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HK: “electron density contains in principle all the
information contained in a many-electron wave
function.”



Hohenberg-Kohn Theorem
1. V=V|n]

V is a functional of ground state density n(r).

Proot]
Suppose for two systems with the same # of particles,

and V'(r) # V(r) + const. (but that n'(r)=n(r).)

=

H

o H'

l'I',> — (H() + V)

l'IJ,>=(H() + V,)

P> = g|¥Y>

Y'>= ¢'|W'>,  where |W>+|W>,



Then,

£ =<WH|WY><<WY' H|WY> (- ¥ is not the g.s. wave function of H.)
RHS = <W'|Hy+ V'+ (V-V)|¥">
= ¢ +<Y|V-V|¥>
= ¢ + [&rn@)[v(r) - v'()]
So, € = £ + [d% n(®)[v(r) - v'(r)]
Exchange (primed < unprimed)

£ =¢ + |dr n@)[V(r) - v(r)]



Adding two equations,

g +e<eg+¢

. Contradiction = n'(r) +# n(r) !

Therefore, two different potentials cannot give the same ground

state density. L.e., given n(r),

= Some particular v(r), or vis a functional of n: V=V|[n]

Of course, also » is a finial of v, so ven is 1-to-1.



2. In principle, any property of the system is a finial of n!
(Each is its own functional.)

In particular, the total energy of the system;

€ =<Wg.s.|HWg.s.>

=T|n] + Uln] + V[n] = €[n] : ground state energy

U U U

K.E. P.E. interaction with external potential




Also, the density that minimizes €[n] for a fixed number of

electrons is the ground state density:

Mir) [e[n]- uN[n]l|, =0
og[n]
Sn(r) = Il = CcOonst.

oT oU

on(r) T on(r) rv(r) = p =0



Kohn-Sham procedure

Separate €[n] in a different way

g[n] = T,[n] + Ug[n] +|d°r vn(r) + Ex[n]

Here,

2
e

Unln]=122[| &*rd’r’ n(r)v(r-r')n(r’) : Hartree energy, » (1) =

r |

Ty[n]= K.E. of non-interacting system with density n, i.e., with

J-sho-Lon

n(r) =2 |40

n]DZjdwﬁ(



Now, minimize €[n] w.r.t. ortials,

(Using, where necessary,

5§ énés 5
SR

7 Sn
Constraining to normalized orbitals

|

g, ()8, + () 4
!

Vi(r;n)

o
64, (r)

th

j=1

g[n]- Ze (J‘a’3 ‘¢‘ —1)

if ¢; 18 occupied.

-

b =&,

XC

on(r)

J



If the resulting density is the same as the density, then the finial
is minimized. = ng and &g

Thus, the problem is reduced to a selt-consistent field problem.

2
(_j—vz +v,, (7, n)] ¢. = &,¢, : Kohn-Sham equation
m

= n(r) = Z\qsz
But,

() this looks like a system of non-interacting particles in an

effective potential.



(i) it is really a many-body theory for €, and ng.
(i) & — €, is the band structure. (come back to this later.)

Self-consistent Kohn-Sham equations

1. Initial guess: no(r)

2. Calculate effective potential: VO (r)

3. Solve KS equation

4. Calculate electron density: no(r)=%; fo;|¥o,(r)|’
5. Self-Consistent? (N0, go to 1; Yes, output.)
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The Exchange-Correlation Energy Functional
“Adiabatic Gonnection™: Goupling constant integration

2

Introduce A in v, =l‘re_—r,‘, scaling of Coulomb repulsion.
In DFT, functionals depend only on n and e, h, m.

With A, DFT holds again, but functionals depends on A.

Thus, for a given n, there exists an external potential v, that

gives n as the ground state density.

Then, let n(r) be the ground state density corresponding to A=1,
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i.e., to v=v,;=v; and full Coulomb repulsion.

Denote Hy, =T + V), + AU.

Here, V)\Efd3r va(r) n(r),

where at each A, v, is that potential which gives n, i.e., n(r) is
fixed as A varies between 0 and 1.

Also, H)W) = &\W)
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oH
o4

:

: de,
Hellman-Feynman theorem gives di = <l//;,

oH, oV,
and "5, "5

+U.

1
o€
Also, |42 r=a-4,

A=0: €, =T[n]+ §d3r Vo (1)
= T[n] + §d3 r vo n(r): non-interacting system

A=1: € =T,n]+ |d° v; n(r) + Uy[n] + Exc[n]

(By definition, Exc contains T-T; and U-Uy. Exc can be decomposed as

Ex+Ec, where Ex is due to Pauli principles and Ec is due to correlations.)
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Then,

* £1-§)= §d3r vi n(r) - §d3 r vo n(r) + Ug[n] + Exc[n]

3

Hd3 rd’r'n(r)v.(r —rn(r")

Now, other term is
1 ag 1
. £,-6,= !dﬁa—;:_([d/1<%
1
dv
dA| | d’r—Ln(r)+
_! (I F—- ) (7) <W,1

W}t>)
Id3r{vl(r) —vo (M)} n(r)+ %_:[di”d%dw’vc(r - r")( Nw,)

CE n(r)n(r’)ga(r,r’)

o)\(r,I') is pair correlation function.

%+U
oA
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Putting two equations together,

E..[n]= %” d’rd’r'v(r — r’)n(r)n(r')j dig,(r,r')-U,[n]

- %ﬁ d’rd*r'n(r) glr,r) -1 n(r")

'
‘I"—I"

(Since g (r,r") = Id Ag,(r,r") : Coupling-Constant averaged pair

correlation function.)

= jd3rn(r)8XC(7”;”)a {§ - g(r,r';n)}
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o E . n]= Id3r n(r)e,.(r;n)

d3rr g(rar)_ln(rr)

where &,.(r;n) = j |r — r'|

In the local density approximation (LDA),

e(r,n) — & .(n(r)): homogenous system

Simple!
Surprisingly good!
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Meaning of eigen values ¢, etc.

KS equation: {- V +y vty D= @,

Corresponding Green’s function

GDFT(I",]",; 5)22

J

#,(r)g, (r')

8—5j+i5

* Then,

—llmrF de G”" (r,r'; )
V4

1 . 94 2
. ——ﬂlm{—mZI deo(e—¢,) ¢l.(r)‘ }

( ! :Pl—iﬁé‘(x), x:0+j

X+i0 X
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_l éF DFT ' —
or, ﬂImJ‘ deG (7’,’”»5)‘,,:,,, 2

&<Ep

8" =n(r)

From many-body theory, the exact single particle Green’s

function satisfies

—llm j Tde G(r,r'; E)L_ ,=n(r) almost from its definiton
P =r

= Thus, G”"' contains a great deal of G!

* Equations the Green’s functions satisfy: (complex energy z)
Full:
{—Z ~VZ+v(r)+v, (r)} G(r,r';z)+ j dr' X (r,r";2)G(r",r';z2)=0(r—r")
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DFT:
{—Z ~VZ+v(r)+v, (r)} G (r, 1 2) 4 v (G (1,7 2) = S (r = 1)

Thus,

®vxc can be viewed as a local (r=r’), real, static
approximation to self-energy 2(r.r'’;z).

®¢;, are approximation to the single particle excitations, a

g00d mean field approximation to excitation energies.

® Both 2(r,r';z) and vxc give rise to the same density.
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DFT& the Many Body Problem

The Hamiltonian can be written
H=T +V +UH
= T + V +thc + (UH - thc)
— H() + AV

where, of course, V.. could be anything.

However, if we choose

Ve = [d°r [y (1) + v ()] ()

al oU
= ;[VH (1) + Ve (’?)], where v, = §n(llj)
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then

H, :i{ f Vz +v(r)+vH(r)+vXC(r)}

=1

Kohn-Sham Hamiltonian for each particle
N

= Zh(’?)a where hg, = &,9,.
i=1

Now, AV=Uy-Vy is the full, bare, long-range Coulomb repulsion between
pairs, minus a one-body potential vy+vxc.

AV does not change the charge density from H,!

N
However, it gives a big change in the energy: WolHolvo)=2 e

i=1
while €=<W|H|¥> is much different.
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DFT: Progression/Generalization
® Non-relativistic, non magnetic: €[n], n(r)
® Non-relativistic, magnetic: &[ngg], %”(” +meo
® Relativistic, magnetic: €[ju], 4-current jyo(r)

® Non-relativistic, B field: ¢€[ju], charge density, current

density

® t-dependent v (r,t): €[n(t), t'<t]

® Superconducting states: £[n,A], charge density, pair density
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® DFT for excited states (orthogonal to ground state)

® DFT for other properties: momentum distribution function,
Compton profile

®DFT for ferroelectrics (density-polarization functional
theory)

® Temperature-dependent (finite T) DFT

® DFT for the Hubbard model or practically any other model,

exists.
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Properties Calculated Using DFT

c[{R:}), {Ri}= atom positions in solid (or molecule); “relaxation of
structure”

e ground state structure: bcc, fce, hep, Pnma, etc.
(but with many independent coordinates there are many

local minima)

e pressure: P=-0¢/0V (V=volume)
e pressure-driven structure transformations

e phonons: &*¢/0R;OR;
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e elastic constants

e defect energies

Slope:
P=-0g/0V

Slope gives
pressure at which
transformation

occurs

Energy per molecule (V)

Volume per formula unit (au’)
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«({#’}): ground state density

e elastic field gradients

e ionization potential/work function

e Fermi surfaces: usually very good! (although not exact)
Magnetic properties from Spin DFT

e magnetic order of ground states: magnetic impurities

e hyperfine fields at nuclei

e exchange coupling
Electric polarization

Forces onatom - ab initio molecular dynamics (“Car-Parrinello”)
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Effects of constraints: “constrained DFT”

e example: energy vs. f electron occupation number in

ions/atoms

EXcitation energies?:
beginning to, from t-dependent DFT, for finite systems.
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Functional Derivatives and Differentiation

Functional F[n]: function n(r) ====» number F

{F[n(r') ves(r—r')] —F[n(r')]}

ofln]_1im

on(r) &0 £

change n(r) at one point by £0(r-r’)
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* [ixamplel Nj|n]= fd"’r n(r’): particle number

SN [&*r {n("y+ 25 (r—+)} = [d*rn(r)
= lim
on(r) &0 E
. independent of r
zlin(}l d3r'g5(r—r'):1 P
E—> g

o [Examplel Olnl=[d’rP(rin()),  P=P(rin(r))

50 Clim d3r’P(r';n(r’)+85(r—r'))—P(r';n(r'))
on(r) &0 £
!/ 4 4 aP !/ !
{P(r ;n(r ))+55(r —r)+DDD}—P(r ;n(r ))
~lim [ d*F on
-0 E

oP(r'; n(r')) B 8P(r; n(r))

[ Id3r'5(r'—r) P = on(r)

29



. Differentiation: " ):;W”)\za N :particle

ON[n] o NN e
N d’r (PP (r
55 () 55 () | ;w )p(r')

B {¢(r), if i< N (occupied)

0, otherwise
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