Local nematic susceptibility in stressed BaFe$_2$As$_2$ from NMR electric field gradient measurements

T. Kissikov,1 R. Sarkar,2 M. Lawson,1 B. T. Bush,1 E. I. Timmons,3 M. A. Tanatar,3 R. Prozorov,3 S. L. Bud’ko,3

P. C. Canfield,3 R. M. Fernandes,3 W. F. Goh,1 W. E. Pickett,1 and N. J. Curro1

1Department of Physics, University of California, Davis, California 95616, USA
2Institute for Solid State Physics, TU Dresden, D-01069 Dresden, Germany
3Ames Laboratory U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Received 26 October 2017; published 19 December 2017)

DOI: 10.1103/PhysRevB.96.241108

The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe$_2$As$_2$. We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. Our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.

The iron-based superconductors exhibit a complex interplay between orbital, electronic, and lattice degrees of freedom. In BaFe$_2$As$_2$, a nematic instability triggers a spontaneous orthorhombic distortion, ferro-orbital order, and spin-fluctuation anisotropy below $T_N = 135$ K in the absence of strain [1,2]. This nematic phase breaks the C_4 tetragonal symmetry of the lattice, and is preceded by critical nematic fluctuations and divergent nematic susceptibility in the disordered phase [3,4]. In the nematic phase, the Fe d_{xz} and d_{yz} orbitals become nondegenerate, with an energy splitting on the order of 40 meV, and different occupation levels [5]. This phase is closely related to the stripe antiferromagnetic ordering of the Fe spins, which order either concomitantly with the nematic phase transition, or at a temperature T_N only a few degrees Kelvin below, as it is the case in BaFe$_2$As$_2$. As a result, many low-energy experimental probes actually sense a complex interplay of the orbital, lattice, and magnetic degrees of freedom simultaneously, precluding quantitative analyses.

Several techniques have been developed to probe the nematic degrees of freedom. Anisotropic resistivity [6,7], elastoresponse [3], electronic Raman scattering [8], elastic constants [9–12], thermopower [13], polarized light imaging [14,15], and optical conductivity [16] probe bulk anisotropies. NMR and neutron scattering, on the other hand, have been chiefly used to investigate the effect of nematicity on the spin fluctuations [17–21]. The nuclear quadrupolar interaction, however, can probe the microscopic orbital occupations directly [22]. The 75As ($I = 3/2$) quadrupolar moment couples to the local electric field gradient (EFG), which is dominated by the on-site occupations of the As $4p$ electrons. These orbitals are hybridized with the Fe $3d$ orbitals, and thus the EFG is a sensitive probe of the d-orbital occupations. Indeed, the EFG tensor exhibits a dramatic lowering from the magnetic field H_0 at fixed frequency. 75As has spin $I = 3/2$, with three separate resonances separated by the quadrupolar interaction. Figure 1 shows the central and upper transitions as a function of strain at fixed temperature. The higher quadrupolar satellite resonance occurs at field $H_{sat} = (f_0 + V_{sat})/(1 + K_{sat})$, where $f_0 = 55.924$ MHz is the rf frequency, $\gamma = 7.290$ 19 MHz/T is the gyromagnetic ratio, and K_{sat} is the Knight shift and EFG tensor components in the $\alpha = (x,y,z)$ direction. The central transition field is given by $H_{cen} = \frac{f_0}{2(1 + K_{sat})}(\frac{3}{2} + \sqrt{\frac{9}{4} - 2V_{sat}f_0})$, where $\beta = (y,x,z)$ for $\alpha = x,y,z$. The center of gravity of each peak was used to determine the resonance field, and hence K_{sat} and V_{sat} as a function of strain. The Knight shift shows essentially no change with strain [18], however, all components of the EFG tensor show strong variations, as shown in Figs. 2 and 3.

The EFG tensor is given by $V_{\alpha\beta} = (eQ/12\hbar)\partial^2V/\partial\xi_{\alpha}\partial\xi_{\beta}$, where $Q = 3.14 \times 10^{-20}$ m2 is the quadrupolar moment of the 75As and \hbar is the reduced Planck constant. This quantity is dominated by the occupation of the As $4p$ orbitals, which in turn are hybridized with the $d_{xz,yz}$ orbitals of the neighboring Fe atoms [22]. In the tetragonal phase, the EFG asymmetry parameter $\eta = \nu_{yy} - \nu_{xx}/(\nu_{xx} + \nu_{yy})$ vanishes because the $4p_x$ and $4p_y$ orbitals are degenerate (i.e., $\nu_{xx} = \nu_{yy}$), as seen in Fig. 2. In the presence of nematic
FIG. 1. Field-swept spectra of BaFe$_2$As$_2$ at constant frequency $f = 55.924$ MHz at 138 K for several different displacements of the piezoelectric device, showing the central and upper satellite transitions. Zero strain corresponds to 51.58 μm. Inset: Orientation of the crystal with respect to the external field H_0, the strain axis, and the rf field H_1. Here, x and y are parallel to the Fe-Fe directions.

order, the C_4 symmetry of the EFG tensor is broken and $\nu_{xx} \neq \nu_{yy}$ [25]. Because the in-plane anisotropic strain field, $\varepsilon_{ani} = \frac{1}{2}(\varepsilon_{xx} - \varepsilon_{yy})$, with B_{2g} symmetry (in the coordinate system of the tetragonal unit cell) couples bilinearly to the nematic order parameter, η responds to strain in the same manner that the magnetization of a ferromagnet responds to a uniform magnetic field [3,14,26]. Although the applied uniaxial stress also induces strains corresponding to other elastic modes, due to the finite Poisson ratio the dominant mode is ε_{ani}, which couples to η. In our configuration we can only apply H_0 perpendicular to the stress axis, which we denote by x. We measure both ν_{zz} for ν_{aa} along the c axis of the crystal, and ν_{yy} for ν_{cc} in the basal plane. For the latter case, $\nu_{yy} = \nu_{aa}$ for compressive strain ($\varepsilon_{ani} < 0$) and $\nu_{yy} = \nu_{bb}$ for tensile strain ($\varepsilon_{ani} > 0$), and $\nu_{zz} = \nu_{cc} = \nu_{yy}(-\varepsilon_{ani})$. The EFG thus enables us to identify the zero-strain displacement x_0 by the condition $|\nu_{xx}| = |\nu_{yy}| = |\nu_{zz}|/2$. Note that η can exceed unity, since $\nu_{xx} + \nu_{yy} + \nu_{zz} = 0$. Furthermore, in the absence of strain, a bulk order parameter in a twinned sample would average to zero, whereas the local order measured by NMR reveals all domains simultaneously [23].

As seen in Fig. 2, the applied strain significantly alters the local EFG. Just above the structural transition the strained EFG values approach those in the spontaneously ordered phase in the absence of strain. Furthermore, the maximum strain levels as measured by the dilatometer reach approximately 60% of the spontaneous values of the orthorhombicity in the ordered phase [27]. Nevertheless, ν_{yy} remains linear over this range, as shown in Fig. 3. The slope of this response is therefore a measure of the static nematic susceptibility χ_{nem}. Similar behavior was observed in elastoresistance [3], shear modulus [12], and electronic Raman scattering [8]. However, the NMR probes the local nematicity in terms of the different orbital occupations reflected in the EFGs, rather than the bulk response, which can be affected by inhomogeneities. We note that, rigorously, χ_{nem} is the “bare” nematic susceptibility, i.e., without the contribution arising from the coupling to the lattice. The bare and renormalized susceptibilities are related by a Legendre transformation.

Figure 4 shows the temperature dependence of $dn/d\varepsilon_{ani}$ and compares the response to elastoresistance measurements [3]. The NMR data exhibit a similar behavior with a divergence at T_s. We fit the EFG data to the sum of a Curie-Weiss term plus a background susceptibility, $\chi_{nem} = C/(T - T_0) + \chi_0$, and find $C_0 = 4700 \pm 700$ K, $T_0 = 116 \pm 3$ K, and $\chi_0 = 54 \pm 8$. The background term reflects the intrinsic response of the lattice, whereas the Curie-Weiss term represents the nematic instability. Our observed value of T_0 is consistent with elastoresistance, but differs from that observed by Raman scattering and by shear modulus measurements [8,12,28]. As noted above, the difference between T_0 and T_s arises due to the fact that we are probing the bare nematic susceptibility without the lattice contribution.
In order to understand the relationship between the EFG asymmetry and the splitting between the Fe d_{xz} and d_{yz} orbitals, we have performed generalized gradient approximation (GGA)-based density functional theory (DFT) calculations for the tetragonal structure at 300 K and 0.2 GPa [31] under anisotropic, in-plane strain ε_{an}.

Our values of the EFG are consistent with previous calculations in the absence of strain, but underestimate the experimental values by approximately a factor of 3 [32,33]. We confirm that the EFG is dominated by the occupation of the As p_z orbitals. The difference between the experimental values of the EFG under a uniform uniaxial strain, and observed a splitting $\Delta_{xz-yz} \sim 40$ meV in the nematic phase [5], whereas NMR studies reveal a value of $\eta \sim 1.2$ [23].

Figure 2 also shows the response of the quadrupolar splitting ν_{zz} along the c axis in in-plane strain. This independent component of the EFG tensor does not couple to the nematic order, but nevertheless it is suppressed by the lattice distortion. We find that $\nu_{zz}(\varepsilon_{an})/\nu_{zz}(0) = 1 - \beta\varepsilon_{an}^2$, where $\beta \approx 9000$ is approximately temperature independent. Our DFT calculations reveal a small quadratic suppression with $\beta = 30$, due to changes in the relative occupations of the As p_z and p_x, p_y orbitals. The difference between the experimental and theoretical values may reflect changes to the c-axis lattice parameters due to a finite Poisson ratio.

Our measurements offer insight into the behavior of the EFG in electron-doped pnictides. In doped BaFe$_2$As$_2$ ($M = \text{Co, Ni}$), the quadrupolar satellite resonances are inhomogeneously broadened (~ 1.0–1.5 MHz) relative to those in the parent compound (0.13 MHz) [34–36]. A large source of this broadening may arise from local strain distributions. Local strains at dopant atoms can reach up to 3% [37], which would correspond to a shift in the As EFG parameters of $\delta\eta \sim 10$ and $\delta\nu_{zz} \sim 2.9$ MHz at 140 K. The strain field relaxes with distance from the dopant, and possibly other types of defects, giving rise to a distribution of local EFGs. Recently, a finite EFG asymmetry $\eta \sim 0.1$ was reported in BaFe$_2$(As$_{0.8}P_{0.2}$)$_2$ in the nominally tetragonal phase [22]. This value would be consistent with an average strain field on the order of 0.05%.

We postulate, therefore, that the origin of the finite nematicity observed in this compound reflects inhomogeneous strain fields, rather than intrinsic nematicity above the structural transition [38]. The presence of strain fields in the nominally tetragonal phase has indeed been observed directly by scanning tunneling microscopy (STM) [39]. Complex EFG distributions have also been reported in RFeAs$_{1-x}$P$_x$ ($R = $ La, Sm) that have been interpreted as nanoscale electronic order [40]. It is unclear whether these spatial variations arise due to ν_{zz} or η, although they may reflect a combination of both strain and/or orbital occupations.

In conclusion, we have conducted detailed measurements of the EFG under a uniform uniaxial strain, and observed a linear response that is strongly temperature dependent. The slope agrees well with other measurements of the nematic susceptibility, and demonstrates that C_4 symmetry is broken not only in the different Fe 3d orbital occupations, but also in the As 4p orbitals. Our results further demonstrate that 75As NMR is sensitive to the charge degrees of freedom, and enable a quantitative measure of the local orbital occupations of the Fe d orbitals. Measurements of the local nematicity by NMR provide an important microscopic complement to other techniques, and offer a unique opportunity to measure the response in the superconducting state. For example, in contrast to elastoresistance and Raman scattering, NMR under strain can probe the nematic susceptibility below T_c. Such measurements may provide insight into the role of nematic degrees of freedom in the superconducting mechanism [41,42].

We thank S. Hillbrand, K. Delong, D. Hemer, and P. Klavins for assistance in the laboratory, and E. Carlson and I. R. Fisher for stimulating discussions. Work at UC Davis was supported by the NSF under Grant No. DMR-1506961 (T.K., M.L.), B.T.B., and N.J.C.), NSF Grant No. DMR-1607139 (W.F.G.), and DOE NNSA Grant No. DE-NA0002908 (W.E.P.). R.M.F. is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0012336. R.S. was partially supported by the DFG through SFB 1143 for the project C02. Work done at Ames Lab (S.L.B., P.C.C., M.T., R.P., and E.I.T.) was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.

[34] F. L. Ning, K. Ahilan, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, 59Co and 75As NMR investigation of lightly doped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ ($x = 0.02, 0.04$), Phys. Rev. B 79, 140506 (2009).

[37] K. Park, D. Louca, A. Llobet, and J.-Q. Yan, Evidence of local disorder in the overdoped regime of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, Phys. Rev. B 84, 024512 (2011).

