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3.1 Cooper Pair

With several decades between the discovery of superconductivity and a successful

microscopic description one can understand that it was a difficult problem. This is espe-

cially true when one considers that the dramatic nature of the superconducting phenomena

attracted a great many of the best minds of the day.

In an important development in 1956, L.N. Cooper [5] was able to show that

an arbitrarily small attractive potential between two electrons added to a non-interacting

Fermi sea was sufficient to produce a bound state. This was a somewhat surprising result

since it was well known that in three dimensions a minimum attractive potential was

required to produce a bound state.

Taking εFermi ≡ 0 and using operator notation, the Hamiltonian Cooper consid-

ered is

HC = H0 +HP =
∑

~k,σ

ε~kc
†
~k,σ
c~k,σ +

∑

~k,~k′

c†~k′,↑
c†
−~k′,↓

V~k′,~k
c−~k,↓c~k,↑ (3.1)

where the sums are over all states above the Fermi level and c~k,σ is a destruction operator

for an eigen states of H0. The potential V~k,~k′
acts on spin zero pairs of eigen states of H0

which form a complete set of zero momentum states. The creation operator for an eigen

state of HC can be written as

ψ =
∑

~k

a~k
c†~k,↑

c†
−~k,↓

=
∑

~k

a~k
θ~k (3.2)

where θ~k is an eigen state of H0. The eigen value problem is solved by first projecting out
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a single θ~k:

< θ~k|HC |ψ > = < θ~k|H0 +HP |ψ >

a~k
W = a~k

2ε~k +
∑

~k′

a~k′
V~k′,~k

(3.3)

Then solved for a~k
:

a~k
=

∑

~k′
a~k′
V~k,~k′

W − 2ε~k
(3.4)

In general this integral equation is not solvable, so it is customary to make the approxi-

mation that V~k,~k′
= −V for all ~k and ~k′ in a thin energy shell h̄ωD above the Fermi energy

and zero otherwise. Then summing over all ~k gives:

∑

~k

a~k
=





∑

~k′

a~k′





∑

~k

−V
W − 2ε~k

(3.5)

Dividing by
∑

~k
a~k

and performing the integration

1 =
∑

~k

−V
W − 2ε~k

= −V
∫ h̄ωD

0

N(ε)

W − 2ε
dε =

V N(0)

2
log

(

1 − 2h̄ωD

W

)

(3.6)

The density of states is assumed to be nearly constant over the energy range of integration.

Here one can see how the Pauli exclusion of occupied states in the Fermi sea creates a

extensive degeneracy of the lowest available states and thereby enables the low lying bound

state.

The binding energy is found by solving for W

W =
2h̄ωD

1 − e2/V N(0)
(3.7)
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While no reference is made to the dimension of the system in the derivation, it is interesting

to note that this is similar in form to the binding energy for a two dimensional attractive

potential in the absence of a filled Fermi Sea.

Pairing of non-localized electrons in momentum space (suggested by F. London[12])

is attractive because it suggests that screening of the strong Coulomb repulsion allows a

weak attractive potential to dominate. The resulting Cooper pair are non-local, but the

average real space electron separation has been estimated for reasonable parameters to be

≈ 1µm[8]. This is more than sufficient for screening to occur.

The assumption that V~k′,~k
is even in ~k forces the pairing to a spin singlets of the

form

ψS =
∑

~k

a~k





c†~k,↑
c†
−~k,↓

− c†~k,↓
c†
−~k,↑√

2



 =
∑

~k

a~k
θ~k (3.8)

Singlet is not the only possible pairing. The Fermonic super fluid Helium forms triplet

states and some “unconventional” superconductors such as Sr2RuO4 are thought to also

to form triplets. A spin zero triplet pair will have the form

ψT0 =
∑

~k

a~k





c†~k,↑
c†
−~k,↓

+ c†~k,↓
c†
−~k,↑√

2



 (3.9)

while there are two possible spin one triplets of the form

ψTσ =
∑

~k

a~k
c†~k,σ

c†
−~k,σ

. (3.10)
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3.2 BCS

Using the electron pairing model, J. Bardeen, L. N. Cooper, and J. R. Schrieffer

(BCS) developed a two fluid model for superconductivity in 1957 [4] earning them the 1972

Nobel prize in physics. The model they developed assumes non-interacting normal elec-

trons and non-interacting Cooper pairs and correctly predicted much of the expermintal

observations.

The BCS (Bardeen-Cooper-Schrieffer) reduced Hamiltonian with exchange split-

ting ±µBB, in units in which µB = 1, is

H =
∑

~k

ε~k(n~k↑
+ n

−~k↓
)

− B
∑

~k

(n~k↑
− n

−~k↓
)

− g
∑

~k~k′

c†~k′↑
c†
−~k′↓

c−~k↓c~k↑ (3.11)

Here c†~kσ
(c~kσ) is the creation (destruction) operator for single electron states,

n~kσ
≡ c†~kσ

c~kσ
, and the single particle dispersion is referenced to the Fermi energy εF =0.

The attractive pairing strength g is positive for single particle energies |ε~k| within a cutoff

energy εc, and zero otherwise. Use is made of the symmetry ε ~−k
= ε~k to write the first

two terms in an unconventional manner (involving n
−~k↓

rather than n~k↓
).

To accommodate the formalism to pairing of pairs with momentum of ~q, the

interaction term of the Hamiltonian is rewritten for pairing of states (~k + ~q
2) ↑ with

(−~k + ~q
2 ) ↓,

H =
∑

~k

ε~k(n~k↑
+ n

−~k↓
)
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− B
∑

~k

(n~k↑
− n

−~k↓
)

− g
∑

~k~k′

c†~k′+ ~q

2
,↑
c†
−~k′+ ~q

2
,↓
c
−~k+ ~q

2
,↓
c~k+ ~q

2
,↑

(3.12)

The ~k + ~q
2 , ↑ and −~k + ~q

2 , ↓ indices appearing in the pairing potential can be simplified in

preparation for the Bogoliubov-de Gennes (BdG) transformation:

c̃†~kσ
≡ c†~k+ ~q

2
,σ
, c̃†~−kσ

≡ c†~−k+ ~q

2
,σ
, (3.13)

ñ~kσ
≡ c̃†~k,σ

c̃~k,σ
(3.14)

A further simplification is made by making a small ~q approximation:

ε~k+ ~q

2

≈ ε~k +
~q

2
· ~v~k, ~v~k ≡ ~∇ε~k (3.15)

The Fermi surface that defines ~v~k at ~k = ~kF is the non-spin polarized normal state

Fermi surface. With the linear approximation, the normal state Fermi surface marks the

superconducting state’s chemical potential.

After collecting operators with common ~k, the Hamiltonian for non-zero momen-

tum becomes:

H =
∑

~k

ε~k(ñ~k↑ + ñ−~k↓)

+
∑

~k

(
~q

2
· ~v~kF

−B)(ñ~k↑
− ñ

−~k↓
)

− g
∑

~k~k′

c̃†~k′↑
c̃†
−~k′↓

c̃
−~k↓

c̃~k↑

=
∑

~kσ

ξkσñ~kσ − g
∑

~k~k′

c̃†~k′↑
c̃†
−~k′↓

c̃−~k↓c̃~k↑, (3.16)

where the spin-dependent dispersion is given by

ξ
sσ

~kσ
= ε~k + sσw~k

; wk ≡ ~q

2
· ~v~kF

−B.



CHAPTER 3. MICRO THEORY OF SUPERCONDUCTIVITY 35

s↑ ≡ 1; s↓ ≡ −1 (3.17)

In this form several new features can be understood. First, because of the convention of

associating ~k with up spin and −~k with down spin and assuming inversion symmetry of

the Fermi surface, the pair momentum ~q 6= 0 acts so as to add another effective Zeeman

splitting term to the Hamiltonian. Second, the new Zeeman splitting term is a peculiar

one that varies over the Fermi surface. A central feature in the physics and in the un-

derstanding of the resulting phenomena is that for one half of the Fermi surface these

splittings (from B, and from ~q) tend to cancel, which enables FFLO superconducting

states to arise.

3.3 Bogoliubov-Valatin transformation

The mean field approximation for the superconducting state consists of presum-

ing the appearance of an order parameter

bk =< c̃−k↓c̃k↑ >, (3.18)

introducing the tautology

c̃−k↓c̃k↑ = bk + (c̃−k↓c̃k↑ − bk), (3.19)

and neglecting the product of the fluctuations (terms in parentheses) in the interaction

term. In the case we consider bk gives the amplitude for finding a pair with momentum ~q

and zero spin in the superconducting state. The “energy gap” (see below for clarification)
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is given by

∆ = g
∑

k

bk, (3.20)

from which it is seen that the assumption of an isotropic coupling matrix elements g leads

to an isotropic gap. The Hamiltonian becomes:

H =
∑

~kσ

ξkσñ~kσ −
∑

~k

[

∆c̃†~k′↑
c̃†
−~k′↓

+ h.c.

]

. (3.21)

The resulting mean field Hamiltonian is diagonalized by a Bogoliubov-Valatin

(BV) transformation, leading to the Bogoliubov-de Gennes equations. In general, the BV

transformation leads to quasiparticles that are superpositions of electrons and holes with

both up and down spin. The Hamiltonian matrix which defines the quasiparticle eigen

amplitudes and eigenenergies is





























ε~k + wk 0 0 ∆

0 ε~k − wk −∆ 0

0 −∆∗ −ε
−~k

− wk 0

∆∗ 0 0 −ε~k + wk





























×





























C
τ,~k↑

C
τ,−~k↓

Dτ,~k↑

D
τ,−~k↓





























= E
τ,~k





























C
τ,~k↑

C
τ,−~k↓

Dτ,~k↑

D
τ,−~k↓





























(3.22)

where τ is an index for the 4 possible quasiparticle states and C and D are the coefficients

for the single particle creation and destruction operators respectively.
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The expression of Powell, Annett, and Gyorffy [2] for more general types of

pairing (albeit only ~q=0) reduces to this form for singlet pairing . Diagonalizing the

matrix, which reduces to a pair of 2×2 matrices, produces four branches of quasiparticles

states with definite spin and eigenenergies

E±

sσ
~kσ

= sσw~k
±

√

ε2~k
+ ∆2 (3.23)

and which obey the Fermion anti-commutator relations.

In the superconducting ground state with w~k
= 0, all of the negative energy

states will be occupied. The positive energy states can then be considered quasiparticle

excitations. The rest of the analysis will be in terms of these excitations. The quasiparticle

operators are:

γ†~k↑
= u~k

c̃†~k↑
+0 +0 −v~k c̃−~k↓

γ†
−~k↓

= 0 +u~k
c̃†−k↓ +v~k c̃k↑ +0

γ~k↑
= 0 −v~kc̃

†
−k↓ +u~k

c̃k↑ +0

γ
−~k↓

= v~k c̃
†
~k↑

+0 +0 +u~k
c̃
−~k↓

(3.24)

where u~k
and v~k are given by

√
2 u~k =

√

√

√

√
1 +

ε~k
√

ε2~k
+ ∆2

√
2 v~k =

√

√

√

√
1 − ε~k

√

ε2~k
+ ∆2

. (3.25)

The BCS results are recovered when wk = 0 and ~q = 0. It is interesting that the quasiparti-

cle amplitudes u~k and v~k are independent of the Zeeman splitting. This can be understood

by noting that wk in each 2×2 submatrix enters proportional to the identity matrix.
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Figure 3.1. Sketch of the four branches of the quasiparticle dispersion in a magnetic

superconductor. An energy gap of 2∆ opens at the Fermi surface between quasiparticles

with common spin direction. The exchange splitting will reduce the opposite-spin gap,

but does not directly effect the superconducting parameter ∆. The thickness of the line

represents the electron character of the quasiparticles.
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3.4 The Gap equation

The quantity 2∆ becomes the gap between the quasiparticle eigenenergies with

common spin label. The actual opposite-spin gap, 2∆ − 2|w~k
|, does not enter the gap

equation directly, and the quasiparticle energies enter only through the Fermi occupation

functions. See Fig. 3.1. The gap equation is given by:

∆ = g
∑

~k

u~k
v~k(1 − f(E+

~k↑
) − f(E+

−~k↓
)) (3.26)

Since the index ~k now enters through the energy term sσ
~q
2 · ~v~k as well as through ε~k, it is

no longer possible to simply change the ~k summation to a one dimensional energy integral

scaled by the density of states at the Fermi surface, which is the technique typically applied

when the Zeeman term is not ~k dependent.

Introducing the integral over δ-function 1 =
∫

δ(q̂ ·~v~kF
−V )dV in addition to the

usual one 1 =
∫

δ(ε− εk)dε leads to the form of the gap equation that we focus on:

∆ = N0g

∫

dV N(V, q̂)

∫ εc

−εc

dε
∆

2
√
ε2 + ∆2

×(1 − f(E+
↑ ) − f(E+

↓ ))

= λ

∫

dV N(V, q̂) K(∆, T,
1

2
qV −B). (3.27)

N0 is the density of states evaluated at EF and we introduce the usual coupling strength

λ= N0g, E
(+)
σ is given by Eq. 3.23 with ε~k → ε, and the variation in N(E) within εc of

the Fermi level has been neglected. This expression reduces to BCS when |~q| = 0. The

dependence on exchange splitting enters only through the quasiparticle eigenenergies. In

the second expression the kernel K already includes the energy integral.
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The new function that has been introduced is the Fermi surface projected-velocity

distribution that depends on the direction of ~q

N(V, q̂) =
1

N0

∑

~k

δ(εF − ε~k)δ(q̂ · ~v~kF
− V )

=
1

N0

Ωc

(2π)3

∮

fs

δ(q̂ · ~v~kF
− V )

|~v~kF
| ds, (3.28)

which is normalized as

∫

N(V, q̂)dV = 1. (3.29)

N(V, q̂) will be called the nesting density for reasons related to FFLO phase formation.

The Fermi surface geometry and the variation of the velocity get folded into N(V, q̂), which

incorporates the local density of states factor 1/|~v~kF
|. The energy integral, K(∆, T, 1

2qV −

B), remains independent of the details of the Fermi surface.

We will explore the solutions to the gap equation while varying the parameters

T , B, ∆, and q for a given dispersion relation ε~k and coupling strength λ. It will also

be of interest to consider variations in the direction of the pair momentum, however we

will restrict ourselves to directions of high symmetry since these directions will provide

extrema of the functions by symmetry considerations.

3.5 BCS Phase

We first mention the BCS phase diagram in the T-B plane. Band crossing in-

duced magnetization and ~q = 0 (BCS) pairing coexist near the first order phase boundary

between T ≈ T0/2 and T = Tc. In this region where |B| > ∆ > 0, the gap between
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opposite-spin quasiparticles closes giving rise to field induced pair breaking at the Fermi

surface while pairing occurs away from the Fermi surface. When |B| < ∆, an opposite-spin

gap exists over the entire Fermi surface, and spin splitting can only occur for thermally

broken pairs. See Fig. 3.2.
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Figure 3.2. The phase diagram in the T-B plane. The solid line marks the BCS to normal

phase transition. The region between the “B > ∆” and “BCS” lines has no opposite-spin

excitation gap but superconducting pairing still exist. Solutions to the gap equation exist

for B under the “Gap limit”, but the free energy of the normal phase is lower than the

BCS phase. The “B > ∆” and “Gap limit” do not meet “BCS” at the same point.
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3.6 FFLO Phase

The FFLO phase takes advantage of the Zeeman energy due to magnetization

that arises when B > ∆, but then uses a finite pair momentum to enhance pairing. A

graphical way of understanding this enhanced pairing through the quasiparticle Fermi

surface is shown in Fig. 3.3. The closing of the opposite-spin gap shrinks the minority

spin Fermi surface while expanding the majority spin. The coupling of the pair momentum

to the quasiparticle eigenenergy is then used to reopen an opposite-spin gap on part of the

Fermi surface. Due to inversion symmetry of the dispersion relationship ε~k, spin splitting

on the opposite side of the Fermi surface is increased. This trade-off can be energetically

favorable because pairing is strongest near the Fermi surface. Nesting can be said to occur

on the portions of the Fermi surface where an opposite-spin gap is closed by a given ~q.
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Figure 3.3. The top graph represents occupied BdG quasiparticle states in ~k and −~k space

for spin up and spin down respectively for 2D square Fermi surfaces. This non-standard

representation highlights how the pairing momentum nests the Fermi surfaces by canceling

the magnetic induced splitting to enable pairing. The bottom graph is the electron Fermi

surfaces. In the electron picture states are not shifted by the pair momentum.
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Figure 3.4. BdG quasiparticles excitations occur when the combination of the magnetic

exchange splitting and pair momentum induced splitting are greater than ∆. This graph

corresponds to the separated part of the BdG Fermi surfaces in Fig. 3.3. The fact that

the quasiparticles are a superposition of holes and electrons results in the spin separation

appearing more uniformly in the electron Fermi surfaces in Fig. 3.3.
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FFLO phases are favored when (1) enough of the Fermi surface can be paired

(nesting is strong enough) to allow for a superconducting (∆ 6= 0) solution to the gap

equation, (2) the FFLO free energy is less than the BCS free energy and normal param-

agnetic free energy. Using the form of the gap equation that includes the nesting density,

we want to understand what features of the Fermi surface favor the FFLO state. For a

given splitting and direction of q̂, the lowest FFLO free energy occurs when pairing is

maximized. Pairing is enhanced when 1
2qV = ~q

2 · ~v~kF
is chosen to cancel the magnetic

splitting on some part of the Fermi surface. The value of q selects the range of V where

|12qV −B| < ∆ (e.g. where nesting occurs).

The effective width of nesting in V space can be found by noting when the

quasiparticle eigenenergies are greater than zero at the Fermi surface. Rewriting the

inequality as | 12q(V0 + δV ) −B| < ∆, we find

δV ≈ 2∆

q
≈

∣

∣

∣

∣

V0∆

B

∣

∣

∣

∣

(3.30)

where V0 solves the equation | 12qV0 − B| = 0. In general, V0 will be optimal near a peak

in the nesting density and as large as possible to maximize δV .

Figure 3.5 illustrates the behavior of K(∆, T, 1
2qV −B) for two possible choices

of q which solve the equation | 12qV0 −B| = 0 at different values of V0, and fixed ∆ < B.
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Figure 3.5. Graph of the energy integral part of the gap equation (K(∆, T, 1
2qV − B))

as a function of V for two values of q, fixed ∆ and T = 0. The plateau occur where

the magnitude of the exchange splitting energy is less than ∆ since this is where both

quasiparticle eigenenergies are positive at the Fermi surface. The sharp drop at the edge

of the plateau reflects the breaking of pairs at the Fermi surface.
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3.7 Applications of Nesting Density to FFLO calculations

For the calculations, we normalize ∆(B = 0, T = 0) = ∆0 = 1 to specify the

energy scale for the problem. The energy cutoff for the gap equation is a parameter

that is set to εc = 50∆0. In a real materials the energy cutoff would be determined by

the pairing boson (phonon, spin fluctuation, etc.). With the above parameters set, the

coupling strength λ now becomes a function of εc and ∆0 , given by

1

λ
= sinh−1

(

εc
∆0

)

(3.31)

In the weak coupling regime (λ ≡ Nog << 1) this reduces to the well known BCS relation

∆0 = 2εce
−1/λ.

This coupling strength is λ ≈ 0.2 which is well within the weak coupling regime

for which the equations were derived.

The free energy competition between BCS and FFLO is an important factor in

determining whether an FFLO state will exist. Even in the best case, at T = 0 the free

energy driven transition from BCS to FFLO occurs very near the BCS critical field which

is proportional to the density of states at the Fermi surface. The FFLO critical field

calculation is more complex. A higher proportion of FFLO pairs occur in electron states

away from the Fermi surface and on average pay a higher kinetic energy cost. However to

first order the FFLO critical field is determined by the fraction of nesting density where

pairing occurs at the Fermi surface. If the FFLO critical field is less than the BCS critical

field for a material, no FFLO states will exist.
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3.8 1D Fermi Surface

The simplest case is the 1D Fermi surface. The nesting density consists of δ

functions at ±vF . The resulting phase diagram is given in Fig. 3.6. At T = 0, solutions

to the gap equation extend to arbitrarily large B with a correspondingly large q = 2B/vF .

Free energy constraints however limit the FFLO phase to finite B.

At the higher applied fields, the pairing on one half of the Fermi surface will be

almost completely suppressed and not contribute to the condensate. It may be possible

that a second condensate form that has opposite pair momentium.
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Figure 3.6. The phase diagram of a 1D system. The presence of a δ function in the

nesting density guarantees that half the density of states at the Fermi surface can always

be paired.
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3.9 2D Fermi Surface

The nesting density of states for 2D Fermi surfaces will tend to have van Hove

like singularities that produce strong peaks in N(V, q) that go as 1/
√

|Vpeak − V |. These

peaks arise whenever V = q̂ · ~vF is at a local extremum. A simple example is the circular

Fermi surface. The projected velocity is V = |vF |cos(φ) where φ is the angle between

~vF and q̂. Figure 3.7 is the nesting density for positive V and shows the peak caused

by the extrema that occurs when q̂ is normal to the Fermi surface. Figure 3.8 shows the

phase diagram for the circular Fermi surface. From Eq. 3.30, we know that as B is raised,

the width of pairing (δV ) will go down. This happens directly through the increase of q

necessary to maintain V0 near the peak, and indirectly through the reduction in ∆ caused

by the decrease in pairing. This reduction in pairing as B is raised causes the FFLO phase

to be quenched much earlier than the 1D case.
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Figure 3.7. The nesting density of a 2D circular Fermi Surface for positive V showing

peak at V = |vF |. The optimal FFLO solution will chose a value for q such that this peak

has enhanced pairing. The nesting density is symmetric around V = 0 due to inversion

symmetry of the Fermi surface.
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Figure 3.8. The phase diagram of a 2D circular Fermi Surface.
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3.10 3D Fermi Surface

While the nesting density for 3D material may have peaks, in most cases these

peaks will not be caused by van Hove singularities. This can be understood by noting that

any extrema in the projected velocity will usually occur at isolated points on the Fermi

surface. For example on the spherical Fermi surface, the extrema of V occur at the two

points where q̂ is normal to the Fermi surface. The nesting density for a spherical Fermi

surface is constant between ±|vF |, and consequently our calculations have shown a very

small FFLO region in the phase diagram.

A 3D example with a strong peak in the nesting density at Vmax is simple cubic

nearest neighbor tight binding model at half filling. With q taken in the 100 direction,

the projected velocity as a function of the position on the Fermi surface is given by

V = Vmaxsin(kx) (3.32)

V has extrema at kx = ±π/2 which occurs along a curve defined by cos(ky) + cos(kz) =

0. Since extrema occur along a curve rather than a point, N(V, q̂) will have integrable

divergences that go as (|Vpeak−V |)−1/2. Figure 3.9 is the tight binding Fermi surface with

the enhanced pairing region highlighted. The nesting density is similar to that shown

in Fig. 3.7 with slightly more weight in the peak. Because of the increased weight, the

resulting phase diagram seen in Fig. 3.10 shows an increased FFLO region relative to the

circular Fermi surface case. Any deviation from the 100 direction will cause the extrema

in V to occur at a few isolated points.
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Figure 3.9. Tight binding Fermi surface at half filling. The highlighted region corresponds

to the part of the Fermi surface where enhanced pairing occurs for T = 0, B ≈ .9, and

q̂ = 100.
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Figure 3.10. Tight binding phase diagram shows a larger FFLO region than the circular

phase diagram 3.8. This reflects the fact that the nesting density for the tight binding

case has more weight near Vmax.
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3.11 ZrZn2

We chose to apply our methods to ZrZn2 since it has a relatively simple cubic

structure, and as a weak ferromagnet it is a possible candidate to show an FFLO phase.

A non-spin-polarized electronic structure calculation was performed using the FPLO [?]

electronic structure code. The resulting four conduction bands and Fermi surfaces have

been presented by Singh and Mazin[?]. The nesting density for the four bands that cross

the Fermi surface were combined into a single N(V, q̂) function. This represents the case of

equal pairing on all bands, consistent with out constant ∆ model. The preferred direction

of q̂ was found to be in the 111 direction after considering nesting properties for the

three high symmetry directions. The nesting density is shown in Fig. 3.11. Most of the

contribution to the density of states comes from the “cubic” shaped Fermi surface shown

in Fig. 3.12 that Singh and Mazin call band 3. The large peak in the nesting density does

not come from the nesting of the faces of the cube as one might expect but instead comes

from the nesting of the grooves along the edges of the cube. The Fermi velocity of the

faces is at least twice as large as the Fermi velocity of the grooves. The high value of the

Fermi velocity of the faces reduces the contribution to the density of states, and variations

of the Fermi velocity spread out the contribution to the nesting density over a range of V

values.

The position of the largest peak gives the optimum value of V0 which in con-

junction with B can be used to calculate the pair momentum q = 2B/V0. While this is a

substantial peak, it occurs at a low value of |V | which will require a high pair momentum.
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As was illustrated in Fig. 3.5, high pair momentum reduces the the amount of total den-

sity available for pairing. While FFLO solutions exist for the gap equation, at no point

was the free energy of these solutions below both the free energy for the BCS phase and

the normal phase.

By allowing a non-uniform ∆, it may be possible for FFLO solutions to exist in

a small region above the BCS phase, however other considerations make this unlikely. In

the Hamiltonian we have assumed, the Zeeman splitting term B for ferromagnets includes

the applied field as well as the ferromagnetic exchange energy. The average B for ZrZn2

can be calculated as

B =
M

2N0
≈ 30 meV (3.33)

where M ≈ 0.15µB and using the Singh and Mazin calculated value N0 = 2.43 states/eV -

spin-unit cell). Since the Curie temperature is greater than the observed superconducting

temperature, we are not able to determine ∆0 = ∆(T = 0, B = 0) for ZrZn2. We can

however place a lower bound on ∆0 for singlet pairing by noting that even allowing for

FFLO solutions, the maximum B will be on the order of ∆0/
√

2. The resulting ∆0 is

orders of magnitude to large as it would correspond to a Tc ≈ 2∆0/3.52kB = 280K From

this we conclude that singlet pairing of either BCS or FFLO states is highly unlikely.
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Figure 3.11. ZrZn2 nesting density. The units of V are 107 cm/sec. A small non-zero

density extends to higher values of V . The noise is a function of both the finite sampling

of the Fermi surface and the complexity of the electronic structure.
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Figure 3.12. Fermi surface for the cube shaped that is responsible for the peak in the

nesting density 3.11. The highlighted region corresponds to the part of the Fermi surface

where enhanced pairing occurs for T = 0, B ≈ .6, and q̂ = 111. It is interesting that the

pairing is not favored on the relative flat faces of the cube.
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3.12 Conclusion

We have presented the formalism for the specific case of the quasiparticle states

and eigenenergies for non-zero momentum BdG quasiparticles in an exchange field. These

quasiparticles were then used to solve the superconducting gap equation within the mean

field approximation. The spin polarized BdG formalism was then applied to study FFLO

states which have magnetically induced spin splitting leading to pair momentum enhanced

superconducting pairing on a subset of the Fermi surface. The nesting density, which is

derived from the Fermi surface of the material being studied, was separated out and

calculated to facilitate solving the gap equation and calculating free energies and other

observables. In addition to providing an efficient means of performing calculations, the

nesting density also proved to be a useful tool for understanding what features of a Fermi

surface contribute to the formation of FFLO states.

The features of a Fermi surface which promote FFLO states are low dimen-

sionality, specific nesting topographies, (not necessarily like those that drive charge-and

spin-density waves) and relatively simple Fermi surfaces with uniform magnitude of the

Fermi velocity. The benefits of low dimensionality is demonstrated by circular vs. spher-

ical Fermi surfaces. The tight binding Fermi surface illustrates the benefits of nesting

topographies. It is important to recognize that the nesting topography in this case is not

a “flat sheet” which we intuitively associate with nesting. The fact that FFLO states are

enhanced by peaks in the nesting density at high values of V is in conflict with the re-

duced density of states associated with high Fermi velocities. Variations in the magnitude
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of the Fermi velocity will tend to place larger weights at small V which are less likely to

participate in FFLO pairing.

To simplify the calculations and analysis, we chose to consider only a uniform

exchange splitting which could arise from uniform ferromagnetic exchange field or from

an applied field. The BdG formalism does not depend on these assumptions and could be

applied to more complex situations that do not make use of a constant exchange splitting

and linearized Fermi surface approximation.

3.13 Free energy calculations

In all cases, the total energy of the system was taken to be relative to the ground

state of the normal metal at T = B = 0

Eg = 2
∑

~k<~kF

ε~k (3.34)

With εc = 50 and [B, T,∆] ∼ 1 in units where ∆0 ≡ 1, excitations outside the cutoff can

be ignored. The free energy of the superconducting state when measured relative to the

ground state becomes

Es − Eg =
∑

|ε~k|<εc

{ (ε~k + w~k)(v
2
~k
f(E−

~k↑
) + u2

~k
f(E+

~k↑
))

+ (ε~k − w~k
)(v2

~k
f(E−

~k↓
) + u2

~k
f(E+

~k↓
))

+ (ε~k +
q

2
V~k

)(Θ(ε~k +
q

2
V~k

) − 1)

+ (ε~k − q

2
V~k

)(Θ(ε~k − q

2
V~k

) − 1)}
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− TS − ∆2

g
(3.35)

The first two terms account for the kinetic energy of the electron part of the quasi particles.

The next two terms remove the kinetic energy for the ground state Eg. The last two terms

are respectively the entropy and pairing potential energy. In doing the calculation this

way, we have ignored the affect of the pairing energy q
2V~k

on the energy cutoff which

bounds the sum. With εc = 50 the impact is negligible, but for smaller cutoff energies it

becomes important.

3.14 Numerical methods

The first step in performing these calculations is to produce the nesting density

of states. This is accomplished by extracting a triangulation of the Fermi surface with

Fermi velocities from a dispersion relationship expressed on a grid. The nesting density

of states integral is converted to a sum and stored in a discrete histogram indexed by

V = q̂ · ~v~kF

N(V, q̂) =
Ωc

(2π)3

∑

i

Areai

~vFi

× Θ(
1

2
Vδ − |V − q̂ · ~v~kF i|) (3.36)

where Vδ is the projected velocity bin width, and i goes over all triangles. The preferred

direction for q̂ can be found by looking for largest peaks at high V in the nesting density

calculated for each of the high symmetry directions.
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There is a subtle danger associated with using discrete bins for the nesting density

for low temperatures and low ∆. The discrete bins will act like δ functions that will always

give a FFLO solution to the gap equation at high fields (see 1D Fermi surface section).

However, the temperature and ∆ of the possible solutions will go as exp(−1/N(Vδ)) which

will typically be on the order of e−10.

To determine the preferred state at a given temperature and applied field, it is

necessary to calculate the free energy for each possible state. Furthermore, the possible

superconducting states have ∆ and q degrees of freedom. Fortunately, the constraint set

by holding g constant means that we only need to search 1D isocontours in ∆-q space,

which we evaluate on a discrete grid. Finding this isocontour requires that that we perform

the integral in Eq. 3.27 many times.

Since we have already discretized N(V, q̂), the integral over V becomes a sum.

This leaves the energy integral

∫ εc

−εc

1

2
√
ε2 + ∆2

(1 − f(E+
↑ ) − f(E+

↓ ))dε. (3.37)

This is a difficult integral to do numerically since it is highly peaked around ε = 0

and the behavior of the Fermi functions is highly temperature dependent. We chose to

take advantage of the fact that we know how to do part of the integral analytically.

∫

1

2
√
ε2 + ∆2

dε =
1

2
sinh−1(

εb
∆

) (3.38)

This allows one to write formally
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∫ εc

−εc

1

2
(1 − f(E+

↑ ) − f(E+
↓ ))d[sinh−1(

ε

∆
)] (3.39)

This integral was discretized in a manner that allowed dealing with variations in

the Fermi functions. The numeric integral becomes

∑

εi

(1 − f(E+
↑ ) − f(E+

↓ )) × (3.40)

[sinh−1(
εi + εstep

∆
) − sinh−1(

εi
∆

)] (3.41)

with the variable step size

εstep ∝
[

∂

∂ε
(f(E+

↑ ) + f(E+
↓ )) + δ

]−1

. (3.42)

The constant δ is needed to maintain a minimum step size. This variable step integration

is used in calculating contributions to the free energies and other observables of interest.
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