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Study of simulation cell size in mean-field studies of interacting lattice models

Yueguang Shi, Warren E. Pickett*
Department of Physics, University of California Davis, Davis CA 95616

Abstract

A lattice model of interacting fermions is studied with the principal aim of assessing the dependence of calculated mean-field ground
states versus the N X N lattice size, with N=16, 32, and 48. A two band model on the two-dimensional square lattice is simulated,
with on-site energies and interaction parameters chosen to represent crystal field split orbitals in the moderately correlated regime.
Nearest neighbor hopping leads to the well known van Hove singularities (vHs) of the square lattice. Anomalies in the inverse
participation ratio of the eigenstates are found to be associated with the vHs, with their prevalence decreasing inversely with N. For
the chosen model, inhomogeneous spin densities are always obtained for the small lattice size N=16, with the degree of variation
decreasing rapidly for most polarizations as N is increased. Various spin polarizations are treated, and one case in which spin
density inhomogeneity persists for the largest lattice size is discussed and analyzed. Coupling of spin density inhomogeneities to

charge density variation is minor but evident, and is primarily of intra-orbital origin.
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1. Introduction

The study of inhomogeneous phases in correlated electron
systems has long been an area of active investigation, with the
spin density wave in chromium providing an early example.[1]
Activity increased strongly after the discover of charge density
stripes in hole-doped La,;CuQ4,[2] in hole-doped manganites
La;_,Ca,MnOs;[3] and Lag sSr; sMnQ4,[4] and also hole-doped
nickelates Lay;NiOy 125[5] and La; 7519 33Ni04.[6] The classic
inhomogeneities, charge density waves (CDW) and spin den-
sity waves (SDW) have conventionally been tied to Fermi sur-
face nesting,[1] though a close connection to CDWs to nesting
has been questioned.[7] Density wave states have by definition
a specific wavelength A and direction, hence a specific wavevec-
tor ¢, g = |¢| = 2x/ A, related to Fermi surface calipers.

Theoretical study of these inhomogeneities began in earnest
in response to reported inhomogeneities in cuprates, newly dis-
covered to be high temperature superconductors when hole-
doped. These investigations focused on the square lattice Hub-
bard model doped away from the antiferromagnetic ordered
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state at half filling and treated in a mean field (Hartree-Fock)
manner. Su obtained spin polaron states[8] building on the spin-
bag mechanism of electron pairing that had been introduced
by Schrieffer, Wen, and Zhang.[9] Machida used an approach
somewhat more from the itinerant side and obtained a soli-
ton lattice spin structure and striped charged domain walls.[10]
Zaanen and Gunnarsson extended such studies to a two-band
model, finding charged magnetic domain walls (charge and as-
sociated spin stripes) or a ring of such a wall, depending on
the periodicity enforced by 9 x 10 versus 10 X 10 periodic
lattices.[11] This work may have been the first to indicate the
effect of lattice (simulation cell) size and commensurability on
the resulting ground states that are obtained. More on such stud-
ies, and the methods that were developed, will be discussed in
Sec. IL.

Since this early work, numerous related papers have ap-
peared (some of the early papers have accumulated hundreds of
citations), with much of the effort turning to dynamical inhomo-
geneities or more varied spatial inhomogeneities, and how they
impact the properties of strongly correlated electron systems.
Nevertheless studies of static charge and spin stripe ground
states have persisted, with extensions to more nuanced models
aimed at modeling specific classes of materials, viz. manganites
versus cuprates versus iron pnictides. Dagotto and coworkers
have reported studies on a two orbital model adapted to model
the d,., d,, orbitals of iron pnictides, finding stripes for periodic
Hamiltonians and disturbed stripes for cases with quenched-in
disorder, such as by Co doping.[12, 13] A recent direction has
been to move beyond mean field approaches for multi-orbital
models by extending quantum Monte Carlo methods to study
such charge and stripe correlations.[14, 15] Meanwhile, exper-
imental investigations have become more detailed, by mapping
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symmetries of inhomogeneous phases using, for example, ad-
vanced spectroscopic imaging[16, 17] in addition to diffraction.

Most previous studies have concentrated on the strongly cor-
related regime. When interaction effects are strong, effects of
the underlying mean field Fermi surface assume less impor-
tance; conversely moderately correlated systems may retain in-
stabilities connected to the Fermi surface. In the latter scenario,
reasonable sampling of the Fermi surface requires larger sim-
ulation cells. This is the feature we address in this paper: for
a moderately correlated two-orbital (two-band) lattice model,
how much dependence does the calculated ground state depend
on the lattice size in the simulation.

The organization of the manuscript is as follows. In Sec. II
the two band model and methods of treatment are presented.
Section III presents some baseline results for the density of
states (DOS) and the inverse participation ratio of the single
particle eigenstates, related to lattice size N X N with N=16, 32,
and 48. Results for interacting particles relating to lattice size
dependence, orbital differentiation, and dependence on spin po-
larization are presented in Sec. IV. Section V provides a brief
discussion and summary.

2. Methods

2.1. The multi-orbital model

We deal with a two orbital basis, with particles hopping on a
square lattice and interacting via repulsive on-site interactions
U,p. The Hamiltonian is

H = Z Ealliar Z Z Cj;w.t(yﬁcjﬁ(r

iao <ij>o off

+% Z Z n[aa—Uaﬁn[ﬁo—. (1)

ic af

Here 1,5 is the hopping amplitude between orbital « at site i and
orbital 8 on a neighboring site, and (ij) indicates the sum is over
nearest neighbors in each direction. g, is the on-site energy of
each orbital, and o indicates the spin projection up and down.

Multiorbital models of this sort have occasionally been ad-
dressed with beyond mean field methods, but the doubling of
basis size further restricts the size of simulation supercell that
can be handled numerically. A primary purpose of the current
work is to study the effect of supercell (also referred to as lat-
tice, with periodic boundary conditions) size on the resulting
ground states. Using quantum Monte Carlo methods, even sin-
gle orbital models usually don’t explore lattice sizes larger than
around 12x12.

We will obtain mean field solutions to this model and demon-
strate that even with two orbitals one can reasonably simulate
up to 48x48 lattices in the moderately correlated regime that we
study. For the two orbital model the basis size is 2N>=4608 for
N=48. Moreover, with several parameters in the model as well
as the filling fraction (mean number of particles per orbital) and
the spin polarization, it is necessary to restrict ourselves to a
particular regime of hopping and interactions.

While inhomogeneous states (charge and spin stripes, for
example) have been of interest for some time in the strongly

correlated regime (viz. cuprates and manganites), the question
has resurfaced due to observation of inhomogeneous phases in
less highly correlated metals, especially the iron pnictides and
chalcogenides that provide the platform for high temperature
superconductivity in the range of T.~60 K. For this reason we
choose model parameters that mimic #,, and e, orbitals, which
generically have similar bandwidths (hopping amplitudes) and
intra-atomic repulsion but a crystal field splitting of 1-3 eV, thus
on-site energies differing by this amount.

The parameters we choose, for orbitals 1 and 2, are on-site
energies €] = 1, &, = —1, nearest neighbor hopping amplitudes
t;1 = l,5hp = —1, and on-site repulsions U;; = 2 = Ujy,
Ui» = Up; = 0.5. In a multiorbital system without a special
selection of parameters, band filling is not a crucial degree of
freedom. We choose half-filling (one electron per orbital, on
average) as most relevant to stoichiometric materials, and the
crystal field splitting keeps the noninteracting Fermi level away
from van Hove singularities except accidentally at certain polar-
izations. The two parameters we vary are the spin polarization
P and the lattice size, comparing N lattice sizes with N=16,
32, and 48. The polarization is given by

Nup — Ndown

pP= 2)

Nyp + Ndown
in terms of the number of up #n,, and down ng, particles. The
mean spin is (S) = 2P.

2.2. Method of solution.

A few approaches to treating multiorbital models in mean
field have been suggested and used. Hess and Serene pio-
neered a method adjusted to results of a many body solution
of multi-orbital models.[18] They devised a density functional
theory (DFT) inspired approach, fitting a polynomial expansion
of the exchange-correlation functional to fluctuation-exchange
approximation solutions of the interacting Hamiltonian. We
have used their method, since our model corresponds to mod-
erately correlated electrons where such a DFT-inspired method
may be reasonable. We note that a more direct lattice DFT for
the single band Hubbard model has been proposed and studied
by Lopez-Sandoval and Pastor.[19]

Luo et al. have studied a two orbital model of iron pnic-
tides in a similar regime of interaction, applying the Hartree-
Fock approximation conventionally applied in single orbital
models.[12] They obtained solutions for N=16 lattices that con-
tain charge stripes along the axes. Considering the difference in
model parameters and methods of solution, no useful compar-
ison with their work can be made. As mentioned above, there
are continuing studies to treat multi-orbital models with non-
mean-field (Monte Carlo, exact diagonalization). For example,
Kung et al. have studied a three orbital model of cuprates,[14]
but proliferation of states and the fermion sign problem limited
them to modest sized clusters.

2.3. Convergence

For convergence we have been satisfied with linear mixing
of 15% of output with 85% of input for the new input, ‘input’
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being the site, orbital, and spin dependent densities. No doubt
improvements can be made over linear mixing,[20] and should
be done in future studies especially for more strongly correlated
models where convergence is more of a challenge. Our crite-
rion for convergence was that the root mean square difference
between input and output orbital densities over the lattice is less
than 107> for each spin. For each choice of lattice size and spin
polarization, several runs were used with a different choice of
random initial wavefunctions. Although there are clear visual
differences in the resulting charge and spin densities which are
to be expected, the character of the inhomogeneities is simi-
lar for each run and the differences in total energies are neg-
ligibly small. Examples will be provided in the Supplemental
Material. In preliminary studies using parameters represent-
ing stronger correlations (as for a doped Mott insulator or a
Kondo metal), sometimes 2-4 different classes of states would
be reached, which would be differentiated by small but distinc-
tive differences in total energy. We found that we obtained only
one type of solution (differences only in insignificant detail) in
all cases except one, which is discussed in Sec. IV.D.

3. Base line issues

3.1. Density of states

Since the emphasis in this paper is on the effect of lattice
size, one first item to survey is the degree to which the desired
(infinite) system is modeled and sampled by finite lattices. The
densities of states before interaction are displayed in Fig. 1 for
lattice sizes N=16, 32, and 48. The infinite lattice result for a
single orbital is well known: a bandwidth of W = 8¢ with step
discontinuities at the band edges, and a divergent singularity
at the band center arising from the van Hove singularity at the
center of the band, at the zone boundary X pints for the infinite
lattice. Figure 1 shows the lattice DOS for the two bands, which
are N X N J-functions for each band that have been broadened
by y=0.05 in units of =1 (0.6% of the bandwidth W=8.0). As
is well recognized, the N=16 lattice gives a relatively crude rep-
resentation of the exact DOS, with rather little definition that is
evident in the exact DOS. The full square symmetry leads to
(N/2)[(N/2) — 1]/2 distinct eigenvalues, which is 28 for N=16,
120 for N=32, and 276 for N=48. For N=16 the DOS peak
at the vHs appears dramatically as a single isolated peak above
a ragged background. For N=48 the infinite lattice behavior
is becoming evident. Of course with interactions included and
inhomogeneous states resulting. all 2N? eigenvalues may be
distinct.

Doubling the lattice to N=32 (four times as many eigenval-
ues) evidences the exact structure fairly well. The (step func-
tion) band edges are not very well defined, but the inverse
square root singularity at the vHs can easily be imagined. Pro-
ceeding to N=48, nine times as many eigenvalues as for N=16,
the DOS is beginning to sample the infinite lattice result well.
In particular, the vHs peak heights are proceeding toward hav-
ing a realistic weight relative to other states, whereas for the
smaller lattices the weight was much more dependent on the
density of sampled states near the vHs. The DOS is reproduced
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well enough that any further influence of the vHs DOS singu-
larities might require additional algorithms.

48 %48 lattice

o

32 x32 lattice

DOS (arbitrary unit)

=)

16 x16 lattice

Figure 1: The non-interacting density of states for the N=16, 32, and 48 sim-
ulations cells, as labeled. The progression illustrates the relative sampling of
states in energy for the three cases.

3.2. Inverse participation ratio

A point of interest is the degree of itineracy of the eigenstates
when correlation effects lead to inhomogeneous states, as we
will find and discuss later. The itineracy versus inhomogeneity
(localization) of eigenstates is conventionally measured by the
inverse participation ratio (IPR), defined by

IPR= "0l > 42, 3)

ija ija

where the sum is over all 2N? (i, j=1to N, orbitals a =1,2)
components of the state, however the denominator is the nor-
malization to unity. With this definition the ideally itinerant
(uniform) state with equal amplitudes on all sites and each or-
bital will have IPR,,;,=1/(2N?) while the absolutely localized
state in a single orbital has IPR=1 independent of lattice size.
If certain sites have amplitudes ; larger than average, they con-
tribute more to the sum and increase the IPR above IPR,,;,. The
absolute magnitude of the IPR may carry some interest, but it is
variations or deviations from “typical” or background that are
of most interest. We have verified that in the absence of in-
teraction, the IPRs are all equal — all noninteracting states are
uniform — so there is no interesting variation imposed by the
periodic lattice.

The calculated IPRs for P = 1/4 and the N=16, 32, and 48
lattices are shown in Fig. 2. In all cases the spin down val-
ues are not appreciably different from those of spin up, and we
have found that there is no interesting dependence on P. There
is a smooth background of IPR(E) that is minimum near the
band edges and roughly a factor of two larger around band cen-
ter: the eigenstates are less homogeneously distributed where,
roughly speaking, there are most closely spaced states. Note
that the IPR can increase due to variation of amplitude from
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site to site (the common reason) but also due to increase in or-
bital polarization, that is, imbalance in orbital amplitudes on
the same site. Since the “background” is continuous from the
single band regions at top and bottom, to the two-band region
in the middle, orbital polarization effects must be minor for our
choice of model.
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Figure 2: The inverse participation ratio for all eigenstates for polarization
P=1/4. Panels from top to bottom: N=16, 32, 48. Values for spin down are
plotted as negative values.

The distinctive feature of the IPR distribution is the concen-
tration of large values, 10-15 times larger than for the other
energies, at the vHs of both bands. This feature is persistent
across all polarizations that we have studied, with one excep-
tion that will be discussed below. The insets in Fig. 2 indicate
that these peaks can contain a little structure for smaller values
of N. For N=16, the large values of IPR at the vHs consist of
up to two separate classes separated by an energy as large as
0.1. For larger N there is only a single “peak” at each vHs. For
N=48 the separation of such peaks at the vHs from the smooth
background becomes clear. Counting the large IPRs, within
statistical scatter the number of large values is 2N, compared
to the number of eigenvalues 2N?. For example, for the values
shown in Fig. 2 the number is 35, 63, and 93 for N=16, 32, and
48, respectively.

The scaling of the number of large values of IPR can be an-
alyzed in terms of effective sampling of the zone that depends
on lattice size, but might also depend on the parameters of the
model. A non-interacting vHs for the square lattice is distin-
guished by a saddle energy surface centered at the point of van-
ishing velocity, with a divergent N(E) as the vHs is approached.
Using a finite simulation lattice amounts to sampling the BZ
with N2 evenly spaced points, one of which lies on each of the
two partners of a given vHs [at (m,0) and (0,7)]. Each vHs
point is surrounded by eight neighboring k-points, four along
the diagonal with the identical vHs energy, and four along the
axes with energies that differ to second order in their distance
from the vHs point. The 2N states with large /PR may con-
tribute spurious contributions to the results, but these contribu-
tions scale as 2N/2N? = 1/N, vanishing (somewhat slowly)
with increasing lattice size.

4. The Interacting System

4.1. Lattice size dependence

As mentioned earlier, a primary aim of this work is to assess
the lattice size dependence of inhomogeneities that arise. We
remind that our self-consistent procedure begins from random
wavefunction components, subject to normalization. With in-
teraction included, some amount of inhomogeneity is always
found, but often it is small enough to be negligible (possibly an
artifact of finite lattice size, or unphysical and unimportant con-
tributions from vHs). We have however verified that the inho-
mogeneities do not decrease when we choose a more stringent
convergence criterion, changing the convergence criterion from
1073 to 1077 for the root mean square difference between out-
put and input orbital charge and spin densities. Because of the
random starting wavefunction coeflicients, the exact same in-
homogeneity will never be reproduced in a parallel run. There
is the small probability of obtaining symmetry related states of
course, but in practice we observe recognizable visual differ-
ences in the states that are obtained. For our choice of param-
eters, however, the degree of inhomogeneity is always similar
if there is significant inhomogeneity, and the variation in total
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Figure 3: Charge and spin density arrays for polarization P=1/4. The top six panels are for N=16, charge arrays above spin arrays, and from left to right progressing
from orbital 1 to orbital 2 to the total (their sum). The center six panels are for N=32, the lower six panels are for N=48. Note the magnitude of variation (colorbar);
the variations are vanishing as lattice size increases.
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energies of the self-consistently obtained states is quite small.
Thus the specific results that we display and discuss are repre-
sentive of a general class of similar “ground states” for a given
polarization. Further clarification is provided in the Supple-
mental Material.

In Fig. 3 the real space variation, for P = 1/4, of both charge
and spin densities is displayed, first for each orbital, then for
the total (the sum over orbitals). The chosen lattice sizes result
in the areal pixel density increasing by almost an order of mag-
nitude from N=16 to N=48, and the difference in resolution is
immediately evident. One could present results in another fash-
ion, by comparing the (say) N=48 displays with a 3 X 3 array
of identical N=16 lattices, in which the “resolution” and actual
real space lattice spacings would be the same. We have chosen
to display so the basic N X N lattice is the same display size for
all M.

The most important item on the array plots to notice is the
variation of the total charge and spin density, as reflected in the
accompanying colorbar. In our studies we have kept the av-
erage charge/site at two, and fixed spin polarization P. With
two orbitals, the mean spin per site (S) = 2P. For P = 1/4
and for N=16, 32, and 48 respectively, the range of site charges
are 1.985-2.025; 1.995-2.035; 1.999-2.002 , while the ranges
for spins are 0.1-0.7; 0.3-0.6; 0.49-0.51. The range need not
be symmetric around the value of total charge (2.000) or spin
(0.500) because the inhomogeneities are not symmetric around
these values, but they are roughly symmetric in practice. The
“range” of variation is often determined by a few relatively
large or small values (local moments) compared to those of
most of the sites.

For our moderately correlated choice of model parameters,
large variations in charge are not anticipated, and progression of
the variation with lattice size, from 0.04 to 0.003 with increas-
ing lattice size, signals negligible charge variation in the large
N limit. Our results do indicate that lattices of modest size can
encourage some small and unphysical charge variation. Notice
that these small (but still unphysically large) inhomogeneities
organize themselves into patterns: diagonal stripes for N=16,
ribbons of diagonal stripes for N=24, and finally the very small
variations for N=48 form superstructures with a diagonal mo-
tif. This appearance of charge inhomogeneity that vanishes for
large lattice sizes results from a combination of coupling to spin
inhomogeneity in concert with quantum confinement (or forced
commensuration with) the finite lattice size.

The range of spin inhomogeneity is more interesting. For the
N=16 lattice there are isolated sites with small moment ~ 0.1
neighboring sites with moments of 0.4 and 0.7, arrayed more or
less on a square superlattice comprised of every third site. This
motif seems to be preferred, but since 3 is incommensurate with
N=16, there is a disruption of this pattern along one diagonal
to accommodate to the lattice size. For N=48, the spin inhomo-
geneity has become so small that it will disappear in the large
N limit. As was the case for the charge variation, the spin inho-
mogeneity typically vanishes in a patterned manner consistent
with the lattice size.

4.2. Differences between the two orbitals

Even a cursory examination of the density array color plots
reveals that (1) the inhomogeneities of the two orbitals are of-
ten quite different, and (2) that the inhomogeneities of charge
and spin within each orbital are related. Our conclusion, al-
ready mentioned above, is that our moderately interacting sys-
tem shows no CDW phases nor any significantly inhomoge-
neous charge density. However, significant spin inhomogeneity
does sometimes appear, and that spin variation clearly couples
to the charge: the patterns of variation have much similarity
although the charge variation for the largest lattice size never
seems significant.

The charge inhomogeneity for N=16 decreases with lattice
size, and it is important to note that it does not decrease with
stricter convergence criteria, as confirmed by tightening the
convergence criteria of rms deviation between output and input
from 1073 to 10~7. Spin density (and charge density) inhomo-
geneities on orbital 1 can be different from those on orbital 2,
but each correlates with its own spin variation, reflecting intra-
orbital spin-charge coupling.

With the total charge at an average of two per site, the sys-
tem can be characterized as half filled. The usual connotations
of this designation do not apply here, first because the system is
always metallic, and second because of the “crystal field split-
ting” the orbital occupations are different, and specifically well
away from unity. Apart from the patterns of the slight varia-
tion, the only changes that occur when we change polarization
is the contribution from each orbital. When P approaches unity
(15/16 was simulated), the charge in orbital 2 is larger by 0.1.
When P decreases, this value increases. When P — 0 (P=1/16
was studied), charge in orbital 2 is larger by 0.45.

4.3. Polarization dependence versus lattice size

There are three main types of patterns that appear for the
smaller lattice sizes: stripes, ordered clusters, and chessboard,
none of which are perfectly ordered. Stripe patterns are pri-
marily diagonal, usually observed as multiple stripes along one
diagonal direction. Occasionally stripes along an axis appear.
When P=1/4, different wide stripes are observed, some also
have stripes that cross from both diagonal directions. Cluster
patterns are areas of different density under ordered placement,
while chessboard is an arrangement where for every pixel,
neighboring pixels have a different value (color). A trend seems
to be that stripes are more common at larger polarization, clus-
ters and chessboard are more common at smaller polarization,
with no clear reason for this trend.

4.4. Ground state of the P=0 case

The unpolarized ground state stands out from most of those
with polarization in two striking ways. First, large spin varia-
tion persists to the largest lattice size. The only other example
of this was for P=3/16, with a few results presented in the Sup-
plementary Material. Second, two different types of states are
obtained. Three examples of the stripe state are displayed in
Fig. 5, and three examples of the pattern state are provided in
Fig. 6. Both have moments, positive and negative, of magnitude
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0.3-0.4. Also, both display very small charge (nearly negligi-
ble) variations that are associated with the large spin variations.
We emphasize that each state, and only these states, were ob-
tained in several simulations starting from random wavefunc-
tions.

The stripe state (Fig. 5) consists of six columns along an axis,
with a ‘dead’ region of a width of roughly two stripes. The
stripe columns, 3-4 sites in width, have an internal structure
of large moments antialigned on neighboring sites. The con-
tributions from each orbital are similar. The very small charge
variations follow that of the spins.

The pattern state (Fig. 6) is somewhat more intricate. There
are 2-3 stripes along an axis, spaced as in the stripe pattern but
varying somewhat in intensity along the stripe. The rest of the
lattice contains a rather regular array of ~3x3 clusters of spins,
again antialigned within a cluster as in the stripes. These clus-
ters are separated by ~3 dead (spinless) sites. Again, the con-
tributions from each orbital are similar. The very small charge
variation appears different but actually follows the spin pattern
except with less abrupt variation.

The occurrence of two, or sometimes more, metastable states
is well known in such mean field simulations. The energy land-
scape can contain several local energy minima with small dif-
ferences, and the iteration procedure finds one or another de-
pending on starting point and type of iteration algorithm. We
have observed (for model parameters different from those of
the present study) that local minima are more prevalent as the
interaction strength is increased relative to the bandwidth. One
distinction of the P=0 system is that the non-interacting Fermi
surfaces, which are closed lines surrounding the zone corner,
coincide. This is a consequence of the particle-hole symmetry
of our choice of parameters and half-filling. There is however
no significant nesting of the surfaces.

The difference for P=0 extends to the IPR, both the charac-
ter and (in)dependence on lattice size. Figure 4 can be con-
trasted with Fig. 2 for P=1/4. Versus lattice size, the distribu-
tion does not change character, only becoming better defined
with increasing lattice size. However, the distribution differs
from that for the polarized systems. The peaks occur in the re-
gions of the vHs but with substantial extension in energy. The
IPR values are somewhat larger as well, as expected for more
inhomogeneous states. However, the IPRs of the stripe and pat-
tern states are very similar, as are their DOSs.

5. Discussion and Summary

In this study we have focused on the effect of lattice simula-
tion size, using N X N sites with N=16, 32, and 48, on a lattice
model of interacting electrons treated in mean field approxima-
tion. The model has two orbitals in the unit cell with different
on-site energies (hence different band centers), with both hop-
ping and on-site Coulomb repulsions between the same and also
opposite orbitals. Unlike the predominance of previous studies,
we have focused on the moderately correlated regime where
Fermi surface, or other long wavelength processes may be in
play, thus where lattice size should be more of a factor.
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Figure 4: The inverse participation ratio for all eigenstates for the unpolarized
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spite of starting from distinct random wavefunctions. Up and down IPRs are
effectively identical, in spite of starting from random wavefunctions in every
run.

Due to the number of parameters in the model it was nec-
essary to choose one set and analyze the effect of lattice size
as spin polarization was varied. The parameters that were cho-
sen represent a moderately correlated two-orbital system such
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Figure 5: Three examples of the stripe type of ground state for polarization P=08 Each example consists of six panels, three above for charge and three below for
spin. The colorbar provides the amplitudes.
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as have been used for Fe-based pnictides and chalcogenides,
where emergence of charge or spin inhomogeneities may occur
but are not certain to do so. This regime is likely to be more
sensitive to lattice size in the simulation than for systems in the
strongly correlated regime where the physics is more local in
nature.

A strong trend that emerged for most polarizations is that
spin inhomogeneities are present for N=16, they decrease in
amplitude for N=32, and become so small for N=48 that the
expectation is that the ground state is homogeneous in the large-
N limit. When the spin inhomogeneities are seen, a common
motif is diagonal stripe-like correlations in the square lattice,
with occasionally stripes along the axis or clusters being ob-
served. As mentioned, these inhomogeneities usually vanish
as the lattice size increases, with only P=0 and P=3/16 show-
ing persistent spin density variation. Inhomogeneities of charge
accompany those of the spin and are parasitic off the spin polar-
ization, but they are always very small so there is no true charge
instability in our model.

The aforementioned behavior holds for the spin polarizations
up to the large value of P=1/2 that we simulated. The different
behavior was found in the non-polarized case was discussed is
some detail. This system displayed a roughly random distribu-
tion of local moments of varying sizes, with the same character
for all three lattice sizes. Charge density variation was still mi-
nor, i.e. parasitic off the spin-dependent interaction and becom-
ing insignificant with large lattice size. It should be emphasized
that the same character of ground state was obtained for several
calculations beginning from random wavefunctions; the result
appears to be robust. We have not identified any reason for
the different behavior for P=0 and P=3/16 relative to the other
polarizations. No Fermi surface effect is implicated, in fact for
nearly all cases the spin variation vanishes as the Fermi surfaces
is sampled more carefully (N=48).

The inverse participation ratio was monitored in the simula-
tions, as a quantity that measures the inhomogeneity of individ-
ual wavefunctions. For the polarized cases, the IPR was smooth
with energy of the state except for elevated values (by a factor
of 3-5) in a very narrow range precisely at the van Hove singu-
larities. The fraction of states with larger values of the IPR is
proportional to 1/N, hence there we have no reason to believe
that vHs have undue influence on the ground state in the ther-
modynamic limit, note that they coincide with the Fermi level
only for isolated values of polarization. Again, the P=0 case is
different: large values of IPR again occur centered at vHs, but
the range in energy with enlarged IPR is increased to ~10% of
the bandwidth.

A strong trend that emerged for most polarizations is that
spin inhomogeneities are present for N=16, they decrease in
amplitude for N=32, and become so small for N=48 that the ex-
pectation is that the ground state is homogeneous in the large-N
limit. When the spin inhomogeneities are seen, a common mo-
tif is diagonal stripe-like correlations in the square lattice, with
occasionally stripes along the axis or clusters being observed.
As mentioned, these inhomogeneities usually vanish as the lat-
tice size increases. Inhomogeneities of charge accompany those
of the spin and are parasitic off the spin polarization, but they

10

are always very small so there is no true charge instability in
our model.
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I. FURTHER INFORMATION FOR VARIOUS
POLARIZATIONS

We provide several sets of density arrays to illustrate
more completely some of the features mentioned in the
main text. The layout of the full page density array fig-
ures follows an example in the main text and is described
here in the caption of Fig. 2. The most important fea-
ture to pay close attention to is the range covered by the
colorbar for each separate panel. Its limits indicate the
maximum and minimum value of the property displayed
in that panel.

A. Clarification of evaluation

Here an example is provided explaining what we have
interpreted as equivalent states. Of course equivalent
states mush have the same energy, to (say) one part in
104. The “equivalent” characterization includes not only
patterns that are very similar but rotated by +m/2 or by
m, or mirrored, but are similar in a more general sense.
Figure 1 displays two sets of results on a 32x32 lattice
for polarization P=5/16. First, the charge density arrays
look quite different for the two orbitals, but the variation
is very small in scale so the surviving pattern has little
or no physical significance.

We now focus on the spin patterns for the two runs.
For orbital 1, the backgrounds are at slightly different
values, hence different colors in the plot, but the pat-
terns are similar and have the same variation. Orbital 2
is different. The range of variation is the same for the
two states, but orbital 1 shows stripes along a single di-
agonal direction while orbital 2 shows crossing stripes.
Their effective equivalence can be seen as follows. An
equivalent result, call it orbital 1/, would be to have the
stripes run only along the other diagonal direction. This
would represent a strictly degenerate state, with symme-
try related pattern and the same energy. Then a linear
combination of these two states will also be in the same
family of degenerate states. The pattern of orbital 2 in
run 2 (bottom panels) does indeed seem to be such a
combination, with strictly equal amounts of each state.
Even the small clusters between stripes look the same
for both states. The total spin patterns do not look so
obviously equivalent, but due to the effective equivalence
of the contribution from each orbital separately, we have
classified states such as these as equivalent.

Now we proceed to a short survey for selected polariza-
tions. The purpose is to give a more general impression
of how patterns change, or persist, as the lattice size de-
creases and inhomogeniety decreases.
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B. P=1/4

Figs. 2-5 display four “cases” for P=1/4, that is, the
results from four simulations starting from different ran-
dom wavefunction components. Things to notice are the
following:

e for N=16 (the upper six panels) there is strong vari-
ation of spin and, on a somewhat smaller scale, charge.
The variations are on a similar scale for the four cases,
but the character of the variation, viz. stripes along axes
versus along diagonals, can differ from cases to case.

e for N=32, the range of variation has decreased some-
what (usually by a small amount). Patterns are seem-
ingly becoming much better defined; diagonal stripes
and crossing diagonal stripes are dominant. Spacings of
stripes are often rather regular, but are not consistent
from case to case.

o for N=48, the overriding feature is that charge vari-
ation from the mean of 2.000 has reduced to the 0.1%
level. The spin variation from the mean of 0.500 has be-
come reduced to the 2% or less level. There is very little
energy involved in these variations, suggesting no spin
inhomogeneity (nor charge inhomogeneity) in the ther-
modynamic limit.

o for N=48, the very small variations are similar from
case to case, suggesting the finite lattice size has imposed
some sort of organization to the variations even as they

Communications in Computational Physics

decrease in amplitude, and vanish.

C. P=3/16

Fig. 6 displays a representative set of results for
P=3/16, but unlike Figs. 2-5, the N=16, 32, and 48
results are given in each of six panels. The two orbital
contributions are different in character for each value of
N, and the sum different still, but showing more orga-
nization. Dominance of diagonal stripes is evident for
N=48. Mimicking of spin variation by (smaller) charge
variation also is clear. In this specific case the spin mod-
ulation remains substantial for N=48.

D. P=5/15

Figs. 7 displays one set of results for P=5/16, dis-
played in in Fig. 6. For N=16 (top six panels) mod-
ulation along axes is prominent. For N=32, diagonal
texture is taking over in orbital 2 and the total. How-
ever, for N=48 where the magnitude of variation has be-
come very small, the remaining texture somewhat more
cluster-like for the spin, and the tiny charge variation is
not well defined. The spin texture is however vanishing
as N increases.
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FIG. 1. Charge and spin density arrays for polarization P=5/16, for two different runs and displaying N=32 only. There are
six panels for each run, the set of six arranged as in the text and in following figures that include results for N=16, 32, and 48.
The description in the text justifies why we classify these two results as showing no significant difference.
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FIG. 6. Charge and spin density arrays for pol 'g%;cg)ci_rll dg?:g 16, fo tbree different cases (random starts) all for N=48. For
att

this polarization the spin variation remains for the larges {11(!\e/ésr1%|e Yand® very consistent for the different runs.
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