study might be found to be unten-
able. As discussed in Sec. XIV S and Appendix XIV O,
TRSB is conventionally typified in language and formal-
ism as spin-triplet pairing. In this picture, the small
observed magnetic field implies a very small difference in
the numbers of | ↑↑> and | ↓↓> pairs. Another spin-
based scenario (i.e. without orbital polarization), given
the extremely small observed magnetic field, is that it
might qualify as an FFLO-like state within singlet pair-
ing, with a minor difference in spin-up and spin-down po-
larization. This slight spin polarization results in slightly
different up and down Fermi surfaces, which might read-
ily be displaced to provide the nesting that the FFLO
picture engenders: a polarization that varies slowly in
space, with variation on the length scale of 2π/Q, where
Q is the net momentum of a pair.

An idealized FFLO state112,113 has net momentum ~Q
singlet pairs (k,−k+Q), disrupting the simple BCS case
of direct pairing across the Fermi surface (k,−k). The
gap function varies (again, idealistically for flat nesting

Fermi surfaces) in sinusoidal ~Q · ~r fashion. This faces
the challenge that each muon seems to experience a sin-
gle environment as the origin of depolarization, whereas
the phase of the FFLO gap would lead to the muons
in a given experiment sampling varying magnitudes of
the magnetic field. A resolution of this issue is that the
variation could occur as ∆eiQ·r, i.e. spatial variation of
the phase of the complex FFLO OP, but with constant
magnitude.

A related possibility is that the muon perturbs pairing
in the following way. The charge density in the muon’s
environment differs from that of the periodic crystal due
to the muon’s own “1s” charge and to the change in den-
sity to displaced neighboring atoms. This can be pictured
as this region of disruption perturbing the Fermi surface
locally. The muon’s magnetic field has broken spin sym-
metry already, so the disrupted (or broken) pairs would
naturally result in unequal spin-up and spin-down carri-
ers, leading to a local magnetic field.

XIII. DISCUSSION AND SUMMARY OF THE
PAPER

µSR studies have provided muon depolarization evi-
dence, with magnitude sometimes (but sometimes not)
having T-dependence much like the superconducting gap,
that is taken as evidence of TRSB, in as many as ten
weakly correlated, conventional metals mentioned herein.
These differences may be ascribed to the magnitude of

the signal approaching the limit of the µSR experiment.
Assuming as has been common that this is not a self-
induced field, this assignment places them in one of the
most unusual classes of superconductors with exotic or-
der parameters, referred to here as fragile magnetic super-
conductors. Perplexingly, the superconducting properties
are consistent with singlet pairing, while triplet pairing
can produce very different coherence lengths and critical
fields,58 and likely would show very different h- and T -
dependencies of the magnetization. The superconducting
properties of radiation damaged (disordered) LaNiGa2

are typical of BCS SCs – modest change in properties21

– while triplet pairing is predicted to be highly sensitive
to disorder.

There are few other experiments that can supplement,
or confirm, the current understanding, viz. circular Kerr
rotation and small angle neutron scattering. In preceding
theoretical work, the vector potential of the muon mag-
netic moment has been mentioned occasionally but its ef-
fects not pursued. In this paper the consequences of the
muon’s vector potential, both spin and orbital, have been
introduced and given analysis in some respects, leaving
more difficult formal and numerical aspects for further
work.

A. Normal state

When the polarized muon in injected into a crystal,
it comes to rest in an interstitial position, avoiding the
positively charged ion cores but choosing favorable in-
teractions with negatively charged electrons. At this
point time-reversal symmetry is broken, most strongly
in the immediate environment of the muon – which is
also the only position the crystal is sampled, the muon
position. Not only does this override the claim of (highly
exotic) time-reversal symmetry breaking, it biases the sys-
tem magnetically with respect to the muon polarization
direction – which is also the key aspect that the measure-
ment takes advantage of.

Already in the normal state, where nothing is obtained
from the limited information that can be gained from a
single muon with its 2.2 µs mean lifetime, the near region
of the muon becomes impacted by the muon’s magnetic
field, which has a r−3 divergence for electron density ap-
proaching the muon. The muon field has a value much
larger than or equal to that of the inferred spontaneous
magnetic field out to interatomic distances, and – more
concerning – diverges to and beyond tesla strengths near
the muon. Its field produces spin and orbital polariza-
tion in the region, as well as charge currents characteristic
of a spatially varying magnetic field. This polarization
creates a magnetic moment at the muon’s position. In
initial spherical approximation (muon in a homogeneous
electron gas) the induced field at the muon’s site is zero
by symmetry. The low site symmetry of the muon will
lead to a non-zero field.

The full, seemingly straightforward, integral for the
field at the muon site contains by a badly divergent r−4
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factor in the integrand. Incorporating broken spatial
symmetry by the position of the muon (anisotropy), and
three difficult to quantify quantum manybody effects –
saturation of the (non-linear) susceptibility, quantum un-
certainty of the muon position, parallel-spin electron pair
correlations – the field at the muon becomes non-zero but
with a magnitude that will require challenging formal and
numerical work to specify.

Faced with the identical divergence in their study of
nuclear magnetic resonance, Abragam and Bleaney114 re-
verted to a relativistic Dirac formalism, and arrived at a
regularized result (somewhat akin to changing the order
of integration) that is still based on a one-electron wave-
function picture. The same issue would appear in proton
NMR, but being an order of magnitude smaller.

As mentioned, already in the normal state there is a
magnetic field at the muon’s site. It produces no observ-
able effect because (1) the field is nearly collinear with
the muon’s moment (spin) and produces negligible torque
on the moment, and (2) the field would be part of the
background of depolarizing electronic and nuclear fields,
which would suffer little change upon entering the super-
conducting state. In short: the muon lives in a singular,
perhaps turbulent, small volume, an environment of its
own making, and never experiencing the superconducting
state locally.

B. Superconducting state

Entering the superconducting state, the environment
changes in a few ways. The induced Bµ-field due to elec-
tron spin polarization might remain, or it might be op-
posed by the opening of the SC gap, vying for Fermi sur-
face electrons. The muon’s magnetic field (together with
that of the polarized electrons, which is relatively small,
but keep in mind the inferred fields are near the lower
limit of detection) leads to the onset of supercurrents,
perhaps in competition of the order parameter as well
as the conventional electromagnetic fields. These super-
currents strive to protect the bulk of the superconductor
from the muon’s field – an internal Meissner-like effect.
Near the muon, the system will be non-superconducting,
as magnetic field of the magnetic moment of the muon
exceeds far beyond the critical field of the superconduc-
tor. This gaplessness near the muon may be undetectable
with known probes.

Secondly, resistance-less current flow will allow the
(super)current flow implied by London’s and Maxwell’s
equations (which in the normal state decay due to re-
sistance). Superconducting quantization of the magnetic
flux leads to a flux vortex circulating around the axis of
the muon moment, narrow at the ‘equator’ centered on
the muon where the field is strongest, growing large in
area for large |z|. The driving force for the supercurrent
is to enforce an internal Meissner effect, protecting the
bulk of the superconductor from the muon’s magnetic
field. This orbital supercurrent will create a field acting
back on the muon site, with onset below Tc just as the

onset of the gap appears.
The field in the midst of opening of the gap will drive

creation of (one or more) Yu-Shiba-Rusinov states (µYSR
states) localized with magnetic character, within the gap.
Such states have been studied for magnetic ion moment
impurities in a solid, where coupling is through well stud-
ied atomic orbital related exchange; study of muon mag-
netic moment driven local states remains for the future.

Either the emergence of supercurrents, or the estab-
lishment of YSR states, both arising below Tc, may pro-
vide the mechanism for coupling of the gap opening.
These questions, outlined in the previous sections, re-
main as important tasks for future study.

C. Compilation of loose ends

This set of notes addresses only the class of appar-
ently normal Fermi liquid superconductors, a handful
that have been identified by µSR depolarization data as
TRSB, against a few which have been checked, with no
additional depolarization in the SC state being detected.
This class comprises the class of fragile magnetic super-
conductors. Polar Kerr rotation experiments have iden-
tified TRSB signals in oxide superconductors (Sr2RuO4,
YBCO) and ferromagnetic/SC superlattices, again with
the signals near the limit of detection – a fraction of one
µradian.151 The source of this inferred TRSB is men-
tioned in relation to magnetic fields but without specific
discussion. Only the simpler class of Fermi liquids is ad-
dressed here.

Several items contribute to a set of loose ends left for
study.

• Time reversal symmetry broken already in the nor-
mal state, most strongly near the muon site where
the measurement originates, by implantation of the
polarized muon. Polarization of the nearby elec-
tronic system, and the additional magnetic field
that it produces, arises as a consequence of the
muon’s magnetic field.

• The diverging magnetic field and increasing distur-
bance approaching the muon position causes an un-
quantified modification of the (spin) distribution
and the (orbital current) magnetization of the re-
gion, involving parallel spin correlation, the sat-
urating magnetic susceptibility, and the quantum
uncertainty of the muon’s position. Magnitudes of
the effects will be challenging to obtain. The field
at the muon site would however become part of
the background from nuclear and electron magnetic
moments.

• As often noted, the inferred spontaneous magnetic
field is near the lower limit of detection. All host
materials will also give rise to fields at the muon
site, but below the limit of sensitivity.

• The measured parameters of the superconducting
phase are typical of seemingly similar non-TRSB
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compounds: coherence lengths, critical fields, pen-
etration depths, magnetic susceptibility, specific
heat jump at Tc. In a triplet SC, these properties
depend on the character of the order parameter,
and they can be dramatically different.

• In two cases (LaNiC2 and LaNiGa3), the electron-
phonon coupling strength and singlet Tc has been
calculated, obtaining consistency with the experi-
mental value and providing singlet phonon-coupled
superconductivity as the likely pairing mechanism.

• In the SC state, the muon moment should create
and sustain a single quantum of flux entered on the
muon and extending as a vortex. The associated
supercurrents give rise to a magnetic field at the
muon site that “turns on” below Tc. The effect of
this field on depolarization depends on the degree
of anisotropy of the environment of the muon.

• A magnetic impurity (viz. muon) is expected to
creates localized “µYSR” states within the SC gap,
providing a coupling between the muon and the SC
order parameter that remains to be elucidated.

• The type of order parameter, currently the INT
model in LaNiGa2 and another material or two,
may not be as constrained by experimental facts
as originally expected, given the unsettled items
discussed here.

XIV. APPENDICES

A. The fundamental Hamiltonian

1. Electrons and a muon in a static lattice

With the muon producing a vector potential ~Aµ in an
electron gas, and allowing for a spontaneous vector field
~Aspon appearing below Tc, the non-relativistic Hamilto-
nian for the muon and the conduction electrons is (leav-
ing the subscript e off electron operators)

Horb =
[pµ + e

c
~Aspon(~rµ)]2

2mµ
+
∑
j,s

[pj,s − e
c
~A(~rj,s)]

2

2m

−
∑
j,s

e2

|~rj,s − ~rµ|
+ V e−ion + V e−e

+Hµ−ion + T ion + V ion−ion

~A(~r) = ~Aµ(~r) + ~Aspon(~r)

~Aµ(~r) = ∇× ~µ

r
=
~µ× ~r
r3

. (25)

Several terms are abbreviated with self-evident notation.
In an applied field the corresponding vector potential
Aext would be included in each vector potential term.
The electronic terms are to be treated with DFT meth-
ods, and the ion kinetic energy T ion vanishes for static
atoms. Treating the vector potential in density func-
tional terms requires current density functional theory
(CDFT)115, which has not been implemented in current
codes. Nuclear vector potentials are not displayed here,
nor are those of the itinerant electrons which without
polarization are presumed to average out, randomly or
statistically. Each vector potential field is evaluated at
the position of the respective moment. The first term is
for the muon, the second is the kinetic energy for all elec-
trons. The muon does not experience its own field. The
curl operators provide the magnetic fields that couple to
the moments.

Moving to Dirac’s relativistic treatment of the kinetic
energy operator results in expressions that involve the
particle (muon and electrons) spin moments that couple
to magnetic fields (other than their own), external or
from other particles. The spin-related terms are

Hspin = −µB
∑
j

~σj · ∇ × ( ~Aµ + ~Aind + ~Aspon)

+ ~µ · ∇ × ( ~Aind + ~Aspon), (26)

where ~σj is the Pauli spin matrix of the j-th electron.
The quadratic term in the kinetic energy operator has

the form

H(2) =
e2

2mc2
~A2 =

µ2
Bµ

2

~2

(x2 + y2)

r6

=
µBµ

2

~2
[

ρ2

(ρ2 + z2)3
]. (27)

The last expression is written in the natural cylindrical
coordinates ρ and z, with absence of the polar angle φ
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reflecting the circular symmetry. This term falls off as
r−4; on the other hand, it diverges with the same power
as r approaches the muon position, becoming worse as z
approaches zero. With the factor 2mc2 in the denomi-
nator it is unlikely to contribute to low energy physics.
It will not be necessary in this paper to be more strict
about the formalism of the Hamiltonian.

The electronic system is first treated, as in Sec. III A, in
the jellium picture of constant density: electron-electron
repulsion is compensated by attraction to a smoothed
version of the positive ion cores. Extension to band
electrons is no problem for our considerations except for
complicating equations and subsequent calculations (not
done in this paper). The electronic part of this Hamil-
tonian can be transformed to occupation of states k, s
within the Fermi surface, since we deal with systems very
near the electronic ground state. The muon, located at
the origin of coordinates in most equations, breaks trans-
lational invariance.

2. The muon magnetic operator

The linear-in-field term involving the muon in the
Hamiltonian simplifies readily. For each electron j, s, and

dropping this subscript for simplicity, ( ~Aµ is evaluated at
~rj,s; ~p = −i~∇)

Hµ
B = −e/c

2m
[~p · ~Aµ + ~Aµ · ~p]

=
2µB
~

~Aµ · ~p, (28)

using the definition of the Bohr magneton µB =
e~/(2mc) and noting that in the Coulomb (divergence-

less) gauge [~p · ~Aµ] vanishes identically. Then the mag-
netic part of the Hamiltonian becomes (for each electron)

Hµ
B =

2µB
~

~Aµ · ~p

=
2µB
~

(−i~)
µ

r3
(−y, x, 0) · (∂x, ∂y, ∂z)

= − iµBµ
r3

(−y∂x + x∂y)

=
µ

r3
µB

Lz
~
→ µµB

~
<
Lz
r3

> . (29)

This expression contains the µ/r3 factor of ~Bµ (Sec. III)
leading to a troublesome radial integral to quantify the

perturbation. ~L is the electronic orbital angular momen-
tum operator relative to the muon at the origin. The
Hamiltonian thus favors the development of an electronic
angular momentum with respect to the muon position.
This may produce an orbital magnetic moment, allowed
by the broken TRS due to the muon magnetic moment.

The vector potential accompanying the µ+ magnetic
moment, which does not affect the muon that creates it,

is conventionally treated in the Coulomb gauge ~∇· ~A = 0,
as

~Aµ(~r) = ∇× ~µ

r
=

~M × r̂
r2

=
M

r3
(−y, x, 0), (30)

a toroidal vortex field that displays a singularity at the
muon site. We consider the ground state: the muon sits
in a stable quadratic potential in its harmonic oscilla-
tor ground state with its spin along the z-axis, and the
electrons are in, or very near, their ground state.

The dipole magnetic field, from above, is (neglecting
the Fermi contact δ-function term52)

~Bµ(~r) = ∇× ~A(~r)

=
3r̂(r̂ · ~M)− ~M

r3

= M
3r̂(z/r)− ẑ

r3

=
M

r3
(3
xz

r2
, 3
yz

r2
, 3
z2

r2
− 1). (31)

Treated as a perturbation, the first order change in
energy of an electron in state ηn`m`

(~r) in a spherical po-
tential is

∆E = < ηn`m`
| µ
r3
µB

Lz
~
|ηn`m`

>

= µµBm` < n`m`|
1

r3
|n`m` > . (32)

This expression as written is indeterminate for s or-
bitals: the orbital is finite at the origin so the integral
is
∫
r2dr/r3, thus a logarithmically divergent result if

the dr integral is done first. The m` = 0 for s orbitals
would give a zero result if the angular integral were to
be done first and the environment has circular symmetry.
For higher ` states p, d, f, ..., the wavefunction is propor-
tional to r`, thus giving an extra r2` factor in the inte-
grand near the origin and a finite integral. Since small
quantities are the topic here, one can note that a similar
question arises in a relativistic treatment (Dirac equa-
tion), where the p1/2 orbital is non-zero at the origin.

A workaround for this indeterminate integral was given
by Abragam and Bleaney.114 Reverting to the relativis-
tic Dirac equation, the integrand for the matrix element
(evaluated with the large component of the wavefunc-

tion γ(~r)) was manipulated using the expression ~A =
∇× (~µ/r). The perturbation term is

i
β

~
~σ· < γ|[ ~A× ~p+ ~p× ~A]|γ > (33)

where β is the 4×4 β-matrix. The gradient operator
operates on the function γ, and γ∗∇γ is one half of the
density gradient∇γ∗γ. Thus the derivative operator that
had non-relativistically resulted in a r−3 factor in the
denominator has been transferred to the gradient of the
(large component) spin current

~Jspin = ∇× |γ(~r)|2~σ, (34)

leaving only a r−2 factor in the denominator of the in-
tegrand, which is regularized by the r2dr volume factor.
Their interpretation is that the key is to replace the usual
expression of the vector potential by the differential form

~A = ∇× ~µ

r
. (35)
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The ground state orbital (above denoted by γ) is quite
asymmetric for a general non-symmetric position of the
muon, and will include p, d, ... symmetry contributions
in a spherical expansion. The s1/2− p1/2 contribution to
the gradient of the spin density will be regularized in the
same manner as the diagonal s treated just above, and
higher-` contributions will approach zero in a way that
the integrals are straightforward and finite.

A textbook comment about the dynamics: semiclas-
sically, an electron on the Fermi surface (of a HEG) at
point ~r relative to the dipole will experience, in addition
to the local spin polarization, a force

Fk = −e ~vk × ~B(r)→ −evF k̂ × ~B(r). (36)

This force produces a circulation of currents around the
field direction, with any net current being, by symmetry,
collinear with the moment (ẑ) direction in the homoge-
neous limit. In intermetallic crystals the circulation is
individually around the various Fermi surfaces, with con-
sequences that modern codes can provide. In the very
near field region, both the spin polarization and the or-
bital motions due to the muon’s strong dipole field will
be non-linear and difficult (i.e. require numerical treat-
ment) to fathom, and to quantify.

B. Distance, moment, and magnetic field scales

To internalize distance and field scales, one can refer-
ence them to those of a positron or electron. The field
strength along the z-axis is 2µB/a

3
B=25 T. The Bohr ra-

dius aB is the distance scale of the 1s orbital of muon (or
proton). For µ+ with mass 207me, the free-space field has
magnitude 12.6 T/207=600 G. For comparison, inferred
spontaneous magnetic fields at the muon site identified
from µSR data lie three orders of magnitude smaller, at
the 0.2 G scale.63,64,66,68–73 The r−3 dependence gives the
muon’s field the value of 0.2 G around r = 10aB ≈5-6 Å.
The inverse cube dependence means that the field dies
quickly beyond aB but increases very rapidly for smaller
r. At aB/10, the field is 60 T. The electron density near
the muon site is already at a very large field. The field
strength at the critical field Hc2 on the order of 0.2 T
of LaNiGa2 at a distance of 1.3 Å. (The conversion in
appropriate units here is µ = 0.448GÅ3, where µ is the
moment of the muon.)

The magnetic flux quantum is Φo = 2.07× 10−15 Wb
(Weber) in SI units, and in the cgs-gaussian units used
in this paper, its value is

Φo = 2.07× 10−15T m2 = 2.07× 109G Å2

= 2.07× 103T nm2. (37)

To tie the unit magnetic flux strength to area scales, a se-
lection of Φo/area versus uniform field B for given radius

values follow.

Φo = 2.07× 109 G Å2

Φo/m
2 = 2.07× 10−15 T

Φo/Å
2 = 2.07× 105 T

Φo/µm
2 = 2.07× 10−3T = 20.7 G

Φo/(10µm)2 = 0.2 G, the spontaneous field

Φo/πξ
2 = 1.4T (ξ ∼ 35 nm for LaNiGa2).

Thus one flux quantum spread uniformly over an area
of one square µm corresponds to a field of 2.07×10−3 T
= 20.7 G. For the field of 0.2 G reported for LaNiGa2,
the area enclosing one flux quantum is a circle of radius
∼10µm.

C. The µSR experiment

1. The setup

Overviews and reviews of the experiment and anal-
ysis were referenced in Sec. I. A synopsis is given
here. The µ+ ion, an elementary particle, decays af-
ter production with a half-life of τµ=2.2µs, producing a
positron (conserving charge) and two neutrinos (one anti-
electron type, one muon type, conserving lepton num-
ber). Positron emission occurs symmetrically around the
direction of the muon spin, but with varying energy of the
positron. The mass of the muon provides ∼100 MeV of
energy for the decay products, of which the positron gets
(presumably randomly) 25-50 MeV kinetic energy (its
mass of 0.5 MeV can be neglected). At the lower end of
emission energy, 25 MeV, emission is practically isotropic
– at any angle with respect to the muon spin. Toward the
higher range of energy 50 MeV, the angular dispersion
of emission becomes strongly weighted toward the for-
ward direction (the direction of the µ+ spin at the time
of decay), although with little variation within a cone of
40◦ of forward. These two distributions are pictured in
Fig. 4. The spin-half moment has the largest quantum
uncertainty of its direction (a mathematical concept, if
not a physical one, since only sz is specified). Thus ~s lies

off-vertical by sin(sz/|~s|) = sin−1(1/
√

3)=35◦ with ran-
dom polar angle, a variation that must contribute to the
distribution that varies little within the ∼±40◦ forward
cone and increases as depolarization occurs.

Measurements of energies and angles by a battery of
detectors enables quantification of the rate of depolariza-
tion of the muon spin before decay. Typical solid state
processes are orders of magnitude quicker than the µ+

lifetime, thus allowing accumulation of data representa-
tive of the muon within an electronic system in its ther-
modynamic state at temperature T and time t after de-
position.

In a µSR experiment, a spin-polarized (aligned) beam
of µ+ particles is deposited into the sample, coming to
rest at an isolated interstitial position in the sample with-
out losing its (known) polarization. The direction of the
muon spin defines our z direction. The muon’s spin is
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FIG. 4. Angular distribution of the direction of emission of
the positron upon muon decay into a positron and two neu-
trinos, given by W (θ) ∝ 1 + A cos θ. The factor A depends
on the energy of the emitted positron. Two positron energies
are pictured: dashed line, 25 MeV near minimum, A ≈ 0; full
red line, 50 MeV near maximum, A ≈ 1. The arrow denotes
the muon spin direction upon decay. For reference: the rest
mass of the muon is 207 × 0.511 MeV ∼ 100 MeV, which is
what is available for the decay products. See text for further
discussion.

associated with a point magnetic dipole µ at the muon
site, in a favorable interstitial position (away from pos-
itive atomic cores), in metals typically not pictured as
being bonded with an atom.

It is like the much studied proton interstitial; Takada
et al.116 have studied the model of a proton in an electron
gas from high density, where the system becomes like a
proton mixing with and screened by electrons, to the low
density regime where the proton attracts an extra elec-
tron to become an H− ion favored by the filling of the
1s shell. Returning to the muon, the difference in mass
affects the size of its magnetic moment, which is an order
of magnitude larger than that of the proton. We confine
our interest to intermetallic metals with typical metal-
lic densities; semimetals and insulators require their own
treatment. Relevant units and magnitudes are presented
in Appendix XIV B.

2. The data and analysis

Typically presented from zero-field studies is the rate
of depolarization σ(T ). Above Tc there is a back-
ground temperature independent depolarization from
small quasi-static nuclear moment fields and from larger
fluctuating electronic fields at a continuum of distances
and with random directions of moments. These are pre-
sumed to average to some constant rate above Tc that
is uninteresting. Below Tc in materials identified with
TRSB, the rate increases with decreasing temperature
to a value as T → 0 that can be ∼10% above the nor-
mal state value but sometimes is only 3% enhanced.
σ(T = 0) − σ(T ) is interpreted in terms of depolariza-
tion arising from a field at the muon site, presumed to

be that of a uniform magnetic spontaneously appearing
field.

The key result in zero-field experiments is the time
development (relaxation) of the muon moment polariza-
tion, followed by the process of muon decay. Theories
of the depolarization process have been presented at a
few levels, of which three are mentioned here. Often the
1967 Kubo-Toyabe functional form,117 which takes into
account a stochastic depolarization field and anisotropy,
is adopted as a first step in the process to fit the depolar-
ization data and extract materials properties. The Kubo-
Toyabe form gives the polarization distribution GKT ver-
sus time as

GKTz (t) =
1

3
+

2

3
(−σ2t2)e−σ

2t2/2, (38)

where σ = γ∆ in terms of the isotropic Gaussian dis-
tribution width and the muon gyromagnetic ratio γ =
2π× 13.55 KHz/G. This form is used to fit data in many
µSR papers.

Kornilov and Pomjakushin118 in 1991 extended the
theory to include include a randomly-directed field with
δ-function strength Ho (apparently modeling a polycrys-
talline host) as well as the Gaussian distribution. The
analytic expression they obtained is

GKPz (t) =
1

3
+

2

3
[1 + (σ2t/ω)2]e−σ

2t2/2

× [cosωt+ tan−1(σ2t/ω)], (39)

where ω = γHo in terms of the δ-function field Ho. This
formula introduces a frequency ω = γHo, and plots of
the difference from GKTz versus σt were presented.

A recent (2020) description has been given by Taka-
hashi and Tanimura119 that is said to consist of a more
fully quantum derivation and includes the thermal bath
of vibrations and spins, hence giving a T-dependent ex-
pression resulting from their hierarchical equation of mo-
tion method. The result requires numerical solution and
fitting of several parameters, hence the identification of a
specific field value from experimental data is less direct.

The calculation of depolarization while the muon is
in place is the first step, the second is the decay. (i)
The decay energy Eµ of the position varies from roughly
25 MeV to 50 MeV (1/4 to 1/2 of the muon rest mass
energy). (ii) The direction of emission of the positron,
often described as primarily forward in the angular dis-
tribution of the muon polarization at the time of decay,
is more interesting, being rather strongly Eµ- dependent.
Defining the energy parameter ζ = Eµ/mµc

2, denoting
the fractional polarization at time of decay as Pµ, and
using θ and the angle between spin at decay relative to
the initial polarization, the decay distribution from the
Standard Model (SM) of particles is?

d2Γ

dζd cos θ
∝ ζ2

[
(3− 3ζ) +

2

3
ρ(4ζ − 3) + 3ηζo

1− ζ)

ζ

+ +Pµξ cos θ[(1− ζ) +
2

3
δ(4ζ − 3)]

]
(40)

in terms of the SM parameters are ρ = δ = 3
4 , ξ = 1, η =

0 as calculated my Michel. xo = mp/Emax is a small
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constant, Emax ∼ mµc
2/2. There is not good reason to

try to understand this distribution, the point is that it
is a SM result and there has not yet been any known
violation of the SM.

With suitable detectors, the experiment averages over
the positron energy, giving the simple result

dΓ

d cos θ
∼ 1− 1

3
Pµ cos θ. (41)

Presumably this distribution is convoluted appropriately
with the thermal distributions above to obtain the ex-
pression from which a spontaneous field can be extracted;
general publications to not go into that much detail.

3. Experimental data of interest; LaNiGa2 example

There are approaching ten superconductors currently
labeled as exotic, including several (see references in the
previous subsections) with proposed TRSB OPs sup-
ported primarily by µSR data. That the muon disturbs
the sample43 has been incorporated into the theoretical
picture: once µ+ comes to rest in the sample, it is much
like an interstitial proton, which has been heavily stud-
ied in the context of ionic conductors, hydrogen storage
applications, etc. The character and degree of lattice dis-
turbance has not yet been calculated for SCs with exotic
OPs. The most evident model – of a point charge in an
electron gas – has received separate study. In a metal, the
point charge attracts a local charge density that in first
approximation is like the H 1s density, since screening is
mild at distances less than one bohr.

A crystal, which is of interest here, is more involved.
It has been established that the proton or µ+ can cause
relaxation of neighboring atoms by a few tenths of an
Angström43, i.e. the sample has been disturbed locally.

The proton is the lightest of possible interstitial nuclei
in a crystal. Anharmonicity of its vibrations due to its
small mass has been studied in several cases, viz. the
impact of H in superconductors such as PdHx with its
surprisingly high Tc∼10K (for Pd) and its inverse isotope
shift of Tc.

120 A related complication lies in the quantum
uncertainty of its position at an interstitial site.43 While
there is an instructive history of these effects in the lit-
erature, the present description considers both effects in
the more extreme case of a µ+ particle in a crystal.

The proton is not the lightest particle probe of con-
densed matter. Before returning to the µ+ particle, we
mention the positron e+. Upon insertion, it comes to
rest due to strong Coulomb interactions, but resides in
(at low temperature) the ground state positron extended
Bloch orbital, where it annihilates with an electron e−,
from which positron emission tomography (PET scans)
has emerged.

With 207 times larger mass, the µ+ elementary par-
ticle rapidly comes to a stop in a crystal and finds the
preferable interstitial site,43 The weakness of the confin-
ing potential in the interstitial site allows large quantum
uncertainty in the position of the muon,43 making quan-
tum behavior important to include in the interpretation

of µ-based studies. This effect, and that of anharmonic-
ity more generally, can be handled reasonably by modern
DFT methods.39,121

D. Symmetry of the dipolar field

The point dipole of the muon corresponds to an axial
vector potential, given here in the Coulomb gauge, and
corresponding magnetic field, for ~µ=µẑ,

~Aµ(~r) =
~µ× r̂
r2

=
µ

r3
(−y, x, 0)

~Bµtot(~r) = ∇× ~Aµ(~r) =
3r̂(r̂ · ~µ)− ~µ

r3
+

8π

3
µδ(~r)

= ~Bµdip + ~Bµcon (42)

with dipole and contact terms.

The magnetic field ~Bµ(~r) = ∇ × ~Aµ(~r) is given by
the textbook expression with the moment taken as the ẑ
direction

~Bµ(~r) =
3r̂(r̂ · ~µ)− ~µ

r3

= µ
3r̂(z/r)− ẑ

r3

=
µ

r3
(3
xz

r2
, 3
yz

r2
, 3
z2

r2
− 1)

=
3µ

r3
(sin θ cos θ cosφ, sin θ cos θ sinφ,

cos2 θ − 1

3

=
µ

r3
[2 cos θ r̂ + sin θ θ̂]

≡ 3µ

r3
f(θ, φ), (43)

where |f(θ, φ)| ≤ 1 is the angular variation. The δ-
function term (Fermi contact term) of the dipole field
(8π/3)µẑδ(~r) is, with relativistic extensions finite, and
small for small Z.52 These different forms of the com-
mon point dipole expression, including the one in polar
coordinates, are useful for following symmetry considera-
tions. Units are cgs-gaussian as used in Jackson’s classic
textbook on classical electrodynamics.122

The system symmetry of the dipolar magnetic field
~B(x, y, z) includes the following:
• for x→ −x the x-component changes sign, and analo-
gously for the y-component (cylindrical symmetry),
• the cylindrical symmetry gives√

Bµx
2

+Bµy
2

= 3µ| sin θ cos θ|/r3 (44)

independent of φ. Only the z-component is non-zero
along the axis and in the x-y plane
• the z-component is invariant under z-reflection, the x
and y components reverse under z-reflection
• altogether, there is inversion symmetry: Bµ(−~r) =
Bµ(~r).
A consequence is that the HEG+µ+ system, introduced
in Sec. III A, has this same axial symmetry.
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E. Field at µ+ site due to magnetic polarization

Each volume element of electron moment ~M ind(~r)∆V

will produce the same form of dipole field ~Bµ(~r′)∆V from

the magnetization from ~r′ via χp ~H
µ(~r) as given by the

dipole expression , except that the original origin ~0 will
be assumed by ~r and the position of a given field point

will be ~r′.
Then

~B(~r′) =

∫
d3r

3(r̂′ − r) ~M ind(~r) · (r̂′ − r)− ~M ind(~r′ − ~r)
|r′ − r|3

.

Simplification occurs because we are only interested in

the field at the muon site, i.e. at ~r′ → 0, so ~̂r′ − ~r → −r̂.
Note: ẑ = (0, 0, 1) is a direction and remains unchanged.
Then

~B(0) =

∫
d3r

3(−r̂) ~M ind(~r) · (−r̂)− ~M ind(~r)

r3

=

∫
d3r

3r̂ ~M ind(~r) · r̂ − ~M ind(~r)

r3
. (45)

F. The small-r region in more detail

As mentioned, the (so far) divergent B field at the
muon site will enforce full electronic spin polarization
P (r)→ P (0) = 1

P (r) =
n↑(r)−m↓(r)
n↑(r) +m↓(r)

, (46)

for which the longitudinal magnetic susceptibility van-
ishes. Likely the decay from full polarization P (0) = 1,
hence the onset of susceptibility, will be at least as slow
as r2, and this will regularize the infrared divergence.

Accurate solution to this problem, even at the homo-
geneous electron gas level, seems non-trivial given the
Fermi repulsion between electrons: two electrons of the
same spin cannot exist at the same place; the pair distri-
bution function of parallel spin electrons vanishes at zero
separation in any electronic system. The B-field grow-
ing as r−3 and the Coulomb attraction as −r−1, along
with the Fermi repulsion, a 2-body (many-body) effect,
likely makes this a numerical many-electron problem, viz.
Gutzwiller-Hartree-Fock or better. [The vector potential
~A(~r) = ~M × r̂/r2 that appears in the Hamiltonian has
a weaker singularity at the origin. However, the kinetic

energy term − ~2

2m (~p − e
c
~A)2 brings in a 1/r3 magnetic

field energy term and other complexities].
In cylindrical coordinates the azimuthal angle φ sep-

arates out due to the cylindrical symmetry, but one is
left with coupled 2nd order differential equations in the
radial ρ and axial z coordinates, definitely a numerical
problem. Note: this problem seems to be an analytic one
for the H atom (or muonic atom), since the orbitals are
analytic functions, and it’s a one-electron problem.

G. Induced magnetization; resulting B field

We only need the z-component of the field, since the
cylindrical symmetry allows no x- or y-component. The
dot product in the above expression is

~M ind(~r) · r̂ = χp(r) ~Bµ(~r) · r̂

= χp(r)
µ

r3
(3
xz

r2
, 3
yz

r2
, 3
z2

r2
− 1) · (x, y, z)/r

= χp(r)
µ

r3

[
(3
x2

r2
+ 3

y2

r2
) + (3

z2

r2
− 1)

]
z

r

= χp(r)
µ

r3

z

r
[2] = χp(r)

2µ

r3

z

r
= χp(r)

2µ cos θ

r3
.3
z

r
( ~M ind(~r) · r̂ =

µ

r3
χp(r) =

6z2

r2
.

This term is non-negative, being large along the ẑ-axis
and zero in the x-y plane. It is worthy of note that the
x and y dependence has dropped out of the dot product
of two vectors depending (apparently) independently on
~r. It is due, again apparently, to the symmetries of each.

After subtracting off the M ind
z (~r) term in the dipo-

lar field that is large along the ẑ-axis negative in the

x-y plane, the z-component of ~B(0) involves some can-
cellation: the ‘incoming’ dipolar field from the muon is
interfered with by the ‘outgoing’ dipolar fields from each
point ~r. The result becomes

Bz(0) =

∫
d3rχp(r)

[
3z

r
(
2µ

r3

z

r
)− µ

r3
(3
z2

r2
− 1)

]
/r3

= µ

∫
d3rχp(r)

[
6
z2

r2
− (3

z2

r2
− 1)

]
/r6

= µ

∫
r2 dr dν dφχp(r)

[
3
z2

r2
+ 1)

]
/r6

= 8πµ

∫
χp(r)

dr

r4
, (47)

leaving, at this level of discussion, a divergent field at
the muon site. Because the z-component within the inte-
grand is non-negative there is no cancellation within the
r integral. The strong small-r divergence is startling, but
at small r non-linear response (substituting for χp) and
quantum effects require reconsideration. Discussion of
the resolution of this unphysical result is given in Sec. V.

It is interesting to look at the angular dependence of
~B(~r)2, which is proportional to the energy density of the
field. Using Eq. 43,

[ ~Bind]2 =
µ2

r6
(1 + 6 cos2 θ). (48)

which at a fixed value of r has a maximum along the
poles and a minimum in the x-y plane.

H. Operator representation for induced B-field

The magnetic field of the muon, with magnetization
~Mµ(~r) = ~µµδ(~r), gives rise to the well known dipolar
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magnetic field in Appendix XIV D. The linear relation-
ship suggests the definition of an integral “dipolar oper-

ator” D(~r − ~r′) by

~̄B(~r) =

∫
d~r′D(~r, ~r′) ~̄M(~r′)

=

∫
d~r′

3 ~̂r − ~r′[~̂r − ~r′ · ~̄M(~r′)]− ~̄M(~r′)

|~r − ~r′|3
, (49)

which gives the magnetic field ~̄B(~r′) due to any magne-

tization field ~̄M(~r). Applying this to the z-oriented µ+

point magnetic moment gives Eq. 43 and is visualized in
Fig. 1.

The field

~Bµ(~r) =

∫
d~r′D(~r, ~r′)~µδ(~r′); ~Bµ = D ~Mµ, (50)

polarizes the electron density according to the suscepti-

bility χp, ~M ind(~r) = χp(n(~r)) ~Bµ(~r) [in operator nota-
tion M ind = χpB

µ]. This electronic magnetization (ex-
cess of ↑ moments over ↓ gives rise to its own magnetic
field which becomes, in terms of the dipole operator

~Bind = D ~M ind = Dχp ~Bµ = DχpD ~Mµ;

~Bind(~r) =

∫
d3r′

∫
d3r′′D(~r, ~r′)

× χp(n(~r′))D(~r′, ~r′′) ~Mµ(~r′′)

~Bind = DχpD ~Mµ. (51)

There are two important simplifications. First, we want
only the on-site ~r = 0 field. Second, the original field

arose from the point muon ~r′ = 0, which removes the
second integral. In addition, n(~r) varies smoothly by a
factor of two or less in an interstitial site in a metallic
compound, and χp(n) is a regular and moderately vary-
ing function of n,50 so we pull a representative value χ̄p
out of the integral. This leaves

~Bind(0) = χ̄p

∫
d3r′D(0, ~r′)D(~r′, 0)~µ. (52)

This integral has the look of χ̄p < D2 > ~µ, and indeed
calD(−~r) = D(~r) bears out this positive integrand. Note

that the last part D(~r′)~µ is ~Bµ, whose integral vanishes
by the symmetries listed in Appendix ??.

The magnetization M ind(~r) is operated on by the

dipolar operator D(0, ~r′)T Simplifying the integration
variable to cylindrical coordinates with z-component of
r̂ = z/r):

~Bind(0) = χ̄p

∫
d3r

1

r3
[3r̂ · [ 3r̂(r̂ · (~µ)− ~µ]

r3
]

−[
3r̂(r̂ · ~µ)− ~µ

r3
]

= µχ̄p

∫
d3r

r6
3r̂[3

z

r
− z

r
]− [3r̂

z

r
− 1]. (53)

The z-component is

Bindz = µχ̄p

∫
d3r

r6
[9
z2

r2
− 3

z2

r2
]− [3

z2

r2
− 1]

= µ̄χp

∫ ∞
0

2π r2dr

r6

∫ +1

−1

dν (3ν2 + 1), (54)

using spherical coordinates. This procedure reproduces
the more direct result of Appendix XIV G, a divergent
integral that must be regularized by quantum or rela-
tivistic effects.

I. Quantum fluctuation of the muon

The infrared divergence of the integral Eq. 54 is daunt-
ing and unphysical. Additional factors must be entering
the physics. An obvious one is zero-point uncertainty of
the muon.

An obvious issue is zero-point uncertainty (ZPU) of
the muon position, often inaccurately called zero-point
motion. While the harmonic oscillator ground state (har-
monic phonon)already contains an uncertainty, intersti-
tial protons in crystals are known to encounter anhar-
monicity, and the order of magnitude lighter muon will
be even more anharmonic with larger ZPU. This effect
has been calculated to impact the ground state intersti-
tial position of the muon.43 Obviously this effect cannot
be treated in a HEG model, but the physics is reasonably
clear.

Relative to the equilibrium (stable) position of the
muon, the quadratic (harmonic oscillator [HO]) poten-
tial felt by the muon will lead to the HO ground state
wave function ψ(r) = C exp(−αr2/2) where α is an in-
verse mean square displacement and C is a normalization
constant. The expectation value in this state will be∫

d3rψ(r)
8πµ

r4
ψ(r) ∝

∫
r2 e
−αr2dr

r4
∼
∫
dr

r2
, (55)

i.e. the divergence is reduced by the small phase space
at small r but is still ‘infrared’ divergent. Anisotropy of
the HO potential will not reduce this remaining infrared
divergence, which appears to require an additional r2 fac-
tor within the integral.

J. Pair correlation

As mentioned, the (so far) divergent B field at the
muon site will, at the simplest level, enforce full electronic
spin polarization P (r)→ P (0) = 1

P (r) =
n↑(r)− n↓(r)
n↑(r) + n↓(r)

, (56)

near the muon site, an upper limit at and beyond which
the longitudinal magnetic susceptibility χp vanishes: a
fully polarized system cannot be further polarized. From
variational53,54 and quantum55 Monte Carlo calculations
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on correlated wave functions (Gutzwiller-Slater determi-
nants) the decay from full polarization P (0) = 1, hence
the onset of (some reduced) susceptibility, will arise as
phase space reduction will regularize the infrared diver-
gence, as we now describe.

Accurate solution to this problem, even at the homo-
geneous electron gas level, becomes non-trivial given the
Fermi repulsion between electrons: two electrons of the
same spin cannot exist at the same place; the pair distri-
bution function g↑↑(r, r

′) of parallel spin electrons van-
ishes at zero separation in any electronic system. The
B-field growing as r−3 and the Coulomb force as r−2,
along with the Fermi repulsion, a 2-body (many-body)
effect, makes this a numerical many-electron problem, to
be treated at the Gutzwiller-Hartree-Fock level or better.
This effect does however provide the needed additional
r2 dr term that regularizes the integral.

In cylindrical coordinates the polar angle φ separates
out due to the cylindrical symmetry, but one is left for rel-
evant quantities with coupled 2nd order differential equa-
tions in the radial ρ and axial z coordinates, a numerical
task.

K. µ+ coupling to conduction electrons

The perturbation in charge, hence in atomic displace-
ments, due to muon implantation are thought to be con-
ventional, like that of a proton. Crucial to µSR is that
the muon enters with its magnetic moment and its ac-
companying magnetic field. The total field, including the
induced magnetization, was discussed in the main text.
In the SC phase, supercurrents respond to the (inhomo-
geneous) magnetic field.

For simplicity let us consider the effect of the bare
muonic field; the paramagnetic response to the density
is very much the same shape, thus is a minor enhance-
ment. The first-order in field term in the Hamiltonian is,
after minor algebra, for electron i,

Hmag =
1

2m
{~pi −

e

c
~Aµ}2 =

~p2
i

2m

− e

2mc
(~pi · ~Aµ + ~A · ~pi) +

e2

2mc2
~A2

=
p2
i

2m
− e

2mc
2 ~Aµ · ~pi +

e2

2mc2
~A2

≈ p2
i

2m
− 2µB

µ

r3
~Li,z

∼ p2
i

2m
− 2`i,zµB | ~Bµ(r)|. (57)

In the Coulomb (divergenceless) gauge (~pi · ~A)=0, and
the Bohr magneton µB = e~

2mc has been introduced. `i,z
is the ẑ component of the angular momentum of electron
i in units of ~.

In the electronic many-body ground state Ψ first order

perturbation theory result is

Emag =

∫
Ψ∗(r, {rj})[−2µB

µ

r3
~Li,z]Ψ(r, {rj}d3r{d3rj}

= −2µB
µ

~
<
Lz
r3

>Ψ (58)

for each electron ri. Recalling that the electron density at
the muon site is finite, and the volume element is 4πr2dr,
this integral is logarithmically IR divergent unless (1) the
expectation value of Lz is identically zero, or (2) higher
` contribution enter due to low symmetry. However, the
muon environment is not spherically symmetric, so the
integral does not vanish by symmetry. While opposite
spin electrons may contribute opposing contributions to
the integral, earlier sections have verified that the elec-
tronic density near the muon is highly polarized, so there
is no precise up-down cancellation. Without any precise
cancellation within the integrand and with a finite den-
sity at the muon site, the divergent integral requires more
attention. The conclusion is that there is a non=zero en-
ergy from this muon-electron interaction.

In a crystal the angular momentum, formally defined

as ~L = ~r × ~p, must be handled carefully.111 The last
line introduces the magnitude of the muon magnetic field
for estimation of magnitudes. More significant is that
the angular variation of the field, and the fact that the
field lines return to their origin, guarantee that the field
has no net direction – the integral of the field vanishes

( ~Bµ(−~r) = − ~Bµ(~r)). This raises a question about
whether field effects will be first order or second order.

The effects on the Fermi surface states will be gov-
erned by first order matrix elements with conduction
band itinerant states expanded in an angular momentum
[L ≡ (`,m)] expansion

Ψk,n(~r) =
∑
L

bk,nL Rk,nL (r)YL(r̂) (59)

with the origin at the muon site (not the host atom site)
being midway between two or a few more atoms. These
expansions near the muon site will involve s-p atomic
orbital tails overlapping the region of the muon magnetic
field.

The magnetic field perturbation matrix between per-
turbed Bloch states is

H ′km,k′m′ = ~µ· < Ψk,m| ~Btot|Ψk′,m′ > . (60)

The perturbed Bloch states incorporate the muon den-
sity, so while translational symmetry is broken, states
can still be labeled by the underlying Bloch basis, per-
haps augmented by local functions if the muon energy
lies within a band gap in which case localization requires
a separate index. Each of the three functions can be ex-
panded in an angular momentum representation around
the muon, but the degree of various L,L′, L′′ contribu-
tions will be strongly dependent on the geometry, and
on the direction of the muon moment, with no universal
guidelines being apparent.
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L. Kondo impurity in an exotic superconductor

This appendix follows from Sec. XIV S, providing an
example of a Kondo impurity within an exotic OP in a
spherical model. The question of impurity-induced mag-
netic fields in unconventional SCs was addressed by Choi
and Muzikar,78 taking an OP of the 3He A-phase as an

example: ∆(k̂) = ∆o(k̂x + ik̂y). This OP describes an
internal orbital momentum of the pair characterized by
symmetry as ‘ferromagnetic,’ and the resulting supercur-
rents produce a magnetic field at the impurity site. Tak-
ing parameters thought at that early time to be char-
acteristic of YBa2Cu3O7, but with sizable uncertainty,
they estimated a field of the order of 10 G well below Tc.

The Choi-Muzikar approximation for the on-site mag-
netic field is

B(0) = −ẑβ(T )(ek2
F )(

Tc
TF

)2 vF
c

(σk2
F ). (61)

Here β(T ) is a numerical factor that varies between zero
and unity, ek2

F is a field value expected to be of order
102 T,78 TF is the Fermi temperature of the order of
5 × 104K for a large multisheeted Fermi surface metal
(EF ∼ 4 − 5 eV), vF ∼ c/300 for good metals, and σ is
the impurity cross-section for which σk2

F is expected to
be of the order of unity. For these parameters the field is
of the order of 10−3G (give or take a couple of orders of
magnitude, considering that their spherical energy band
picture, with 1/TF instead of N(0), etc.), so this is a very
rough estimate. TF is a substitute for a bandwidth and in
certain materials could be an order of magnitude smaller,
which would make the estimate a factor of 102 larger.
Broadly speaking, the strength of the field is expected to
be small but it is not well constrained by this expression.
A more general treatment of supercurrents in SCs has
been given by Koizumi and Ishikawa123 that gives a vivid
impression of the complexity of the problem, but should
be useful for further considerations.

M. YSR states in real materials

Computational developments in treating defects (large
unit cells in DFT) and in modeling the Bogoliubov-
de Gennes band structure of real superconductors has
greatly extended the understanding of the spectra and
energetics of YSR states in actual materials. Extend-
ing scanning tunneling methods to the study of mag-
netic atoms or molecules on superconductor surfaces has
provided direct evidence of the behavior caused by YSR
states.

The extension of the multiple scattering method
(KKR: Korringa, Kohn, Rostoker) to handle very large
unit cells opened up the study of truly isolated impurities.
Similar extensions of band theory to the superconducting
state – the gap, Bogoliubov-de Gennes quasiparticle the-
ory – for actual materials has played an important role
in furthering understanding.124 These methods have en-
abled the study of YSR states, with real atomic moments

in (or on) materials being studied in the labs. The chosen
SCs include the second discovered SC – Pb – and the best
elemental SC – Nb – and an unconventional SC, NbSe.
Fe, with its large and very well studied moment, pro-
vides the preferred magnetic atom (or molecule). Rare
earth atoms, with their larger moments, also invite atten-
tion. At present, applications incorporate phenomeno-
logical attractive pair potentials to simulate the SC state
of the host.

DFT methods and applications to the nominally non-
magnetic N impurity in Nb have been described by Saun-
derson et all.124. The effect on the gap and the excita-
tion spectrum above the gap was the aim of this study.
Park et al.125 studied the spectrum, including a zero bias
peak, for a magnetic impurity (Mn, Fe, Co) in the s-wave
SC Pb (Tc=7K). The atomic 3d series embedded in Pb
was studied by Ruessmann et al.126, who obtained strong
magnetic-SC coupling and orbital splitting of a number
of gap states (or resonances), sometimes extending across
most of the gap. Spin-orbit coupling was shown to have a
strong effect on the spectrum, as SOC splittings are much
larger than the gap of ∼2.5 meV. For the Fe impurity
the gap is essentially closed, i.e. SC order is effectively
quenched in the vicinity of the impurity. Topological SC
was brought into study by Chiu and Wang,127 who an-
alyzed the system Fe on Fe(Te,Se) with topological Z2

bands. Their study indicated that the topological char-
acter of the bulk becomes reflected in new behavior of
the surface YSR states.

Several groups have reported spectroscopic studies, in-
cluding YSR states, on SC surfaces decorated with mag-
netic entities.139–142 The orbital structure of YSR states
relating to Cr atoms on SC Pb(111) was reported by Choi
et al.139, who found that the Cr-derived YSR resonances
extended across much of the gap but left a pseudogap of
low DOS around mid-gap (∆ = 2.7 meV). Xia et al.141

Kondo molecular magnet Tb2Pc3 on Pb(111) surface. To
be completed.

N. LaNiGa2 material parameters, energy scales

We choose as a representative case the topologi-
cal superconductor LaNiGa2 (orthorhombic, Cmcm),
with the characteristic measured quantities from the
Supplemental Information of Badger et al.17, giving
values for single crystal samples. This list is followed
by calculated or estimated energies mostly from Quan
et al.18. When three numbers are given, they refer to
the a, b, c lattice direction anisotropic values, and T=0
values are given for the T-dependent properties. KWR
is the Kadawaki-Woods ratio.
- Tc=2 K; kTc=0.17 meV, a relevant energy scale
- λGL= 174, 509, 189 nm
- ξGL = 51.5, 17.6, 47.3 nm
- κ = 3.38, 28.9, 4.00
- γ=14.1 mJ/mole-K2 (specific heat constant)
- ∆C(Tc)/γTc=1.33; BCS value 1.43
- ρo=5.2 µΩ cm
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- Hp(0)=3.66 T, the (extrapolated) Pauli limiting field
- Hc2 Helfand-Werthamer: 0.275, 0.094, 0.253 T
- Hc thermodynamic critical field: 23 mT
- KWR: A/γ2

n=1.28 ([µΩ cm/K2]/[mJ/mol K2]−2)

The following list gives material properties and
representative energies for LaNiGa2, using conventional
notation. The notation δE is the energy difference (gain
by order) between symmetric and broken symmetry
phases.
- N(0)=3.25 states/eV-f.u.-both spins
- γo=7.66 mJ/mole-K2

- el-ph λ = γ
γo
− 1 = 0.84

- ∆o ≈1.5 kTc=0.25 meV; 2∆o=0.5 meV
- ∆Esc = 1

2N(0)∆2
o=0.1 µeV

- Bint=0.2 G from µSR data; µBB
int≈8×10−9 eV

- mint=0.012µB/f.u.=3×10−3µB/atom
- exchange splitting of bands = m

N↑(0) ≈4 meV

- ∆Emag= 1
4 Istm

2=6µ eV (Stoner Ist ≈ 0.5 eV)

Sometimes useful is averaging over the orthorhombic
directions (for making estimates or comparing with cu-
bic materials): ξGL∼35 nm, λGL∼300 nm, κ∼4-29 (a
moderately to strongly Type II superconductor), Hc2∼m
0.1-0.26 mT.

O. The triplet order parameter

TRSB OPs, i.e. emergence of a magnetic polarization,
is conventionally represented by a spin-triplet SC OP of
the form6

∆k = ~dk · ~σ iσy, (62)

where ~d is the complex triplet spin 3-vector whose k- and
band n-dependence is neglected until required by data,
and ~σ is the vector of Pauli matrices for spin. Using
triplet spin notation,

∆↑↑ = −dx + idy,

∆↓↓ = dx + idy

∆↑↓ = dz = ∆↓↑. (63)

and rotation of spins results in transformation of ∆ as a

vector. (The vector ~d has nothing to do with a singlet
d-wave OP.)

This straightforward extension to triplet OP is not suf-
ficient to account for the symmetries of LaNiGa2 (as for
LaNiC2, with its symmorphic but noncentrosymmetric
space group). The orthorhombic D2h point group has
only one-dimensional irreducible representations, provid-
ing no underlying structural symmetry to be broken.
This lack can be addressed by including a more micro-
scopic degree of freedom, with the chosen one being a
pair of atomic orbitals on symmetry related sites. The
language of bands is more often used, and may be more
appropriate for LaNiGa2 due to the band degeneracies

FIG. 5. Sketch of the quasiparticle (Bogoliubov-de Gennes)
band structure along one dispersive band direction of the
triplet, topological superconductivity model for LaNiGa2.
Graphs are shown for Three values of the “triplet strength”
ω are displayed. For ω=1, the non-symmorphic band stick-
ing at the zone boundary, hence two nodes, persists into the
superconducting state. In the nonunitary regime ω < 1 the
degeneracy is broken, giving a gap to quasiparticle excitation.

across the plane of degeneracies provided by the non-
symmorphic crystal structure. The two-dimensional or-
bital/band symmetry, to be broken below Tc, is by de-
noted at Pauli matrices ~τ in that space. The order pa-
rameter then becomes, in most general form,

∆k = ~dk · ~σ (iσy)⊗ ~tk · ~τ (iτy). (64)

In the simplest case the k and orbital dependence can be
neglected and ~tk · ~τ replaced by τ0 (the identity). This
simplest form, with no ~tk · ~τ in the OP but simply iτy,
is the one currently in use for LaNiGa2, which we follow
below for the moment.

Once included in the Bogoliubov-de Gennes matrix for
quasiparticles, the eigenvalues Ek are

Ek = ±
√
ε2
k + ~d · ~d∗ ± |~d× ~d∗| (65)

where εk is the normal state band energy, and each has
double Kramers degeneracy. The cross product is imag-

inary or zero. A nonzero value of |~d × ~d∗| results in a
“non-unitary” state for which there are eight distinct
bands, without degeneracies. This requires an intrinsi-

cally complex ~d; a zero value of the cross product (viz.

from a purely real or purely imaginary ~d) corresponds to
a unitary state.

The non-unitary state corresponds to quasiparticles
with two dispersion curves (split degeneracies), hence two
separate energy gaps, prompting this peculiar feature to
be one focus of experimentalists. Unitary states have an
interpretation, generalized from singlet pairing, of equal
amplitudes of | ↑↑> and | ↓↓> pairing, while the non-
unitary state has unequal pairing hence magnetic polar-
ization. Figure 5 provides a schematic close-up view of
the the quasiparticle bands around the gap, for three val-

ues of the nonunitarity ω = |~d×~d∗| in terms of normalized

polarization vectors ~d.
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1. Nonunitarity more generally

The symmetry classification and properties of triplet
OPs, generalized from the spherically symmetric case of
3He to crystal symmetry, was presented by Blount in
1985.134 For nonunitary consequences of crystal symme-
try, an overview appeared by Ramires,14 after extensions
of the theory and some proposed examples from experi-
ment. Briefly (possibly over simplified): the triplet OP

is characterized by a complex vector ~dk in complex 3D
space; the OP may have more or fewer arguments or sub-
scripts. Sigrist and Euda6 expressed the general criterion
of unitarity as

∆k∆†k ∝ σo. (66)

That is, if the generalized magnitude of ∆k is propor-
tional to the identity matrix, the phase is unitary. Here

this means that if i~d∗k × ~dk is non-zero (i.e. if they are
‘non-parallel’ in their complex vector space), then the OP
is non-unitary. This indicates that the phase in not in-
variant under TRS. This results in a non-vanishing spin

average of ∆†k~σ∆k. Only vanishing an average over the
Fermi surface is required for unitarity.6 In that case the
order parameter gives rise to a magnetic moment, which
then couples to an external magnetic field. to In Eq. 65
the dot product gives the unitary contribution to the gap,
while the cross product, if nonzero, adds on a nonunitary
lifting of degeneracy and two-gap character of the spec-
trum.

Alternatively, if the cross product is zero (as when the
two vectors are collinear, as they are when purely real
or purely imaginary) the OP is unitary. Thus nonunitar-
ity is associated with a phase difference between differ-

ent components of ~d. In the formulation of Ramires and
coauthors, their time-reversal operator is defined by

~qTRO · σ = 2i(~dk × ~d∗k) · ~σ. (67)

If nonunitary (~qTRO is non-zero), there is a non-zero ex-
pectation value of magnetization – TRS has been broken.
Additional details, related to SOC (with or without), and
effects of distinct point groups, are available in Ramires’
paper.14

An aside. For the nonunitary possibility, having one of
the gaps be zero has been discussed. This gapless state
may persist on an area of the Fermi surface, where a
degeneracy survives superconducting pairing. The orig-
inal reports on ambient pressure UTe2, Tc=1.6K, indi-
cated that a residual specific heat coefficient γ within
the SC state suggested that half of the FS carriers were
not gapped,128 leaving what has become known as a Bo-
goliubov Fermi surface. Note however that in this report
no other broken symmetry was detected at the SC transi-
tion. More recent samples have changed this picture, and
adding pressure and doping directions into the phase di-
agram has revealed great complexity, related to a nearby
magnetic critical point. In any case, a zero gap surface
(not points or lines) is conceivable, perhaps by requiring

the terms involving ~d in the above BdG expression to

vanish (viz. for only some of several Fermi surfaces, or
of some parts of them).

For a general function of ~dkn with six real functions

of ~k (periodic and respecting symmetries), and on band
n, with one of them fixed by a normalization, three con-

ditions – vanishing of the vector ~d × ~d∗, nonunitarity –
leaves a ‘tuned’ condition where two of the remaining de-
grees of freedom conspire to provide a two-dimensional
surface where a zero-gap degeneracy survives. Using
some historical terminology, this is a positive condition
but with zero probability of occurrence (subspace of zero
measure), although nature might oblige by constraining
certain components.

P. The order parameter for LaNiGa2

1. Basics of pairing

As a brief review: fermionic antisymmetry upon inter-
change of the two members of a Cooper pair require, for
pair spin S and orbital momentum L, either BCS pairing
– S=0 (antisymmetric), L=0 (symmetric, commonly sat-
isfied by pairing k,−k states), or S=1, L=odd, also k,−k
pairs. 3He provides examples of triplet S=1 OPs. The
magnetic character of the TRSB signals appears to arise
from equal spin pairing (Sz =↑↑= +1 and Sz ↓↓= −1),
with the unusual Sz = 0 channel neglected as it is evi-
dently irrelevant due to its nonmagnetic character.

In a crystal the orbital characterization L (no longer a
quantum number in a crystal) gives way to the angular
variation of the gap on the FS, which due to periodicity
gives rise to the variation with respect to kx, ky, kz in-
volving sinusoidal functions that incorporate both point
group aspects and lattice periodicity.

When properties do not fit into the basic BCS picture –
spin singlet pairing, crystal-symmetric gap function – an
initial issue is ‘what other broken symmetries’ (beyond
U(1) pairing)? In the normal state the standard sym-
metry group is U(1) ⊗ G ⊗ S ⊗ T in terms of the space
group G, spin rotation symmetry S, and time reversal T .
Other broken symmetries may arise, viz. charge density
waves, so that coupled spin-translation symmetry of the
normal state must be included. At Tc, pairing breaks
U(1) symmetry. If the magnetization causing the spon-
taneous field is spin in origin, S is broken. If it is orbital
(currents) in nature, then crystal symmetry G is broken.
Both will be accompanied with breaking of time rever-
sal symmetry T , which in non-relativistic systems is not
broken without an accompanied symmetry-lowering.

2. Electronic structure, Dirac points in LaNiGa2

The work in the previous appendix was published be-
fore the correct Cmcm space group was discovered. If
there is triplet pairing, there are aspects of the current
picture that may be improved on. Regarding Weng et
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al.32: degeneracies of the same orbitals on symmetry-
related atoms are a given; justification is needed to pro-
mote this as intimate involvement in TRSB, and why
TRSB is observed only in selected materials of the weakly
correlated Fermi liquid class.

Regarding Ghosh et al.’s supposition33 of Hund’s rule
coupling in this compound: without the µSR results the
standard interpretation of the band structure of LaNiGa2

would be that the 3d bands of Ni are narrow and con-
fined between -2.5 eV and -1 eV below the Fermi level –
they are filled and inert. There is some 3d character at
EF , but it is due to minor mixing with neighbor atom
p orbitals, or the tails of such orbitals that leak into the
Ni volume and are expanded in L = 2 symmetry. In
either case, any atomic Ni 3d character is minor and am-
biguous, because it is occurring in the interstitial region
where atomic orbital tails are not well defined; the key
evaluation is that the 3d bands are fully occupied, with
no propensity toward moment formation. The extremely
small spin polarization calculated in their DFT+Hund’s
3d interaction must be sensitive to the amount of 3d char-
acter, which as noted above may be subjective.

A prominent missing element is that the Cmcm sym-
metry is not fully accounted for. The non-symmorphic
space group provides a BZ face of degeneracies, and af-
ter SOC is included, two diabolical k-points remain along
the Z-T line, shown for LaNiGa2 in Fig. 3. They are 3D
Dirac points DPs) that will possess a non-zero topological
index.148 These points, symmetrically located across the
Z point, mark where two Fermi surfaces touch even after
consideration of SOC. Elsewhere, SOC lifts band crossing
to anticrossing, thus eliminating constant energy surface
touching and the topological index. Below Tc, the touch-
ing FSs will separate as the gap opens; elsewhere in the
BZ the gap will open between BdG hole and electron
quasiparticle bands in a conventional manner.

This pair of degenerate diabolical points presents an
ideal platform for the τ -space pair that complete the re-
quired form of OP required by symmetry. Whereas the

spin ~dk vector is active over all of the FS and carries a
k dependence (even if negligible upon first pass), the ~τ -
space vector ~t is specific to the diabolical points, labeled
as (Dirac) D+ and D−, quite analogous to graphene but
in 3D. The plus/minus designations refer only to the di-
rection of the DP along the T -Z-T line, which are degen-
erate in the normal state. At T=0 (but in the [unstable]
normal state) the Fermi level (EF=0) falls precisely at
±KD, insensitive to the precise value of EF through off-
stoichiometry or doping. At finite T electrons are excited
above, leaving holes below, according to the Fermi-Dirac
distribution.

3. Properties of LaNiGa2

The normal state. The relevant properties of LaNiGa2

are: (i) non-symmorphic orthorhombic Cmcm space
group, (ii) normal Fermi liquid transport, (iii) no mag-
netic activity, from susceptibility17 and NMR,19 (iv) fully

gapped SC state (specific heat cv(T ), penetration depth
λL(T ), critical field), (v) ARPES data supports the band
touching on the BZ face of degeneracies, (vi) an in-
ferred magnetic field of 0.2G arising below Tc with T-
dependence similar to that of the BCS gap. The spe-
cific heat cv(T ), earlier fit by a four-parameter two-gap
model,32 is, for the single crystal data,17 equally well
fit by a single gap allowing for some variance over the
Fermi surface, due to some unclear behavior in the lower
range of measurement. The Kadawaki-Woods ratio of
1.28 (quadratic coefficient of resistivity divided by the
specific heat coefficient: A/γ) is typical of conventional
Fermi liquids, and not of strongly correlated metals. The
normal state behavior is that of a conventional Fermi liq-
uid. It is only the spontaneous magnetic field below Tc
that requires further consideration.

Inferred structure of the gap. The shape of cv(T) has
acquired importance in designing a viable OP. As men-
tioned, It was found by Ghosh et al.33, for data on poly-
crystal samples, that a two band model with four pa-
rameters fit the data better near the lower end of the
measured temperature range than does a single gap ex-
pression. Single crystal data17 could fit the data well
down to T/Tc= 0.3, below which the data began to dif-
fer somewhat from the single-gap exponential form (the
data terminates at T/Tc=0.15, providing only a limited
region of temperature for analysis).

Topological character of the Dirac points. The topo-
logical character of LaNiGa2 enters the picture: even af-
ter including SOC (a relatively large energy compared
to others: ∆o, kBTc, phonon energies, etc.) which splits
other band crossings, the symmetry of the line Z-T pre-
cludes spin-orbit splitting, and two degenerate bands at
EF on the face of degeneracies cross the Z-T line and
remain degenerate after including SOC. SOC is essen-
tial to include because the SC gap 2∆(0) ≈0.5 meV is
30-50 times smaller than the SOC-induced splitting of
band crossings, and shifting Fermi surface bands more
generally. This leaves the normal state with two three-
dimensional Dirac points (symmetry related) (call them
±KD) along the Z-T line.

For completeness, it can be noted that: (i) isolated
spin-degenerate bands (hence FS states) become mixed
spin-up and spin-down bands but remain doubly degen-
erate; they can still be regarded as ‘spin-up’ and ‘spin-
down’ according to their majority character, and they
are only shifted by SOC and remain isolated; (ii) cross-
ing bands without special symmetry properties anticross,
opening a local band gap where the two spin directions
are more strongly mixed; (iii) band crossings occur pre-
cisely at the Fermi surface with zero probability, unless
some symmetry positions the crossing precisely at the
FS. This rare property occurs along the degenerate BZ
faces in non-symmorphic crystals because the band cross-
ing (or touching, if you want) happens along the entire
Z-T symmetry line, making it invulnerable to the posi-
tion of the Fermi level. Thus for LaNiGa2, the normal
state FSs remain disjoint and doubly degenerate except
at the two Dirac points, which are fourfold degenerate
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and topological, and provide a unique spectrum of the
BdG quasiparticle bands, which revert to the usual BdG
bands anywhere else on the five Fermi surfaces.

The electronic excitation spectrum. The density of
states from the near-region of ±KD, relative to the Fermi
energy is

N(ε) ∝ ε2

v3
, (68)

where the effective velocity is roughly equal to the root
mean square of the velocities along the three crystal axes.
This quadratic dependence on ε leaves a dearth of states
near EF around the ±KD points – effectively a local
pseudogap on the touching Fermi surfaces, for many pur-
poses. Pairing will shift all bands slightly (some fraction
of the gap, see below), but pairing will destroy the final
band degeneracy with the minimum gap 2∆k(T ) lying at
±KD. These points will impact of the low temperature
thermodynamics, including cv(T ).

The quasiparticle spectrum. The BdG quasiparticles
near these points, in the proposed INT model32,33 with
a triplet OP, will have dispersion relations

ξk = ±
√

(~vk · ~k)2 + ~d · ~d∗ ± |~d× ~d∗|, (69)

where ~k is measured from KD and ~vk describes the
anisotropic velocities around KD. If the cross product
vanishes, double degeneracy is retained, which is the uni-
tary case. If the product does not vanish, this degeneracy
is lifted. The spectrum of this non-unitary case is often
called a two-gap spectrum. Examples of BdG bands,
unitary and nonunitary and schematic for LaNiGa2, are
presented in Fig. 5.

If the material involves transition metal atoms (espe-
cially in ionic materials), or 4f or 5f atoms, the appear-
ance of some sort of magnetic order is not so unexpected,
and there are various examples, viz. in heavy fermion
superconductors.15 There are numerous examples of pro-
posed breaking of the space group symmetry, viz. d-wave
character of the order parameter in some cuprates, and
others for more enigmatic (viz. uranium) compounds.41

4. Constructing an exotic order parameter

In conventional s-p metals (standard non-magnetic
Fermi liquids), spin polarization (TRSB) leading to an
internal magnetic field, costs energy which occurs with-
out obvious compensating gain in energy, and it is less
clear how to recover that energy cost from violation of
singlet pairing to parallel spin (triplet) pairing, which
is commonly assumed to provide the magnetic signal as
reported from several µSR (muon spin resonance, rota-
tion, or relaxation) experiments. An example that will
be referred to in this paper is LaNiGa2, which has re-
cently been synthesized and characterized in single crys-
tal form17 with a space group (Cmcm) distinct from
that reported on powder samples four decades earlier
(Cmmm).30

µSR experiments have detected spin relaxation char-
acteristic of a small (∼0.2 G) magnetic field31 at the
position of the muon, with onset at the superconduct-
ing transition at Tc=2K: TRSB coupled to Cooper pair-
ing. Full consideration of the properties of LaNiGa2 have
previously led it to be an example of the small class of
probable superexotic SCs, being unique due to displaying
triplet pairing, two orbital character,32 and a nonunitary
spectrum of quasiparticles.33 Density functional theory
(DFT) calculations on the Cmcm structure revealed a
planar zone boundary degeneracy that requires consider-
ation. Though important in the big picture, these com-
plexities will be a lesser topic here.

5. The INT model for the LaNiGa2 order parameter

The present picture has arisen from a progression from
Hillier et al.31, to that of Weng et al.32, then to the more
‘quantitative theory’ of Ghosh et al.33. These groups
were not yet aware that the space group is Cmcm, so
they built on the reported30 Cmmm structure. For the
form of the required TRSB order parameter there may be
little difference, because the point groups of both Cmmm
and Cmcm (D2h) have only one-dimensional (hence, non-
degenerate) irreducible representations, hence no degen-
eracy to be split.147 The non-symmorphic space group
of Cmcm does however provide a striking new degener-
acy: a 3D Dirac point electronic structure (even after
including SOC) with topological character. This distinc-
tion invites a reinterpretation of the source of symmetry
breaking, in addition to the breaking of U(1) and time
reversal symmetries (see below).

Hillier et al. reported TRSB and suggested that non-
unitarity seemed to be required by symmetry. They did
no modeling of the order parameter, but reported the
necessary form of the Ginzburg-Landau free energy func-
tional that is required for TRS breaking (a triplet OP
coupled to the magnetization). Weng et al. reported
more data (penetration depth, specific heat, Hc2),32 not-
ing the nodeless gap, and suggested that the additional
broken symmetry that seemed necessary might be due
to the degeneracy of orbitals on two symmetry-related
atoms, with symmetry also broken at Tc. They de-
scribed a triplet picture in which the S↑↑ occupation dif-
fers slightly from that of S↓↓, based partly on a picture
of active atomic orbitals. From small structure in λL(T )
and cv(T ) they argued that a ‘two gap’ (or ‘two band’,
or ‘two orbital’) character might be responsible.

The SC order parameter, which is constructed in the
simplest form that can account for data current available,
is given in the 4×4 space as Eq. 64 with the vector ~tk left
as the τ -space identity,

∆k = ~dk · ~σ (iσy)⊗ (iτy). (70)

According to Weng et al.32, the k dependence of ~d is odd

with the four possible choices having ~dk lie in the (1, i, 0)
direction. A concern is: odd in k, viz. sin kx etc. has
nodes, whereas LaNiGa2 is fully gapped. The normal



36

state is required to incorporate the symmetries that are
broken by the OP, to account for data. The observation
of broken TRS necessitates another degenerate degree
of freedom, most readily available from the crystal struc-
ture. The point groupD2h of Cmcm LaNiGa2, with eight
elements, has only one-dimensional (non-degenerate) ir-
reducible representations, which provides no degeneracy.

Ghosh et al. argued that, because the Cmmm Fermi
surface displayed a region where two sheets that are
roughly parallel, certain atomic orbitals might lie at the
root of broken symmetry. They chose the dz2 and dxy
orbitals on the Ni atoms (which are layered in the x-y
plane. Introducing a Hund’s-like attractive interaction
encouraging parallel spins on the Ni atoms, they treated
a parallel-spin-pairing OP picture that involved incorpo-
ration of a full DFT calculation including all of the Fermi
surfaces of LaNiGa2. Adjusting the attractive interaction
parameter to reproduce Tc=2 K, their model predicted
a small magnetization and resulting spontaneous field of
0.3 G, effectively the same as experiment. The interested
person should consult the original three papers discussed
here for the many details that are addressed.

Q. Spin and magnetic aspects of pairing

1. Singlet spin scenario

Occam’s razor points toward the simplest and most
studied of SC in standard Fermi liquids. We assume first
singlet pairing due to phonon glue. Cooper’s demon-
stration that the Fermi surface is unstable to formation
of bound pairs of (+~k,↑;-~k,↓) states focused on the zero

total momentum ~K = 0, S = 0 character of the pair.
This simplest SC unit is the underpinning of the the-
ory of superconductivity, subject only to the necessity of
an net-attractive effective interaction. Phonons are al-
ways present, and they always prefer ~K = 0, S = 0 pair-
ing, subject to interruptions from other pairing mecha-
nisms, which are weak in conventional Fermi liquids. The
corresponding calculations for LaNiC2 and LaNiGa2 are
described in Sec. XII A 1, and give strong evidence this
conventional mechanism accounts for the superconduc-
tivity, thus other origins of the spontaneous magnetic
field should be sought.
Cmcm symmetry of LaNiGa2. The Dirac point de-

generacy along Z − T , surviving after SOC has split all
other band degeneracies, suggests a specific mechanism
for broken symmetry that may account for a small mag-
netic field in the SC state: the mirror x→ −x operation
that connects the two DPs. [We choose, as common, the

special ~b axis as the OP ẑ-axis, and the Z-T direction as
the x̂ direction.] The ~τ space in the current model has
not not broken any symmetry in the ‘near degenerate
FS’ picture, and only a nondescript and ubiquitous de-
generacy in the ‘degenerate orbitals on equivalent atoms’
picture. The broken symmetry between the pair of DPs
provides an obvious candidate for delicacy toward spon-
taneous behavior, closely analogous to the pair of DPs in

graphene.
This picture comes with a challenge: the overall odd

symmetry of the OP upon exchange of the two electrons’
coordinates. Singlet spin is odd; the broken PD pair is
odd (think of splitting to energies ±δ). The produce of
the three OP components being odd requires the third –
k-space behavior – to be odd. Yet data shows a gapless
SC spectrum, typically associated with an s-like behav-
ior. This hurdle can be surmounted by an OP of px+ ipy
type:

∆orb
k = α sin kx + iβ sin ky,

∆orb
k [∆orb

k ]† = α2 sin2 kx + β2 sin2 ky, (71)

with non-zero real constants α, β. While there has been
substantial theoretical discussion of complex combina-
tions of different character, little has been established
about what the origin might be. In very stable crys-
tals, this symmetry breaking can involve simply lowering
the symmetry of the electronic state with negligible im-
pact on the lattice symmetry, making XRD an ineffective
method for study.

2. Triplet spin scenario

Weng et al.32 and Ghosh et al.33 described a spin-
based spin-triplet picture (above) in which there is only
parallel-spin pairing. For the magnetization, S↑↑ occu-
pation exceeds (very) slightly from the S↓↓. Without
details, this picture is based either on nearly-degenerate
FSs, or on an active atomic orbital on symmetry-related
atoms, that might account for the necessary additional
symmetry to be broken. From small structure in λL(T )
and cv(T ) they argued that a “two gap” (or “two band”)
character might be responsible.

This viewpoint can be supported much more reason-
ably by the observation just above that the DPs provide
an unusual, perhaps unique, degeneracy that may be sus-
ceptible to instability. The remainder of the analysis car-
ries through: triplet pairing, symmetric k-dependence,
odd symmetry in the orbital space.

3. Orbital moment scenario

Spontaneous orbital magnetism in crystalline solids, if
it would arise in zero field, is expected to be much smaller
than spin magnetization. Given the field values of 0.1-
0.3 G, the orbital magnetization would need to be that of
the spin magnetization discussed earlier, of the order of
10−2µB/f.u. Orbital currents have been discussed mostly
in the context of quantum (strongly correlated) mate-
rials. Searches especially in the layered cuprates have
placed stringent limits on the magnitude of such currents.

In such an event, the orbital current would need to cou-
ple to the U(1) OP. As mentioned in Sec. ??, an orbital
supercurrent is driven by the muon moment, leading to a
vortex extending (more or less, depending on local sym-
metry of lack thereof) along the axis of the moment. This
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supercurrent primarily sustains the vortex, producing a
field at the muon site and also in the neighboring envi-
ronment, but in a roughly circular region rather than the
periodic orbital currents required to provide a (nearly)
uniform periodic magnetic field.

R. Energetics relating to the superconducting state

Straightforward spin polarization, whatever might be
its origin, allows estimation of energy gain versus energy
loss. Quan et al. have provided these estimates, with the
conclusion that costs are larger than gains, although all
are extremely small for a 2K superconductor and a mag-
netization of 10−2µB/atom. There could be energy gains
from the unknown mechanism, and associated Hamilto-
nian, coupling spin to pairing.

S. Options for a mechanism for TRSB

The topic of the pairing mechanism – the bosonic glue
binding a Cooper pair – in an exotic superconductor is a
challenging one. A burning question based on the present
interpretation of data – time-reversal symmetry breaking
– is how a tiny field of 0.1-1 G can be produced. The
direct approach is to consider the field as due to spin, or
alternatively, to orbital polarization. The ever-present
electron-phonon coupling was discussed in Sec. XII so
nothing more will be added here.

1. Coulomb interaction: charge or spin

Examples of other pairing glues discussed for decades
include spin-fluctuations and non-magnetic electron-
electron polarizations – excitons, d-mons, acoustic plas-
mons, perhaps a few more. Susceptibility data for these
conventional metals rules out a spin-fluctuation mecha-
nism, i.e. dynamic local moments, in many of the mate-
rials, where the susceptibility χ(T ) is typical of conven-
tional Fermi liquid superconductors. Likewise, as conven-
tional metals the other possible mechanisms mentioned
above are highly unlikely. The very fragile magnetism
(tiny magnetic moment that is inferred) provides an im-
posing challenge for any proposed order parameter.

Most other candidates are also unlikely in multicom-
ponent compounds with several large Fermi surfaces and
strong metallic screening. The remaining possibility is
that there is some more subtle combination of electron
and phonon origin that can coexist with the usual phonon
mechanism to break U(1), time reversal symmetry, and
perhaps some other underlying symmetry. This scenario
would be, in Ginzburg-Landau language, be a secondary
OP that couples to phonons and causes emergence of
some type of magnetic character.

The inherent energy gain from Cooper S = 0 pair
formation may be superseded by S = 1 triplet pairing.
In quantum materials with partially filled d or f shells,

Hund’s rule (parallel spin) pairing is discussed. The can-
didates are however nowhere near a Stoner instability,
which is invoked to provide a tendency toward equal-
spin pairing. ‘In intermetallic compounds with no mag-
netic tendencies, it becomes difficult to follow this line
of argument. Nevertheless, the apparent emergence of
a spontaneous magnetic field has pointed the construc-
tion of possible order parameters in this direction. From
this viewpoint, one needs not only parallel-spin pairing
but a mechanism that provides a very small but nonzero
imbalance between up-up and down-down pairing.

2. Orbital polarization

The other path toward a magnetic order parameter is
kinetic – the orbital character of the pair – rather than
spin in origin. Orbital motion of charges produce mag-
netic fields. One suggestion to account for small mag-
netic order has been an emergence of supercurrent loops
alongside pairing below Tc, carrying orbital angular mo-
mentum and producing magnetism. Such orbital loops
have been proposed for quantum materials with strong
local correlation effects, without confirmation.

The orbital loop triplet picture of Ghosh, Annett, and
Quintanilla45 provides a detailed example but carries re-
quirements: (i) on-site intra-orbital singlet pairing, and
(ii) at least two distinct but symmetry related sites within
the unit cell to host the intra-orbital pairing. Like many
scenarios for exotic OPs, the point group must have at
least one degenerate irreducible representation (irrep), to
host the symmetry-breaking. The local intra-orbital pair-
ing includes the critical aspect of singlet pairing that is
a foundational aspect of BCS pairing, while differing by
being real space, versus momentum space (k,-k), pairing.

The crystal symmetry irrep condition provided a hur-
dle, as the point group D2h of Cmcm had only one-
dimensional irreps. Since SOC in LaNiGa2 is weak18

for these purposes, the applicable lattice+spin group is
D2h ⊗ SO(3), which has three-dimensional irreps, and
the four possible TRSB SC instabilities are all purely
triplet.31,136,137. Another feature is that all four are
nonunitary indicating equal-spin pairing requiring an ad-
ditional OP of magnetic character.

This is not yet a solution, as each of the triplets is
point-nodal, inconsistent with the observed fully gapped
character of LaNiGa2. Triplet pairing is however different
from singlet, in that an on-site interaction (presumably
locally attractive −U , as in negative U models) is less re-
pulsive than for singlet pairs. Their model took the form

of OP ∆n,m
α,β (~k) in orbitals n,m (on the same site) and

spin α, β spaces. For different orbitals A andB, their pro-
posed coupling incorporated the off-diagonal pairing OP

∆↑↑ < c†A,↑c
†
B,↑ > and magnetization ΦA,σ < c†A,σcA,σ >

(together with their index- rotated and complex conju-
gated partners). Their suggestion was that the d-orbital
material Re6X, X=Ti, Zr, Hf, (symmorphic, space group
I 4̄3m and with identified TRSB, provides a reasonable
candidate.
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85 F. Gygi and M. Schlüter, Self-consistent electronic struc-
ture of a vortex line in a type-II superconductor, Phys.
Rev. B 43, 7609 (1991).

86 W. Su, R. Wang, C. Chen, and X. Wang, Unique quan-
tum impurity states driven by a vortex in a topological
superconductor, arXiv:2206.04862 (2022).

87 J. Pinel, C. Lebeau, and J. Rosenblatt, Behaviour of a
type I superconductor in the presence of magnetic dipoles,
Solid State Commun. 9, 725 (1971).

88 J. Pinel and C. Lebeau, Effect of magnetic dipoles on
order parameter of superconductor, Phys. Lett. A 58, 477
(1976).

89 S. N. Burmistrov and L. B. Dubovskii, Magnetic Dipole
Interaction in an Anisotropic Type-II Superconductor, J.
Supercond. 4, 207 (1991).

90 Z. J. Yang, Surface effect of a superconductor on a mag-
netic dipole, Physica C 234, 263 (1994).

91 U. Yaron, P. L. Gammel, A. P. Ramirez, D. A. Huse, D.
J. Bishop, A. I. Goldman, C. Stassis, P. C. Canfield, K.
Mortensen, and M. R. Eskildsen, Microscopic coexistence
of magnetism and superconductivity in ErNi2B22C, Na-
ture 382, 236 (1996).

92 J. Zittartz and E. Müller-Hartmann, Theory of Magnetic
Impurities in Superconductors I. Exact Solutions of the
Nagaoka Equations, Z. Physik 232, 11 (1970).

93 S. Sykora and T. Meng, Renormalization approach to the
superconducting Kondo model, arXiv:2109.11995 (2022).

94 L. Yu, Bound state in superconductors with paramagnetic
impurities, Acta Phys. Sin. 21, 75 (1965).

95 H. Shiba, Classical spins in superconductors, Prog. Theor.
Phys. 40, 435 (1965); Prog. Theor. Phys. 50, 50 (1973).

96 A. I. Rusinov, On the theory of gapless superconductivity
in alloys containing paramagnetic impurities, Zh. Eksp.
Teor. Fiz. Pisma Red. 9, 146 (1968); [JETP Lett. 9, 85
1969].

97 A. I. Rusinov, Superconductivity near a paramagnetic im-
purity, Zh. Eksp. Teor. Fiz. 56, 2047 (1969); [Sov. Phys.

JETP 29, 1101 (1969)].
98 J. B. Goodenough, Theory of the Role of Covalence in

the Perovskite-Type Manganites [La, M(II)]MnO3, Phys.
Rev. 100, 564 (1955).

99 J. Kanamori, Superexchange interaction and symmetry
properties of electron orbitals, J. Phys. Chem. Solids, 10,
87 (1959).

100 P. W. Anderson, Antiferromagnetism: Theory of Superex-
change Interaction, Phys. Rev. 79, 350 (1950).

101 W. E. Pickett, M. L. Cohen, and C. Kittel, Theory of the
hydrogen interstitial impurity in germanium, Phys. Rev.
B 20, 5050 (1979).

102 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov,
A New Method in the Theory of Superconductivity, (1958)
(translation: Consultants Bureau, Inc., New York, 1959).

103 P. Morel and P. w. Anderson, Calculation of the Su-
perconducting State Parameters with Retarded Electron-
Phonon Interaction, Phys. Rev. 125, 1263 (1962).

104 P. B. Allen and R. C. Dynes, Transition temperature of
strong-coupled superconductors reanalyzed, Phys. Rev. B
12, 905 (1975).

105 A. Subedi and D. J. Singh, Electron-phonon supercon-
ductivity in noncentrosymmetric LaNiC2: First-principles
calculations, Phys. Rev. B 80, 092506 (2009).
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