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HK: “electron density contains in principle all the 
information contained in a many-electron wave 
function.” 
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Hohenberg-Kohn Theorem 
1. V=V[n] 

V is a functional of ground state density n(r). 
 

Proof) 

  Suppose for two systems with the same # of particles, 

  and V′(r) ≠ V(r) + const. (but that n′(r)=n(r).) 

 ⇒  • H|Ψ> = (H0 + V)|Ψ> = ε|Ψ> 

  • H′|Ψ′>=(H0 + V′)|Ψ′>= ε′|Ψ′>,   where |Ψ′>≠|Ψ>. 
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  Then,  

  ε = <Ψ|H|Ψ> < <Ψ′|H|Ψ′> (∵ Ψ′ is not the g.s. wave function of H.) 

    RHS = <Ψ′|H0+ V′+ (V-V′)|Ψ′> 

         = ε′ + <Ψ′|V - V′|Ψ′> 

         = ε′ + ∫d3r n(r)[v(r) – v′(r)] 

  So, ε = ε′ + ∫d3r n(r)[v(r) – v′(r)] 

  Exchange (primed ↔ unprimed) 

     ε′ = ε + ∫d3r n(r)[v′(r) – v(r)] 
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  Adding two equations, 

      ε′ + ε < ε + ε′ 

         ∴ Contradiction ⇒ n′(r) ≠ n(r) ! 

   
Therefore, two different potentials cannot give the same ground 
state density. I.e., given n(r), 

 ⇒ Some particular v(r),  or v is a functional of n: V=V[n] 

Of course, also n is a finial of v, so v↔n is 1-to-1. 
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2. In principle, any property of the system is a finial of n!  
  (Each is its own functional.) 
  In particular, the total energy of the system; 

  ε = <Ψg.s.|H|Ψg.s.> 

  = T[n] + U[n] + V[n] = ε[n] : ground state energy 

     ⇓      ⇓      ⇓ 
    K.E.   P.E.   interaction with external potential 
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Also, the density that minimizes ε[n] for a fixed number of 

electrons is the ground state density: 
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Kohn-Sham procedure 
Separate ε[n] in a different way 

ε[n] = To[n] + UH[n] +∫d3r vn(r) + Exc[n] 

Here,  

UH[n]=1/2∬d3rd3r′ n(r)vc(r-r′)n(r′) : Hartree energy, 
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Now, minimize ε[n] w.r.t. ortials, 
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Constraining to normalized orbitals 
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If the resulting density is the same as the density, then the finial 

is minimized. ⇒ ngs and εgs 

Thus, the problem is reduced to a self-consistent field problem. 
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But,  

(ⅰ) this looks like a system of non-interacting particles in an 

effective potential. 
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(ⅱ) it is really a many-body theory for εgs and ngs. 

(ⅲ) εi → εkn is the band structure. (come back to this later.) 

Self-consistent Kohn-Sham equations 

1. Initial guess: nσ(r) 

2. Calculate effective potential: Vσeff(r) 

3. Solve KS equation 

4. Calculate electron density: nσ(r)=Σi fσi|Ψσi(r)|2  

5. Self-Consistent? (No, go to 1; Yes, output.)  
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The Exchange-Correlation Energy Functional 
“Adiabatic Connection”: Coupling constant integration 

Introduce λ in 
2

,C
ev
r rλ λ=

′− , scaling of Coulomb repulsion. 

In DFT, functionals depend only on n and e2, ħ, m. 

With λ, DFT holds again, but functionals depends on λ.  

Thus, for a given n, there exists an external potential vλ that 

gives n as the ground state density. 

Then, let n(r) be the ground state density corresponding to λ=1, 
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i.e., to v≡vλ=1≡v1  and full Coulomb repulsion. 

Denote Hλ = T + Vλ + λU. 

Here, Vλ≡∫d3r vλ(r) n(r), 

where at each λ, vλ is that potential which gives n, i.e., n(r) is 

fixed as λ varies between 0 and 1. 

Also,  HλΨλ = ελΨλ  
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   Hellman-Feynman theorem gives d H
d
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λ=0:   ε0 = T[n] + ∫d3r v0 n(r) 

        = Ts[n] + ∫d3r v0 n(r): non-interacting system 

λ=1:  ε1 = Ts[n] + ∫d3r v1 n(r) + UH[n] + EXC[n] 

(By definition, EXC contains T-Ts and U-UH. EXC can be decomposed as 

EX+EC, where EX is due to Pauli principles and EC is due to correlations.) 
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Then,  

 • ε1-ε0= ∫d3r v1 n(r) - ∫d3r v0 n(r) + UH[n] + EXC[n] 

Now, other term is 

 • ε1-ε0 = 
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                                          ≡ n(r)n(r′)gλ(r,r′)         

gλ(r,r′) is pair correlation function. 
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Putting two equations together,  
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In the local density approxim

( , ) ( ( )):  homogh
XC XCr n n rε ε→

Simple! 
Surprisingly good! 
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Meaning of eigen values εi, etc. 
KS equation:   {-∇2 +v +vH+vXC}Φi=εiΦi 

Corresponding Green’s function 
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From many-body theory, the exact single particle Green’s 
function satisfies  
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⇒ Thus, GDFT contains a great deal of G! 

• Equations the Green’s functions satisfy: (complex energy z) 

Full: 
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DFT: 

{ } ( )2 ( ) ( ) , ; ( ) ( , ; ) ( )DFT DFT
r H XCz v r v r G r r z v r G r r z r rδ′ ′ ′− − ∇ + + + = −  

 
Thus,  

z vXC can be viewed as a local (r=r′), real, static 

approximation to self-energy Σ(r,r′;z). 

z εi are approximation to the single particle excitations, a 

good mean field approximation to excitation energies. 

z Both Σ(r,r′;z) and vXC give rise to the same density. 
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DFT& the Many Body Problem 
The Hamiltonian can be written 
       H = T +V +UH 

       = T + V +Vhxc + (UH – Vhxc) 

       = H0 + ∆V 

where, of course, Vhxc could be anything. 
However, if we choose 
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then 
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Now, ∆V=UH-Vhxc  is the full, bare, long-range Coulomb repulsion between 

pairs, minus a one-body potential vH+vXC.  

∆V does not change the charge density from H0! 

However, it gives a big change in the energy: 0 0 0
1

,
N

i
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while ε=<Ψ|H|Ψ> is much different. 
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DFT: Progression/Generalization 
z Non-relativistic, non magnetic: ε[n], n(r) 

z Non-relativistic, magnetic: ε[nαβ], 
1 ( )1
2
n r m σ+ •

t sr
 

z Relativistic, magnetic: ε[jμ], 4-current jμσ(r) 

z Non-relativistic, B field: ε[jμ], charge density, current 

density 

z t-dependent vext(r,t): ε[n(t′), t′<t] 

z Superconducting states: ε[n,Δ], charge density, pair density 
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z DFT for excited states (orthogonal to ground state) 
z DFT for other properties: momentum distribution function, 

Compton profile 
z DFT for ferroelectrics (density-polarization functional 

theory) 
z Temperature-dependent (finite T) DFT 
z DFT for the Hubbard model or practically any other model, 

exists. 
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Properties Calculated Using DFT 
 ε({Ri}), {Ri}= atom positions in solid (or molecule); “relaxation of 

structure” 

• ground state structure: bcc, fcc, hcp, Pnma, etc. 
(but with many independent coordinates there are many 
local minima) 

• pressure: P=-∂ε/∂V (V=volume) 

• pressure-driven structure transformations 

• phonons: ∂2ε/∂Ri∂Rj  
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• elastic constants 
• defec

Slope gives 

pressure at which 

transformation 

occurs 

S

P=

 
 

 

t energies 

lope: 

-∂ε/∂V 
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{ }( )0
iRε : ground state density 

• elastic field gradients 
• ionization potential/work function 
• Fermi surfaces: usually very good! (although not exact) 

Magnetic properties from Spin DFT 

• magnetic order of ground states: magnetic impurities 
• hyperfine fields at nuclei 
• exchange coupling 

Electric polarization 

Forces on atom ⇒ ab initio molecular dynamics (“Car-Parrinello”) 
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Effects of constraints: “constrained DFT” 

• example: energy vs. f electron occupation number in 
ions/atoms 

Excitation energies?:  
  beginning to, from t-dependent DFT, for finite systems. 
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Functional Derivatives and Differentiation 
Functional F[n]: function n(r)  ===Î number F 
 

Definition of functional derivatives 
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• [Example]  N[n]=∫d3r′n(r′): particle number 

( ){ }

( )

3 3

0

3

0

( ) ( )
lim

( )

1          lim 1

d r n r r r d r n rN
n r

d r r r

ε

ε

εδδ
δ ε

εδ
ε

→

→

 ′ ′ ′ ′ ′+ − −
 =
  

′ ′= − =

∫ ∫

∫
 ∴ independent of r 

• [Example] ( ) ( )3[ ] ; ( ) , ; ( )Q n d r P r n r P P r n r′ ′ ′= ≡∫    

( )( ) ( )

( ) ( )

( ) ( ) ( )

3

0

3

0

3

; ( ) ; ( )
lim

( )

; ( ) ( ) ; ( )
          lim

; ( ) ; ( )
          

( )

P r n r r r P r n rQ d r
n r

PP r n r r r P r n r
nd r

P r n r P r n r
d r r r

n n r

ε

ε

εδδ
δ ε

εδ

ε

δ

→

→

′ ′ ′ ′ ′+ − −
′=

∂ ′ ′ ′ ′ ′+ − + − ∂ ′≈

′ ′∂ ∂
′ ′ − =

∂ ∂

∫

∫

∫





 

 29



3 *
* *

1

[ ] ( ) ( )
( ) ( )

( ),  (occupied)
           

0,

N

i
ii i

N n d r r r
r r

r if i N
otherwise

δ δ φ φ
δφ δφ

φ
=

′ ′ ′=

≤
= 



∑∫

 

• Differentiation: 
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