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A B S T R A C T

Since closed lines of accidental electronic degeneracies were demonstrated to be possible, even frequent, by
Herring in 1937, no further developments arose for eight decades. The earliest report of such a nodal loop in a
real material – aluminum – is recounted and elaborated on. Nodal loop semimetals have become a focus of recent
activity, with emphasis on other issues. Band degeneracies are, after all, the origin of topological phases in
crystalline materials. Spin-orbit interaction lifts accidental band degeneracies, with the resulting spectrum being
provided here. The geometric phase = ±γ C π( ) for circuits C surrounding a line of such degeneracy cannot
survive completely unchanged. The change depends on how the spin is fixed during adiabatic evolution. For spin
fixed along the internal spin-orbit field, γ(C) decreases to zero as the circuit collapses around the line of lifted
degeneracy. For spin fixed along a perpendicular axis, the conical intersection persists and = ±γ C π( ) is un-
changed.

1. Introduction

A guiding principle of quantum mechanics is that, in the absence of
symmetries that allow crossing of eigenvalues as some parameter in the
Hamiltonian is varied, the eigenstates will repel due to a non-zero
matrix elements of the Hamiltonian and will anticross instead of en-
countering a degeneracy (eigenvalue crossing). von Neumann and
Wigner explored this question [1], finding that only three parameters in
a Hamiltonian are necessary for an accidental degeneracy (one not en-
abled by symmetry) to occur; only two are required if the Hamiltonian
is real (viz. contains a center of inversion). Bouckaert et al. [2] laid the
groundwork for categorizing the symmetry-determined degeneracies in
crystalline solids, which is built on crystal symmetry groups and sub-
groups. Symmetry has persisted in being a fundamental organizing
principle in solid state physics.

Following this development, Wigner gave Conyers Herring the task
of investigating possible accidental degeneracies in crystalline mate-
rials. Among Herring’s various findings [3,4] was that not only acci-
dental degeneracies will occur in solids, but that closed lines (loops) of
degeneracies are allowed and should not be uncommon. This finding
assumed lack of spin-orbit coupling, which is now well known to
(primarily) split electronic degeneracies, and occasionally to invert the

energies of states. Interest in nodal loops in crystalline spectra has be-
come very active in the last five years, after 75 years of relative neglect
(exceptions include Blount [5], Zak [6], Mikitik and Sharla [7–9], and
Allen [10,11]).

Separately, a geometric phase in systems undergoing an adiabatic
evolution was identified by Berry [12,13], with characteristics tied to
degeneracies. Berry introduced the term diabolical points, seemingly
because degeneracies correspond to points in configuration space
where the eigensystem suffers a non-analyticity – diabolical mathe-
matical behavior. His motivation for this term was however ascribed to
the conical shape of the energy spectrum around the degeneracy point,
the shape being that of a diabolo, the object manipulated by the toy
comprised of sticks and strings. Regardless of the etymology, diabolical
points and geometric phases have subsequently been identified in nu-
merous systems and occupy a fundamental place in the quantum me-
chanics of quasiclassical systems.

In this paper we begin by providing the prescription for following,
once a degeneracy is located, the degenerate pair around the loop,
using modern notation and presenting algorithms explicitly. Such a
loop is shown to carry a topological index of ± π. Then when SOC is
included, as noted in the modern era by Allen [10] and by Burkov et al.
[14], the degeneracy is lifted everywhere except possibly at points
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where symmetry dictates that matrix elements of the SOC operator
vanish. With the non-analyticity of the eigensystem removed, the to-
pological index vanishes, and since all materials possess some SOC, the
implication seems to be that the nodal loop is not physical, that it only
existed in a SOC-less universe. Straightforward extension of the same
thinking to an applied magnetic field leads to the result that the nodal
loop can however still be located, though the degeneracy never existed.
This paper is concluded by interpreting characteristics of CaAs3, the so-
far unique nodal loop semimetal whose only symmetry is inversion, in
terms of this formalism.

2. Berry’s formalism

More specifically for current purposes, the geometric (or Berry)
phase [12] has become a powerful tool for analysis of waves in periodic
systems, especially electrons in crystals [6,9,15–18]. The wavevector

→
k

provides a space in which adiabatic evolution of wavefunctions

⎜ ⎟
⎛
⎝

→ →⎞
⎠

ψ k r,n can be studied, such as by nuclear motion or by applied

fields. Singular behavior occurs at band degeneracies where energies

⎜ ⎟ ⎜ ⎟
⎛
⎝

→⎞
⎠

= ⎛
⎝

→⎞
⎠

k kϵ ϵ1 2 are equal and the eigensystem becomes non-analytic. In

crystals with inversion symmetry, ignoring spin-orbit interactions, de-
generacies occur along closed lines in

→
k -space [5]. The periodic part

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

→ →⎞
⎠

= ⎛
⎝

−
→ →⎞

⎠
⎛
⎝

→ →⎞
⎠

u k r ik r ψ k r, exp · ,n n of ψ is an eigenstate of

H ⎜ ⎟ ⎜ ⎟
⎛
⎝

→⎞
⎠

= ⎛
⎝

→ +
→⎞

⎠
+ →k p k m V rℏ /2 ( ).

2

(1)

Let the wavevector
→
k t( ) be given a time evolution which takes it on the

closed circuit C, with
→

=
→

k T k( ) (0).
Now suppose that wavefunction evolution is determined by the

time-dependent Schrödinger equation with the time-dependent

Hamiltonian H ⎜ ⎟
⎛
⎝

→ ⎞
⎠

k t( ) . The time-evolution is assumed adiabatic,

namely ⎜ ⎟ ⎜ ⎟
⎛
⎝

→ → ⎞
⎠

∝ ⎛
⎝

→ →⎞
⎠

u k r t u k t r, , ( ),n n . Berry’s argument shows that

⎜ ⎟
⎛
⎝

→ → ⎞
⎠

u k r T, ,n differs from ⎜ ⎟
⎛
⎝

→ → ⎞
⎠

u k r, , 0n by the factor exp [iγ(C, T)],

where the phase γ(C, T) has two parts, +γ C γ T( ) ( ). The dynamical part

∫ ⎜ ⎟= − ⎛
⎝

→ ⎞
⎠

γ T dt k t( ) ϵ ( ) /ℏT
n0 depends on the time elapsed. The geometric

part

∮ ∫=
→ → ∇

→
γ C i dk d r u u( ) · *

C n k n (2)

is invariant and intrinsic to the circuit and the band properties. In
particular, = ±γ C π( ) if C encloses one (or an odd number) of degen-
eracy lines. This change of wavefunction sign is familiar from other
problems where a circuit of adiabatic evolution surrounds a conical
intersection. However, direct evaluation of Eq. (2) is problematic, since
wavefunctions must be defined and evaluated in a continuous and
single-valued manner. But when the circuit C is discretized in k-space

for numerical integration, the code used for ⎜ ⎟
⎛
⎝

→ →⎞
⎠

ψ k r,n is likely to pro-

duce a random phase ⎜ ⎟
⎛
⎝

→⎞
⎠

ϕ kn
i

that discontinuously jumps to a neigh-

boring
→

+ki 1.
Although gauge invariance is not easy to demonstrate from Eq. (2),

Berry gave also an alternate form, for a 3-dimensional parameter space

→
k , as the flux through a surface S (bounded by C) of a vector

→
Vn.
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The gauge invariance of this vector is easy to demonstrate. Conditions
of continuity and single-valuedness of wavefunctions are no longer
required. If the circuit surrounds a singularity described by a 2×2
effective Hamiltonian, then the flux equals half the solid angle Ω(C)
subtended in an appropriate scaled space by the circuit as seen from the
point of singularity. The appropriate scaled space is the one in which
the 2×2 Hamiltonian for states near the conical intersection has the
form H =

⎯→⎯ →R σ·eff in terms of scaled coordinates
⎯→⎯

=R X Y Z( , , ) and
Pauli matrices → =σ σ σ σ( , , )x y z . This method will be used twice in this
paper. The eigenvalues are ± =R ρ R,z where the quantum number

= ±ρ 1z is introduced as a branch index. The geometric phase is then
= −γ C ρ C( ) Ω( )/2z .

Mikitik and Sharlaǐ [9] provide convincing evidence that the geo-
metric phase ± π is seen experimentally as a shift in the semiclassical
quantization condition [19] determining the de Haas-van Alphen os-
cillations. An extreme experimental case is the shifted quantum Hall
oscillations originating from orbits near the Dirac points in graphene
[20,21].

The shifts of quantization condition occur for electron orbits (in a
⎯→⎯
B -field) which surround a degeneracy line (or point, for graphene.)
Mikitik and Sharlaǐ also argue [7] that spin-orbit effects can mostly be
ignored. This is mostly correct for lighter elements with spin-orbit
strength ξ/Δ≪ 1, Δ being any other relevant electron scale such as a
band gap. However, the mathematics and the corrections need eluci-
dation. Spin-orbit coupling destroys band degeneracy lines, but it is not
evident what happens to the geometric phase of ± π.

Mikitik and Sharlaǐ have shown [8] that, in the neglect of SOC,
when a cyclotron orbit encircles a nodal line, the areal quantization is
shifted, as mentioned earlier. This result is a topological one, depending
neither on the form of ϵk nor the size or shape of the orbit. This situation
occurs for certain orbits in fcc aluminum. Nodal loops were mapped in
Al by one of the authors [11] before the recent wider awareness of
occurrence of nodal loops. The position of one loop near EF is shown in

Fig. 1. The band structure of fcc aluminum, with energy in eV. The red circles indicate
the important degeneracies, symmetry determined if at a symmetry point, otherwise
accidental. On the Brillouin zone in the inset, the blue loops show the approximate po-
sitions of the nodal loop, from two viewpoints. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 1. The locations of the related degeneracies in the electronic
spectrum along symmetry lines are also denoted in Fig. 1.

3. Spin-orbit coupling

3.1. Lifting of degeneracy

To see the effect of spin-orbit interactions, add to H ⎜ ⎟
⎛
⎝

→⎞
⎠

k the SOC

piece

H ⎜ ⎟= → ∇
→

× ⎛
⎝

→ +
→⎞

⎠
σ m c V p k( /4 )· ℏ .SO

2 2

(5)

Choose some point
→
k * of accidental degeneracy, and find energies and

eigenstates at nearby
→
k -points using degenerate

→ →k p· perturbation

theory. For notational simplicity,
→
k * is the temporary origin of

→
k . The

degenerate basis functions |1⟩ and |2⟩ are the periodic parts u1 and u2
at

→
=

→
k k *. A phase convention is needed; the coefficients CG of the

expansion → = ∑
→ →u r C iG r( ) exp( · )G are chosen real. This requires in-

version symmetry, which is hereafter assumed. Each state has two spin
orientations, so the effective Hamiltonian matrix is 4× 4, with the form

H =
⎛

⎝
⎜⎜

→ → → → −
→ →

→ → +
→ → −

→ →
⎞

⎠
⎟⎟

k v k v iξ σ

k v iξ σ k v

ℏ · 1̂ ℏ · 1̂ ·

ℏ · 1̂ · ℏ · 1̂

a b

b a

eff

(6)

where 1̂ and →σ are 2× 2 matrices in spin space. Terms proportional to
the 4× 4 unit matrix do not mix or split the states and are omitted. The
vector →va is half the relative velocity → − →v v( )/2,1 2 where →vn is the band

velocity ∇
→

ϵ /ℏk n at the degeneracy
→
k *. The vector →vb is the off-diagonal

term →p m2 / 1 , which is pure real since CG is real. The “orbital mo-
ment” vector

→
= ∇

→
× →iξ V p m c2 1 /4 2 2 (7)

is pure imaginary since there is also time-reversal symmetry, under an
assumption of no magnetic order or external

⎯→⎯
B -field. Thus three real

vectors, →v ,a
→v ,b and

→
ξ , determine the bands near

→
k *. The vector

→
ξ is a

close analog to angular momentum, hence the designation as orbital
moment. Consider a system with two degenerate p-states |x⟩ and |y⟩.
The angular momentum operator

→
L has an imaginary off-diagonal

element. The mixed states |x⟩ ± i|y⟩ are eigenstates of
→
L with

̂→
= ±L m zℏ . The magnitude m deviates from 1 if the point symmetry is

less than spherical.

First suppose that
→

=ξ 0. Since →va and →vb are not generally collinear
and provide the directions along which matrix elements of Heff vary,
they define a direction of

→
k , namely → × →v v ,a b along whichH = 0eff . This

is the direction of the line of degeneracy. After allowing
→

≠ξ 0, eigenva-
lues of Eq. (6) are ± λ where

= + +λ κ κ ξa b
2 2 2 (8)

with =
→ →κ k vℏ · ,a a =

→ →κ k vℏ · ,b b and =
→

ξ ξ . Each eigenvalue belongs to a

Kramers doublet of two opposite spin states. The original degeneracy
(without spin-orbit interaction) of 2 (neglecting spin) or 4 (including

spin) is lifted everywhere unless
→

=ξ 0. This should happen only at
isolated points in the Brillouin zone, not coinciding with degeneracy
lines

→
k *. No accidental degeneracies remain, but Kramers degeneracy

occurs everywhere. Bands near
→
k * are shown in Fig. 2.

3.2. Geometric phase

The geometric phase under consideration involves a circuit ⎜ ⎟
⎛
⎝

→⎞
⎠

C k

surrounding the
→
k * line. A circular path in two-dimensional (κa, κb)-

space, namely = → →C κ ϕ κ ϕ ϕ π( cos , sin ), 0 2 is the simplest reali-
zation. To calculate γ(C), separate Eq. (6) into two similar 2×2 sub-

matrices by choosing basis states with spins polarized along
→
ξ , which

will be used as the z-axis of spin space. The submatrices are

H ⎜ ⎟= ⎛
⎝

∓
± −

⎞
⎠

± κ κ iξ
κ iξ κ

,a b

b a
eff

(9)

where the upper sign goes with spin up, =σ 1z .

The circuit can now be considered as a path ⎜ ⎟
⎛
⎝

→⎞
⎠

C λ in a 3-d
→
λ -space,

where =λ λ λ κ σ ξ κ( , , ) ( , , )x y z b z a . On this circuit, λ, κ, and ξ are all
constant. The effective Hamiltonian has the desired scaled form. The
solid angle is −σ π ξ λ2 (1 / ),z so the geometric phase is

= − −γ C σ π ξ λ( ) (Λ ) (1 / ).z z (10)

where = ±Λ 1z is the branch index. This is one of the two main results of
this section. It shows how spin-orbit splitting destroys the simple phase
of ± π when the circuit has such a small radius that ξ∼ λ. If spin-orbit
interaction is weak, it does not need a large orbit to have ξ/λ≪ 1 and
approach the full simple phase of ± π.

3.3. The rest of the story

This is not the full story. Analogous to the lack of phase of uk not
being defined by the Schrödinger equation, the choice to evolve at fixed
σz was arbitrary. The states of Kramers doublets can be mixed by ar-
bitrary unitary transformations. Evolution of a doublet around a circuit
introduces not a simple geometric phase, but a unitary matrix. The γ(C)
phases just computed are actually the diagonal elements exp ( ± iγ(C))
of a 2×2 unitary matrix in the representation with spin quantized

along
→
ξ . It will emerge below that this is indeed the correct adiabatic

evolution of the Kramers doublet when a small magnetic field is im-

posed along the
→
ξ direction.

Berry’s original argument assumed that H had a discrete spectrum
along C. There is a physically natural way to retain this. Magnetic fields
are used to generate cyclic evolution in

→
k -space. Magnetic fields also

lift Kramers degeneracy. The simplest theoretical device is to add to
Heff a Zeeman term H = −

→ →b σ·Z coupling only to spin.
To proceed further, an explicit representation of eigenstates is

needed. Eigenstates of the effective Hamiltonian (9), labeled by energy
± λ and = ↑ ↓σ ,z are chosen as

Fig. 2. Energy versus
→
k near the degeneracy point, for (a) no magnetic field, the gap is

2ξ, (b) field parallel to
→
ξ , and (c) field perpendicular to

→
ξ , with the degeneracies em-

phasized. The dashed lines are for =ξ 0 and =b 0; solid lines in panel (a) are ± λ,
which becomes ± ξ at the degeneracy point

→
=k 0.
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⎜ ⎟= − ↑ = ⎛
⎝

− +
+

⎞
⎠

⊗ ↑s λ
n

κ iξ
κ λ

, 1 ,b

a (11)

⎜ ⎟= − ↓ = ⎛
⎝

− −
+

⎞
⎠

⊗ ↓t λ
n

κ iξ
κ λ

, 1 ,b

a (12)

⎜ ⎟= + ↑ = ⎛
⎝

+
+

⎞
⎠

⊗ ↑u λ
n

κ λ
κ iξ

, 1 ,a

b (13)

⎜ ⎟= + ↓ = ⎛
⎝

+
−

⎞
⎠

⊗ ↓v λ
n

κ λ
κ iξ

, 1 .a

b (14)

These are written as the direct product of spatial times spin two-vectors.
The normalization is = +n λ λ κ2 ( )a . As long as ξ is non-zero, 1/n is
non-singular and these are smooth, single-valued functions of (κa, κb),
unique except for an arbitrary overall phase, which cannot alter γ(C).
The lower Kramers doublet |s⟩, |t⟩ has “orbit moments”

∇
→

× → = ∓
→

i V p m c i ξ λ ξ/4 ( / )2 2 oriented antiparallel to spin, while the
upper Kramers doublet |u〉, |v〉 has identical orbit moments except
oriented parallel to spin.

Now the Zeeman term is added. Diamagnetic coupling is neglected.
Without loss of generality, the part of the field

⎯→⎯
=

→
B b μ/ B perpendi-

cular to ξ can be used to define the x direction of spin. The total
Hamiltonian in the basis |s〉, |t〉, |u〉, |v〉 is

H = −

⎛

⎝

⎜
⎜
⎜
⎜
⎜

+

− −

− +

− − −

⎞

⎠

⎟
⎟
⎟
⎟
⎟

−

−

λ b b e i b

b e λ b i b

i b λ b b e

i b b e λ b

0

0

0

0

z
κ
λ x

iω ξ
λ x

κ
λ x

iω
z

ξ
λ x

ξ
λ x z

κ
λ x

iω

ξ
λ x

κ
λ x

iω
z

tot

(15)

The factor = +κ λ iω s σ t( / )exp( ) introduces the new angle ω

= −
−
+

e λ
κ

ξ ξ iκ
κ λ κ

( )
( )

.iω b

a (16)

As the circuit C is followed (ϕ going from 0 to 2π, with ξ, κ, λ constant),
ω also evolves from 0 to 2π.

If the field
→
b is along z, the upper and lower Kramers doublets are

not coupled. The degeneracy is lifted everywhere, and adiabatic evo-
lution proceeds smoothly on the resulting non-degenerate states,
yielding the phases γ(C) of Eq. (10). The previous discussion was cor-
rect. The result Eq. (10) can also be obtained directly from Eq. (2) using
Eqs. (11)–(14). For fields perpendicular to z, there is both intra- and
inter-doublet spin mixing, according to Eq. (15). To first order, since
→

≪b λ, inter-doublet mixing terms ± iξbx/λ can be neglected, giving
2× 2 effective Hamiltonian matrices, of the form

H ⎜ ⎟
⎛
⎝

→⎞
⎠

= −
⎛

⎝
⎜ −

⎞

⎠
⎟−

b λ λ
b b e

b e b
1̂z

z
κ
λ x

iλ ω

κ
λ x

iλ ω
z

eff

z

z
(17)

The eigenvalues are

± ± = +λ μ μ b κ
λ

bwhere z x
2 2

2

2
2

(18)

These eigenvalues have an interesting feature: at the degeneracy point
=κ 0, in the center of circuit C, =μ 0 and Kramers degeneracy is not

lifted, provided
→
b is perpendicular to

→
ξ . The states at

→
k * have aniso-

tropic g factors which vanish in two directions. The vanishing Zeeman
splitting means that a conical intersection, hidden unless

→
≠b 0, exists

exactly where the original band intersection (for =ξ 0) was located.

This also yields a simple geometrical phase of ± π. Bands for
→ →
b ξ

and
→

⊥
→

b ξ are shown in Fig. 2 panels (b) and (c).
A full calculation of γ(C) for the 4 new eigenstates of Eq. (15) is

difficult. The Berry method of solid angle works when the basis func-
tions |1⟩, |2⟩ of the 2×2 effective Hamiltonian are fixed at

→
k *,

whereas the basis functions |s⟩, |t⟩ or |u〉, |v〉 used in Eq. (17) depend
on

→
k . However, the most important limit remaining to be resolved is

when the circuit radius κ is small relative to spin-orbit splitting ξ. In this
limit, the basis functions lose their

→
k -dependence. The relevant scaled

parameters are → = −μ κ λ b ω λ κ λ b ω b(( / ) cos , ( / ) sin , )x z x z . The circuit
parameterized by ϕ is equally well parameterized by ω which evolves
from 0 to 2π. The solid angle in →μ -space is −π b μ2 Λ (1 / ),z z so the
geometric phase is

= −
⎛

⎝
⎜ −

+

⎞

⎠
⎟γ C πβ

b

b κ λ b
( ) Λ 1

( / )
,z z

z

z x
2 2 2

(19)

where (Λz, βz) are the two branch indices in the eigenvalue
± ± = +λ μ λ β μΛz z . This is the other main result of this section. If

=b 0,z the full geometric phase = ±γ C π( ) is restored no matter how
small the circuit radius. Even though the degeneracy was lifted by spin-
orbit interactions, the hidden conical intersection exposed by a Zeeman
field controls the result. The nodal loop can be located and followed,
though it never existed.

4. Connections to the lowest symmetry nodal line semimetal

Reports of identification of nodal loops in electronic structures took
off in 2014. There had been an early report in 2009, before widespread
recognition of nodal loops resulted from the 2011 paper of [14]. These
authors popularized nodal loop semimetals in the context of topological
semimetals (primarily Weyl semimetals), pointing out several general
features. The earlier report of [22] involved a nodal loop comprised of a
pair of coinciding Fermi rings, making it a circular nodal ring coin-
ciding with the Fermi energy EF, a simple but remarkable coincidence.
The system was a compensated semimetal of ferromagnetic nanolayers
of SrVO3 quantum confined within insulating SrTiO3. Mirror symmetry
was a central feature: two bands having opposite reflection symmetries
crossed in the mirror plane, making it a nodal loop enabled by sym-
metry (thus not purely accidental).

What is unlikely but not statistically improbable is: (1) having the
nodal loop cut by EF while (2) the remainder of the Brillouin zone is
gapped. Such loops will have real impact, and possibly unusual
boundary properties, when they are the sole bands around EF. This
coincidence with EF occurred for the ferromagnetic SrVO3 nanolayer
mentioned above. Crystal symmetry has played an important role in
nearly all nodal loop families discovered so far. The enabling symme-
tries include screw axes [23], mirror symmetries [14,22–27], as well as
the much studied TaAs class that has no center of inversion [28–35].

Herring [3,4] however pointed out that inversion symmetry P

alone is sufficient to allow nodal loops of degeneracies (fourfold: two
bands times two spins), a result extended recently [14,23]. This is easy

to understand: P symmetry leads to a real Bloch Hamiltonian ⎜ ⎟
⎛
⎝

→⎞
⎠

H k if

the center of inversion is taken as the origin. The minimal (for each

spin) 2 × 2 Hamiltonian then has the form ⎜ ⎟
⎛
⎝

→⎞
⎠

= +H k f τ g τk x k z (ne-

glecting spin degeneracy for the moment) with real functions fk, gk;
→τ

represents the Pauli matrices in orbital space. Degeneracy of the ei-
genvalues = ± +f gɛ ( )k k k

2 2 1/2 requires = =f g0 ,k k two conditions on the

3D vector
→
k giving the necessary flexibility to arrange degeneracy.

Allen has given a constructive prescription [10] for mapping the nodal
loop once a degeneracy is located.

The Zintl semimetal CaAs3, which has P1 symmetry (inversion only)
has been shown [36] to have, before SOC is considered, a nodal loop
that is cut by the Fermi energy four times. It and its three isovalent tri-
arsenide sisters (Ca→ Sr, Ba, Eu) were synthesized more than thirty
years ago, with their structure, transport, and optical properties studied

P.B. Allen, W.E. Pickett Physica C: Superconductivity and its applications 549 (2018) 102–106

105



by von Schnering, Bauhofer, and collaborators [37,38].
CaAs3 is unique in a few ways. It sports a single nodal loop. Already

Herring had noted that three classes were possible: single nodal loops,
loops that occur in pairs, and loops that are extended into neighboring
zones, being “closed” by the periodicity of k space. Other than these tri-
arsenides, nodal loop semiconductors all have pairs of nodal loops
imposed by their crystal symmetry. CaAs3 also is the sole triclinic (P1)
member of this family of tri-arsenides [37]. CaAs3 also has the acci-
dental feature that the SOC splitting of the nodal loop ΔEsoc (arising
from the As SOC) is very similar to its small dispersion of 30–40 meV
around the loop. This similarity of energy scales leaves the resulting
band structure on the borderline between remaining a nodal loop
semiconductor or moving into the realm of extremely small gap nodal
insulator; this distinction is too small for present DFT calculations to
give conclusive statements about. Recall also that such small gap sys-
tems are unstable to excitonic condensation.

Thus CaAs3 presents a unique nodal semimetal amongst those dis-
covered and studied so far. Unfortunately, CaAs3 samples are heavily
twinned due to a structural transition between the growth temperature
and the temperatures of interest (room temperature and below). The
twin boundaries likely produce carriers that will complicate inter-
pretation of transport and spectroscopic data. The results of Sec. III
point out the conceivability of identifying the nodal loop even though it
has been destroyed by spin-orbit coupling. The experimental challenge
is constructing and experimental realization of the theoretical “SQUID
loop” – the circuit C – that enables detection of the loop of degen-
eracies. This possibility provides impetus for discovering, or designing,
other nodal loop semimetals with minimal symmetry.
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