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1.  Background

Peculiarities in crystalline electronic spectra connected to 
anomalies in materials behavior, from topologically protected 
edge states of topological insulators [1–3] to quantum crit-
ical behavior in intermetallic compounds [2, 4], have brought 
discussion of unconventional crystalline band structures to 
the forefront of materials research. The massless Dirac band 
structure at the Fermi point of graphene and related physical 
systems have been well studied [5, 6]. Graphene has Fermi 
points at the intrinsic chemical potential as do conventional 
zero-gap semiconductors [7], but has linear dispersion corre
sponding to massless fermions appearing in Dirac theory and 

in two-component Weyl theory. Quadratic band touching has 
raised stimulating issues, as have flat bands whose eigenstates 
are strictly localized orbitals [8].

Recently increased attention to the characterization of 
the spectra, and of degeneracies and their topological conse-
quences, of Hamiltonians Hk({α}) has increased in activity 
in a number of respects since the early work of von Neumann 
and Wigner [9]. The crystal momentum k is a continuous 
wavevector in the Brillouin zone (BZ)—here it is two dimen-
sional (2D)—and {α} represents the parameters that appear in 
the Bloch Hamiltonian. von Neumann and Wigner established 
that for general Hermitian Hamiltonians, three parameters 
are necessary and sufficient to produce degeneracy, while 
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Abstract
Tight binding models have proven an effective means of revealing Dirac (massless) dispersion, 
flat bands (infinite mass), and intermediate cases such as the semi-Dirac (sD) dispersion. This 
approach is extended to a three band model that yields, with chosen parameters in a two-band 
limit, a closed line with maximally asymmetric particle-hole dispersion: infinite mass holes, 
zero mass particles. The model retains the sD points for a general set of parameters. Adjacent 
to this limiting case, hole Fermi surfaces are tiny and needle-like. A pair of large electron 
Fermi surfaces at low doping merge and collapse at half filling to a flat (zero energy) closed 
contour with infinite mass along the contour and enclosing no carriers on either side, while the 
hole Fermi surface has shrunk to a point at zero energy, also containing no carriers. The tight 
binding model is used to study several characteristics of the dispersion and density of states. 

The model inspired generalization of sD dispersion to a general  ±
√

k2n
x + k2m

y  form, for which 

analysis reveals that both n and m must be odd to provide a diabolical point with topological 
character. Evolution of the Hofstadter spectrum of this three band system with interband 
coupling strength is presented and discussed.
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only two are required for real Hamiltonians. Especially since 
the production and intense study of graphene with its pair of 
Dirac points at the chemical potential, interest in these issues 
and the various phases that arise, viz. Dirac and Weyl points 
[10, 11], and nodal line semimetals [12–15], has intensified.

A crystalline eigenvalue spectrum Ek,n({α}) may be clas-
sified in various ways, while the topological character of 
hk({α}) can be determined from the eigensystem: Ek,n({α}) 
and the corresponding eigenfunctions uk,n({α}). Particular 
interest centers on degeneracies of Ek,n({α}) and topological 
aspects of the electronic system, and their origins and func-
tionalities. Topological character is directly related to non-
analyticities arising from degeneracies [16], as understood to 
some degree in the earlier days of gapless semiconductors [7]. 
Berry dubbed such points of degeneracy and non-analyticity 
diabolical points [16]. In many studies of the topological 
character of the system, the parameters of the Hamiltonian 
are simply the two components (three components) of the 
two dimensional (2D) (respectively, three dimensional (3D)) 
wavevector, thereby keeping any other parameters in the 
Hamiltonian fixed.

In the class of touching bands, a unique intermediate case 
between conventional zero-gap semiconductors with quad-
ratic touching and the linear Weyl (Dirac) spectrum, in two 
dimensions is provided by semi-Dirac (sD) dispersion; sD fer-
mions are massless along one axis but massive in the perpend
icular direction. sD dispersion in crystalline systems was first 
obtained by Hasegawa et al [17] in a tuned anisotropic honey-
comb model, with its properties elaborated by Montambaux 
and collaborators [18–20]. A sD spectrum was discovered in 
VO2 nanolayers where tuning of the system was unnecessary: 
various parameters of the system could be varied while only 
the position of the sD point along a diagonal in the Brillouin 
zone would change [21–24], being protected by space group 
symmetries. The dispersion was modeled with the low energy 
Hamiltonian and resulting dispersion Ek by

hk =
k2

x

2m
τx + vkyτy,

Ek = ±
√
(

k2
x

2m
)2 + (vky)2,

�
(1)

m and v are the mass and velocity, and �τ  is the vector of Pauli 
matrices in orbital space. sD behavior is exceptional; not only 
does it display extreme anisotropy, it also presents a case in 
which the kinetic energy operator in the effective Hamiltonian 
is non-relativistic p2/2m in one direction but has the relativ-
istic vp form in the perpendicular direction. Generalizing 
this semi-Dirac behavior and obtaining additional anomalous 
behavior in the spectrum is a primary aspect of this paper.

At the other end of the spectrum of peculiar bands is the flat 
band case [25–28], where at appropriate filling the ‘Fermi sur-
face’ corresponds to the entire Brillouin zone (or nearly so), 
which forms the extreme opposite limit from the Fermi points 
in the cases mentioned above. A completely flat band intro-
duces a δ-function density of states (DOS), enabling insta-
bilities of many kinds, of which ferromagnetism has attracted 
much study [25]. Areas or lines of flatness have less effect on 

the DOS but still important. Even points of flatness (van Hove 
singularities) can impact properties strongly.

How the unusual dispersion interplays with magnetic fields, 
for example the Landau level structure, has been studied for the 
sD system [18, 22, 24]. The broader picture includes the effect 
on the Hofstadter spectrum [29] at arbitrary field strengths. 
For the sD case, Delplace and Montambaux presented results 
aimed primarily at experimental verification in cold atom sys-
tems [20]. The question how strong particle-hole asymmetry 
affects the Hofstadter spectrum has not, to our knowledge, 
been discussed in the sD context, and that is partial motiv
ation for the present paper. Such studies have been extended to 
other model systems, including sD and related systems as well  
[20, 22, 24, 31]. The Hofstadter spectrum for the strongly 
particle-hole asymmetric model of semi-Dirac system is 
addressed in this paper.

The manuscript is organized as follows. In sections  2.1 
and 2.2 we present a straightforward generalization of the sD 
Hamiltonian to a class of Hamiltonians retaining sD points but 
having unusual spectra in certain regimes and limiting cases. 
We give special attention in sections 2.4 and 2.5 to a regime in 
which the sD mass diverges, at which point the model inter-
polates between zero to infinite mass with angle. For infinite 
mass, the sD points degenerate into a closed loop with flat 
energy at the band bottom. As a result, doping with small car-
rier density n away from half-filling produces two large Fermi 
surfaces enclosing the small density n of holes for electron 
doping.

Degeneracies at crossing bands are known to be a source of 
topological character, viz. Berry phases. The non-topological 
character of the sD point was pointed out already by Dietl et al 
[18] The topological versus trivial character of sD models was 
further studied and generalized by Huang et al [30], a topic to 
which we return in section 3.2. This inquiry into topological 
character at degeneracies arising from crossing bands is the 
topic of section 3.1, where results are given for general low 
energy dispersion of the form

Ek = ±
√
αkn

x + βkm
y ,� (2)

where α,β  are constants.
We provide in supplemental material (stacks.iop.org/

JPhysCM/30/075501/mmedia) an extension of the study 
of Dietl et  al and later Delplace and Montambaux of the 
Hofstadter spectrum of the sD model [18, 20], extended to  
the particle-hole asymmetric case. Specifically, we illustrate 
the evolution of the Hofstadter butterfly spectrum of this 
asymmetric sD model as the strength of coupling of the two 
active bands to high lying band is increased. A summary is 
provided in section 4.

2.  3-band model; folding to 2-bands

The tight binding Hamiltonian used previously [22, 24] to 
produce the sD electronic structure, corresponding to the 
t′ = 0 limit of the density of states shown in figure  1, was 
based on a three band model consisting of two uncoupled 
orbitals on a square lattice, with each coupled anisotropically 

J. Phys.: Condens. Matter 30 (2018) 075501

http://stacks.iop.org/JPhysCM/30/075501/mmedia
http://stacks.iop.org/JPhysCM/30/075501/mmedia


Y Quan and W E Pickett﻿

3

to a distant (in energy) third band, with Hamiltonian (lattice 
constant a  =  1)

hk =



ε1k 0 Vk

0 ε2k Vk

Vk Vk ε3


 ; hkunk = Enkunk.� (3)

Here we generalize the original sD tight binding model, 
so that orbitals 1 and 2 (also referred to as s and s′) sepa-
rately, with hopping amplitudes t1 and t2 respectively, give 
rise to a band that has been studied extensively in the context 
of the high temperature superconducting cuprates, notably 
displaying a van Hove singularity at the zone corner. These 
two bands have centers of gravity differing by Δ and hopping 
amplitudes differing in magnitude by δ = t2 − t1 from the 
mean value of t̄ , with associated differences in bandwidths:

ε1k = −∆/2 + 2t1(cos kx + cos ky)

ε2k = +∆/2 − 2t2(cos kx + cos ky)

Vk = 2t′(cos kx − cos ky).
�

(4)

Thus we have t1 = t̄ − δ
2 , t2 = t̄ + δ

2 . These two uncoupled 
bands each couple with amplitude t′ to a high-lying band 3 at 
energy ε3 and negligible dispersion. The anisotropic coupling 

with orbital 3 expressed in Vk can be realized for orbitals 1 
and 2 with full site symmetry (viz. s or dz2) and orbital 3 of 
dx2−y2 symmetry. The pertinent point is that this hybridization 
vanishes along the diagonals ky = ±kx.

2.1.  Uncoupled bands

For coupling t′ = 0, band 1 (respectively 2) has bandwidth 
8t1 (8t2) with a divergent van Hove singularity (vHs) at −∆/2 
(+∆/2), which will however not be our main concern. These 
bands cross (or in common usage, ‘touch’) at

cos kx + cos ky =
∆

4̄t
= 2

∆

W
≡ 2γ� (5)

where W is the mean bandwidth of bands 1 and 2. This rela-
tion describes a curve Cγ in the BZ given parametrically by

ky = ± cos−1(2γ − cos kx),� (6)

whenever a real solution exists. The bands are both degenerate 
and constant (flat) over this Fermi curve Cγ, with energy

Eγ = −2δ
∆

W
= −2δγ,� (7)

which differs from zero only if both δ and Δ are non-zero, i.e. 
both the band centers and the band widths differ.

This closed line of degeneracies is an example of a nodal 
loop semimetallic electronic structure [12–15]. With generic 
coupling such degeneracies are normally lifted to anticross-
ings, but Herring demonstrated [12, 13] that such nodal loop 
degeneracies can occur purely accidentally (independent of 
symmetry restrictions) and several examples have recently 
been reported, see for example the list of references given by 
Xu et al [32]. We will return to this point.

In the limit ∆ → 0 (γ → 0) of equal band centers this 
uncoupled system has two coinciding diamond shaped Fermi 
surfaces (the shape familiar from 2D square lattice models) 
at half filling of both bands, and a coalescing of the van Hove 
singularities at ∆ = 0. Without coupling, the DOS remains 
the sum of that from the two square lattice DOSs with well 
known shapes. At γ = 1 the DOS curves just touch, giving a 
gapless semiconductor. For larger γ a gap opens between the 
bands. γ > 1 does not interest us here.

2.2.  Adding the coupling

We consider ε3 large compared to W and Δ so that band 3 lies 
at high energy and can be neglected once the coupling is taken 
into account. Figure 1 illustrates the very strong particle-hole 
asymmetry around the energy zero induced by the coupling. 
The vHs splits roughly symmetrically for very small coupling 
(blue curve). However, for still small coupling λ = −0.05, the 
asymmetry is substantial: the lower vHs is shifted downward 
where the upper one remains very close to zero. The asym-
metry becomes ever clearer for increasing λ. Regardless of the 
size of λ however, band touching at zero energy remains. The 
strongly differing slopes of the DOS at positive and negative 
energy reflects the different masses.

Figure 1.  Top: the density of states (DOS, in arbitrary units) for the 
three cases of coupling λ = −0.002, −0.05 and  −0.2 (blue, dashed 
red, dashed black respectively), corresponding to the respective 
values of t′ in the legend. The other parameters are ∆ = 0, t̄ = 1, 
δ = 0. The inset illustrates the fine structure near zero energy (the 
band centers); blue corresponds to λ = −0.002. The breaking of 
particle-hope symmetry around zero energy is apparent. Bottom: 
band structure along Γ → X → M → Γ, which indicates particle 
hole-asymmetry induced by increasing t′.

J. Phys.: Condens. Matter 30 (2018) 075501
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When t′ is of the same order as, or smaller than, t̄ , the 
three-band model can be downfolded into a two band model 
by treating band 3 perturbatively, giving

hk =

(
ε1k + λk λk

λk ε2k + λk

)
.� (8)

The downfolded bands (still called band 1 and 2) continue to 
touch at one point along the diagonals, which provides the 
sD point discovered in the thin heterostructure system VO2/
TiO2(0 0 1) [21, 23]. Along the contour Cγ the coupling λk  
separates the bands everywhere except along the diagonals 
where it vanishes. The relation for λk  is

λk = λ(cos kx − cos ky)
2 : λ ≡ −4

t′2

ε3
.� (9)

The sD points of touching bands λk = 0 occur at (±kc,±kc) 
with kc = cos−1 γ. Note that the difference in bandwidths 
given by δ �= 0 does not enter this condition; only the ratio of 
band center difference Δ and mean bandwidth W enters, so 
this condition is not unusually sensitive to details of the bands. 
The two band Hamiltonian becomes

Hk = ho(k)τ0 +�h(k) · �τ
→ ε̄kτ0 + λkτ1 +∆kτ3

�
(10)

in terms of Pauli matrices τj in orbital space, the mean band 
energy ε̄k and half-separation ∆k are

ε̄k = −δ(cos kx + cos ky) + λk,� (11)

∆k = −∆

2
+ 2̄t(cos kx + cos ky).� (12)

The separation of two bands is given quite generically by 
twice the magnitude of �hk :

Ek± = h0(k)± |�h(k)|

→ ε̄k ±
√
λ2

k +∆2
k .

�

(13)

Since Hk is real the Berry connection (hence Berry curva-
ture, vanishes, so topological character is absent, as observed 
earlier [18]. Our interest is the eigenvalue spectrum and energy 
surface topology of the coupled bands. We study specifically 
the lowest two bands, which we refer to as the particle-hole 
asymmetric two band model (a2BM). Figure 1 illustrates the 
DOS when the uncoupled bands are degenerate ∆ = 0 = δ, 
versus coupling strength t′. The initially coinciding vHs sep-
arate, with one remaining very nearly at zero energy (the 
bottom of band 2), thereby assuming the single-sided diver-
gence characteristic of one dimensional systems. We return to 
the corresponding diverging effective mass below.

2.3.  Band dispersion

This band topology, shown in figure 2 for a select set of param
eters, differs in striking ways from other unusual cases, and 
from the closely related sD form discussed previously [22]. 

The bands always touch at the critical point (±kc,±kc) along 
the diagonal given by

cos kc = γ.� (14)

Only for band center separation ∆ = 0, the critical point lies 
at (π2 , π

2 ), otherwise its position is determined by the value of 
Δ. Expanding the dispersion near the semi-Dirac point and 
rotating by π4  from kx, ky to q1, q2 yields

E± =Eγ +
√

2δ
√

1 − γ2q2 +
[

1
2δγ + 2λ(1 − γ2)

]
q2

1

±
√

8̄t2q2
2(1 − γ2) +

[
4λ2(γ2 − 1)2 + t̄2γ2

]
q4

1

.

Along the q1  =  0 axis (the original diagonal) the dispersion 
reduces to linear in q2

E± = Eγ + vq2

= Eγ + 2
√

2(
δ

2
± t̄)(sin kc)q2.

�
(15)

The dispersion in the perpendicular direction is quadratic in q1

E± = Eγ +
q2

1

2m±
� (16)

with effective masses given by

1
2m±

=
1
2
δγ + 2λ(1 − γ2)±

√
4λ2(γ2 − 1)2 + t̄2γ2.� (17)

Figure 2.  Top row: particle-hole symmetric dispersions plotted 
across the square Brillouin zone. Top left: schematic representation 
of particle-hole symmetric semi-Dirac dispersion. Top right: 
dispersion of uncoupled two band model. Bottom row: particle-
hole asymmetric two band model driven by s (s′) and d interaction. 
Bottom left: t̄ = 1, δ = 0, ∆ = 0, t′ = 1, εd = 30. Bottom right: 
t̄ = 1, δ = 0, ∆ = 0, t′ = 2, εd = 30. Note the strong shift of the 
lower band downward.

J. Phys.: Condens. Matter 30 (2018) 075501
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Aspects of this spectrum are discussed in the following 
subsections.

2.4. The case of ∆ = 0

For equal band centers ∆ = 0 for which also cos kc  =  0 
(kc =

π
2 , γ = 0), the mass m− of the upper band 2 diverges, 

presumably leaving a much weaker dispersion, say q4
1. The 

actual situation is more subtle than that. For ∆ = 0, Cauchy’s 
interlacing theorem [33] provides a general result. Given the 
coupled bands Ej,k and uncoupled bands εj,k, the interlacing 
theorem states that coupled bands interlace the uncoupled 
bands, giving

E1k � ε1k � E2k � ε2k � E3k.� (18)

Since ε1k = ε2k are degenerate along Cγ, and furthermore are 
flat in energy at E = Eγ, along the entire contour Cγ given 
by equation (6), the bottom of the band (E2k) is pinned at the 
band crossing energy Eγ along Cγ. Ek2 includes a flat contour 
which (numerical solutions verify) lies at the bottom of band 
2, touching band 1 at the sD point. The resulting non-analyti-
city (a flat contour along a closed loop) is a more general one 
than that for Berry’s isolated diabolical point [16]. Cγ com-
prises a closed line of points with massless dispersion in one 
direction and infinite mass in the other direction. This case is 
the one pictured in the lower panels of figure 2.

This result just presented guarantees then that there is a 
constant energy contour that is the Fermi contour of band 2 
at half filling, which at ∆ = 0 is the diamond-shaped Fermi 
contour of the single band tight-binding square lattice (TBSL) 
model at half filling. The similarity ends there, but it is instruc-
tive to contrast the evolution of the a2BM with the TBSL 
model as they are doped away from half filling. In the TBSL 
model, there is a symmetry, with identical electron and hole 
Fermi surfaces except the large hole surface is centered at Γ 
while the large electron surface is centered at M.

On the other hand, the a2BM is extremely particle-hole 
asymmetric. For slight electron-doping there are two large, 
closed, Fermi contours that are essentially the same as both 
electron and hole surfaces of the TBSL model. The electron 
carriers reside between these two large surfaces, as pictured 
in figure  3. At half filling the Fermi contours coalesce into 
a single Fermi contour with diamond shape connecting X 
points, before vanishing. Proceeding on to hole doping, tiny 
and highly anisotropic hole-like Fermi contours appear, cen-
tered on the (±kc,±kc) sD points on the diagonals, with major 
axis oriented perpendicular to the diagonal, as illustrated in 
figure 3 and evident from figure 2. Thermal excitation at half 
filling will produce electron and hole carriers with vastly dif-
ferent behaviors, i.e. strong particle-hole asymmetry.

2.5.  Effective mass and velocity at the semi-Dirac point

The on-site energy separation Δ, hopping integrals t̄ ± δ
2 , or 

other parameters can be tuned by applying pressure or stress, 
providing a broad parameter space to design materials with 
distinctive behaviors. Here the dependence of effective 

masses and effective velocities of the tunable parameters will 
be discussed briefly. Recall that the average hopping param
eter t̄ = 1 sets the energy scale. The effective velocities are 
given by

v± = 2
√

2(1 ± δ

2
)

√
1 − ∆2

64
.� (19)

A difference in bandwidths δ makes the velocities differ, 
while a difference in band centers Δ affects the magnitudes. 
Applying pressure would broaden the band width and lift the 
limit of effective velocities to higher values.

In figure 4 the inverse effective mass is plotted against on-
site energy difference for a sequence of coupling strengths 
(λ = −0.4, −0.35, ..., 0) with δ = 0. The on-site energy dif-
ference is varied from  −8 to 8 (i.e. γ ranges from  −1 to 1). 
In the absence of coupling where particle-hole symmetry is 
preserved, the effective mass varies linearly with the inverse 
of on-site energy difference Δ but diverges when the two 
orbitals near the Fermi level have identical on-site energy. As 
the magnitude of the coupling λ increases, the effective mass 
of the upper band remains infinite when ∆ = 0 (a flat con-
tour), while the lower band has finite and decreasing effec-
tive mass. Interestingly, when the coupling reaches the special 
valuer λ = −0.25, m−1 for the lower band is independent of 
on-site energy separation of the s and s′  orbitals.

3. Topological aspects for generalized dispersion

Topological character of electronic systems arises from the 
non-analyticity of the eigensystem occurring at degeneracies 
at points designated by Berry as diabolical points [16]. The 
occurrence or type of topological character is connected to 
the dispersion around the diabolical point, viz. Dirac versus 
semi-Dirac versus conventional zero-gap, quadratic disper-
sion. The interest in sD systems arises from the qualitatively 
different electronic dispersion and resulting interpretation, 

Figure 3.  Iso-energy lines for small doping levels ε = ±0.2 (blue/
red respectively). Electron doping leads to large Fermi contours 
around both Γ and corner M with carriers in the white areas, while 
hole doping leads to tiny, strongly distorted but non-elliptical 
contours (purple) enclosing the holes.

J. Phys.: Condens. Matter 30 (2018) 075501
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viz. massive versus massless, which exhausts possibilities 
up to quadratic. Some results about the topological character 
of more general asymmetric Hamiltonians can however be 
derived.

3.1.  Low energy region

A class of effective 2D Hamiltonians expanded around a band 
touching point can be written in terms of scaled dimensionless 
wavevectors as

h =

(
0 km

x − ikn
y

km
x + ikn

y 0

)
= km

x τx + kn
yτy,

�
(20)

m and n are integers. Semi-Dirac dispersion is simply a special 
case with m  =  1 and n  =  2. The above effective Hamiltonian 

has two eigenvalues ±
√

k2m
x + k2n

y . The corresponding eigen-

vectors can be written

u± =
1√
2

( ±1
km

x +ikn
y√

k2m
x +k2n

y

)
=

1√
2

(
±1
eiθk

)
� (21)

where θk = tan−1(kn
y/km

x ). The Berry connection under this 
gauge is

�A = i 〈u±| ∇ |u±〉 = ±1
2

km−1
x kn−1

y

k2m
x + k2n

y
(mky,−nkx).� (22)

Integrating the Berry connection along an adiabatic loop 
around the origin C: k2m

x + k2n
y = C2, where C is a non-zero 

constant, gives

β =

∫

C
[Axdkx + Aydky]

=
π

8
[(−2 + (−1)m + (−1)n)− (−1 + (−1)n)(−1)m

− (−1 + (−1)m)(−1)n]

= −π

4
[1 − (−1)n][1 − (−1)m].

�

(23)

β is non-zero (equal to −π) only when both m and n are odd.
Thus a semi-Dirac point m  =  1,n  =  2 represented by this 

Hamiltonian is, as pointed out earlier [19, 22], topologi-
cally trivial, unlike the conical Dirac point with m  =  1  =  n 
in graphene.

3.2.  Effect of symmetry lowering

The original picture of a semi-Dirac spectrum [21, 22] is that 
it can be represented by a family of effective Hamiltonians 
h = �dk · σ with the restriction that at small |�k| the eigenvalues 

are ±|�dk| = ±
√

k2
x + k4

y . Huang et  al [30] have noted that 

direct numerical evaluation of the density functional Berry 
curvature and its integral in the original semi-Dirac material 
(a thin film of VO2 [21, 22]) leads to a Chern insulating desig-
nation, rather than the expected trivial phase, when spin–orbit 
coupling opens a gap.

The apparent contradiction was resolved as follows. 
Suppose that ‘semi-Dirac’ dispersion is defined in a less 
restricted manner, that εk = ±k2

y  for kx  =  0 and εk = ±kx 

for ky  =  0, rather than specifically as 
√

k2
x + k4

y , and thereby 

Figure 4.  Inverse of effective masses m−1
±  versus on-site energy difference Δ. The band coupling λ is varied in increments of 0.05 

from  −0.4 to 0. When λ = 0, the inverse effective mass of upper and lower band become zero (effective mass diverges). As λ increases 
in magnitude, the upper band retains the infinite mass at ∆ = 0, while the effective mass of the lower band lowers rapidly to conventional 
values.
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allowing for lower symmetry terms away from the diagonals. 
Then their non-intuitive choice (in our scaled variables)

dx = kx − k2
y ; dy = Γkxky,

εk = ±
√

k2
x − 2kxk2

y + k4
y + Γ2k2

xk2
y

� (24)

reproduces qualitatively the topological nature of this spec-
trum. Note that the rectangular symmetry has been broken: 
kx ↔ −kx is no longer a symmetry; there are other choices 
for lowering the symmetry. In the VO2 thin film, a slice of the 
rutile structure, Γ is quite small but non-zero. This example 
illustrates the feature that topological nature is a property of 
the eigensystem, and not of the spectrum alone.

3.3.  Generalized Hamiltonian

We extend the above discussion to a general effective 
Hamiltonian

h(kx, ky) = f (kx, ky)σx + g(kx, ky)σy� (25)

with the restriction that f (kx, ky) and g(kx, ky) have well 
defined parity with respect to mirroring each of kx and ky, 
given that the degeneracy (diabolical) point is at (0,0). In 
essence this requires rectangular mm symmetry. To simplify 
the discussion, we use the notation (±±;±±) to identify the 
parity of f and g with respect to kx, then with respect to ky. 
For example, (−  +;  −  +) means that f (−kx, ky) = −f (kx, ky) 
and f (kx,−ky) = f (kx, ky) and similarly for g(kx, ky) for the 
last two eigenvalues. The Berry connection for the effective 
Hamiltonian is

Ax = −1
2
−g(kx, ky) fx(kx, ky) + f (kx, ky)gx(kx, ky)

f 2(kx, ky) + g2(kx, ky)

Ay = −1
2
−g(kx, ky) fy(kx, ky) + f (kx, ky)gy(kx, ky)

f 2(kx, ky) + g2(kx, ky)

where fx = ∂f/∂kx , etc. To have topological character, the 
integration of the Berry connection along a loop around the 
point (0,0) must be non-zero.

The following integration path will be used 
(k0

x ,−k0
y) → (k0

x , k0
y) → (−k0

x , k0
y) → (−k0

x ,−k0
y) → (k0

x ,−k0
y). 

Denote the integration along the four segments as Ii, i  =  1, 2, 
3, 4. Here, we write I1 + I3 explicitly,

I1 + I3 = − 1
2

∫ k0
y

−k0
y

[
−g(k0

x , ky) fy(k0
x , ky) + f (k0

x , ky)gy(k0
x , ky)

f 2(k0
x , ky) + g2(k0

x , ky)

−
−g(−k0

x , ky) fy(−k0
x , ky) + f (−k0

x , ky)gy(−k0
x , ky)

f 2(−k0
x , ky) + g2(−k0

x , ky)

]
dky.

The integral I2 + I4 has a similar form. Parity analysis of the 
above integration for the sixteen possible cases (±±;±±) 
leaves only four cases with possible non-zero Berry phase, 
viz. (+−;−+), (++;−−), (−+;+−), and (−−;++). The 
sD case of the Huang et al [30] representation is a more gen-
eral one that corresponds to the lower symmetry imposed by a 

non-rectangular-symmetry resulting from the structure of the 
VO2 thin film, thus does not fit into this classification.

4.  Summary

In this paper the electronic, magnetic, and topological prop-
erties of particle-hole symmetry-broken semi-Dirac disper-
sion have been studied with the coupling strength t′  between 
s (s′) and d orbital as a generator of particle-hole asymmetry. 
When t′  is zero, s and s′  bands have the well known cosine 
dispersion on a square lattice and its spectrum contains a van 
Hove singularity at zero energy. As t′  increases the density 
of states peak splits, separated by a dip as the lower band 
approaches zero energy. The upper band retains a divergent 
peak as a result of the flat region near the X point and the 
flat contour C , while the lower peak has its origin from the 
saddle point somewhere along Γ− X. The touching points 
of upper and lower bands are the semi-Dirac points and lie 
on C . The very different Fermi surfaces for electron and hole 
doping have been presented and discussed. More general 
low energy dispersion than those for conventional zero gap 
semiconductors, Dirac points, and semi-Dirac points has 
been studied, and the criterion for a topological diabolical 
point for different types of low energy dispersion has been 
obtained.

The magnetic behavior of semi-Dirac fermions has been 
discussed via their Hofstadter spectrum, viz. the fractal energy 
level structure versus the fraction of flux quantum threading 
the unit cell. When t′ is zero, the Hofstadter spectrum con-
sists of two identical copies of the original Hofstadter spec-
trum. As the interaction strength is switched on, particle-hole 
symmetry is broken and new gaps emerge and grow near zero 
energy as well as in other regions. The opening of new gaps 
provides opportunities for tuning materials with engineered 
quantum Hall conductivity σxy. In light of recent studies of the 
Hofstadter spectrum of graphene (Dirac dispersion) [34] and 
the experimental observation of the Hofstadter spectrum on a 
Moiré lattice [35] and van der Waals heterostructure [36], the 
Hofstadter spectrum of semi-Dirac systems could become of 
interest for experimental study.
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