(b) Similar to (a), for each $\text{Cs}^+ \bullet$ there is one $\text{Cl}^- \circ$. If we consider only $\text{Cs}^+ \bullet$ atoms, they form a sc lattice. Thus:

Bravais lattice: sc
Basis: 1 $\text{Cs}^+ \bullet$ and 1 neighboring $\text{Cl}^- \circ$

(c) For each $\text{Ca}^{+2} \circ$ there are two $\text{F}^- \circ$ (CaF_2). If we consider only $\text{Ca}^{+2} \circ$ atoms, they form a fcc lattice. Thus:

Bravais lattice: fcc
Basis: 1 $\text{Ca}^{+2} \circ$ and 2 neighboring $\text{F}^- \circ$

(d) Perovskite: CaTiO_3
For each $\text{Ca}^{+2} \circ$ there are one $\text{Ti}^{+4} \bullet$ and three $\text{O}^{-2} \circ$ (CaTiO_3). If we consider only $\text{Ca}^{+2} \circ$ atoms, they form a sc lattice. Thus:

Bravais lattice: sc
Basis: 1 $\text{Ca}^{+2} \circ$, 1 neighboring $\text{Ti}^{+4} \bullet$ and 3 neighboring $\text{O}^{-2} \circ$