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Minimization of the Free Energy

If the expressions (3.13) and (3.14) are introduced
into (3.9) and (3.12), the free energy becomes

F=2 %1fk‘[fk"l-(l“‘sz)kk(lfkl)]
- E’ Ve[l — b (1—=hy) 3
X{(-2/) (=2} =TS, @.16)
When we minimize FF with respect to kx, we find that
2€k—§ V[ (1= h) P(1—2fir)
(1—2hy)

X2 0, (3.17)
[Ax(1—hi) T

or
[Ae(1—hy) ]t View [ (1= A ) F(1—2fwr)
1—2ky k’ Zex

, (3.18)

where the energy e is measured relative to the Fermi
energy and ex<0 for 2 {kp. Assuming as before that
the interaction can be replaced by a constant average
matrix element ~V, defined by (2.34) for |ex| <Zw
and by zero outside this region, it follows that %y is again

of the form

he=3{1—(ex/Ex) ], (3.19)
and
[kk (l—kk)]#=%€o/Ek. (320)
The energy Ey, a positive definite quantity, is defined as
Ek=+(€k2+602)5, (321)
where

o=V Tulhe(l—t)A—2f0).  (3.22)

It will turn out that 2eo is the magnitude of the energy
gap in the single-particle density of states and therefore
the distribution of ground pairs is determined by the
magnitude of the gap at that temperature.
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Fie. 1. Ratio of the energy gap for single-particle-like
excitations to the gap at 7'=0°K us temperature.

(3.22) becomes (dividing by )

tanh[38(&+e?)t], (3.27)

1 f"“’ de
NOW Jy (e+e)t

where we have replaced the sum by an integral and used
the fact that the distribution functions are symmetric
in holes and electrons with respect to the Fermi energy.

The transition temperature, T, is defined as the bound-

ary of the region beyond which there is no real, positive
¢p which satisfies (3.27). Above T, thetefore, ¢;=0 and

f(Ex) becomes f(ex), so that the metal returns to the
normal state. Below T, the solution of (3.27), €0,
minimizes the free energy and we have the supercon-
ducting phase. Thus (3.26) can be used to determine
the critical temperature and we find

1 fﬁ” de h(36.0
—_— — tanh(308.¢),
NOY Jy e 2e

(3.28)

or

£T.=1.14%w exp[-— (3.29)

N((l))v}’

as long as AT <</, which corresponds to the weak-
coupling case discussed in . Sec. II. The transition
temperature is proportional to %w, which is consistent
with the isotope effect. The small magnitude of T,
compared to the Debye temperature is presumably due
to the cancellation of the phonon interaction and the
screened Coulomb interaction for transitions of im-
portance in describing the superconducting state, and
the resulting effect of the exponential.
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A piot of the energy gap as a function of temperatlgre
is gwen in Fxg 1. The ratio of the energy gap at 7=0°K
to kT, is given by combining (2.36) and (3.28):

2¢0/kT .= 3.50. (3.30)

From the law of corresponding states, this ratio is
predicted to be the same for all superconductors. Near

T, the gap may be expressed as
E0=3-2ch[1 - (T/Tc)]&s
which has the form suggested by Buckingham 3

(3.31)
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A plot of the critical field as a function of (I'/T,)* is
given in Fig. 2. The curve agrees fairly well with the
1—(T/T.)*law of the Gorter-Casimir two-fluid model,!*
the maximum deviation being about four percent.
There is good experimental support for a similar
deviation in vanadium, thallium, indium, and tin; how-
ever, our deviation appears to be somewhat too large to
fit the experimental results.
The critical field at T=0 is

Ho=[47N(0) Fes(0)=1.75[4x N (0) P& T,, (3.39)

where 2¢(0) is the energy gap at 7=0 and the density
of Bloch states N{0) is taken for a system of unit
volume,

A law of corresponding states follows from (3.39) and
may be expressed as

vT2/He=3n[kT/e(0)F=0.170,  (3.40)

where the electronic specific heat in the normal state
is given by )
: Ceon=vT(ergs/°C cm?®), (3.41)

y=2mN(0) R j (3.42)

The Gorter-Casimir model gives the value of 0.159 for
the ratio (3.40). The scatter of experimental data is
too great to choose one value over the other at the
present time.
Near T'=0, the gap is practically independent of
temperature and large compared to #T, and hence for T/T &1 we have the relation

oo

and

H 1. . H2=H[1—-27(kT/e0)?], (3.43)
' or
(’ﬂ/b’) HH{1-1.07(T/T)*]. (3.44)
) This approximation corresponds to neglecting the free-
o energy change of the superconducting state, the total
(K effect coming from F,.
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F1c. 2. Ratio of the critical field to its value at T=0°K us
{T/T )% The upper curve is the 1—(T"/T.)* law of the Gorter-
Casimir theory and the lower curve is the law predicted by the

theory in the weak-coupling limit. Experimental values generally
lie between the two curves.
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and the jump in specific heat becomes
Cea—'YTc
yT,

=1.52.
Te

(3.50)

The Gorter-Casimir model gives 2.00 and the Koppe
theory? gives 1.71 for this ratio. The experimental data
in general range between our value and 2.00.

The “initial slope of the critical-field curve at the
transition temperature is given by the thermodynamic
relation

L dH°)2 (Co—Ch) (3.51)
dr \ dT T,;- Lo T, '
With use of (3.47) this becomes
) 1 fdH,\?
—(———) =19.4, (3.52)
y\dT T
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Fi6. 3. Ratio of the electronic specific heat to its value in the
normal state at T vs T/T, for the Gorter-Casimir theory and for
the present theory. Experimental values for tin are shown for
comparison. —The plotted theoretical curve

Note added in_proof.
is incorrect very near 1,; the }ntercegt at T, should be 2.52,

or with (3.39),
dH,

aT

1.82H, (3.53)
= . 3.53
T, T,

When Bec>1, the specific heat can be expressed in
the form

( ) (3K, (Beo)-+ Ki(Beo)]

oR.5¢ —1. 44TcIT

COJ (
4T, 211-2 kT,
(3.54)

where K, is the modified Bessel function of the second
kind.

The ratio C../ (vT) 1s plotted in Fig. 3 from (3.46)
and compared with the 7° law and the experimental
values for tin, The agreement is rather good except
near T, where our specific heat is somewhat too small.
The logarithm of the same ratio is plotted in Fig. 4 to
bring out the experimental deviation from the 7% law.
The recent work of Goodman ei @l.?® shows that the
data for tin and vanadium fit the law:

Cea/ ('YTG) (355)

with high accuracy for T./T>1.4, where ¢=9.10 and
b=1.50. These values are in good agreement with our
results in this region, (3.54).

Thus we see that our theory predicts the thermo-
dynamic properties of a superconductor quite accu-
rately and in particular gives an exponential specific
heat for T/ T <1 and explicitly exhibits a second-order
phase transition in the absence of a magnetic field.
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