
PHY 215C, MidTerm Exam #2

Due: May 25, 2017

May 27, 2017

1. Dirac Free Particle. 40 points.
The Dirac state for a free electron has the space-time dependence and spinor form

Ψ(~r, t) = φ(k)ei
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where ~k is the wavevector of the electron, and spinor φ(k) (commonly comprised of spinors

χ and Φ) is independent of ~r and t. Nk is the “square” of the displayed bispinor, i.e. N
−1/2
k

normalizes the spinor. We use the shorthand γk = h̄k
mc . Show all work in the following

parts. Use the spin degeneracy to simplify all of the following (four solutions become two).

(i) Obtain the eigenvectors and eigenvalues from the t-independent Dirac equation

HDΨ = EΨ; HD = c~α · ~P + βmc2.

Note: this is a 4×4 equation, so there are four eigenvalues and eigenvectors. The correct
spin-up eigenvectors are provided above so some little goof will not mess up the following
subproblems. However, show the steps to solution in detail.

Solution. Without loss of generality, let the motion be along the ẑ direction ~k = kẑ.
Eliminating Φ = c~σ · ~P/(E+mc2)χ in favor of χ and using (~σ · ~P )2 = ~P 2, leads to a scalar
(diagonal) equation

[E2 −m2c4 − h̄2k2c2]χ = 0

for the eigenvalues Ek = ±
√

h̄2k2c2 +m2c4. χ is undetermined, a normalized choice is
χ†=[1,0], spin up. [An aside: this actually corresponds to spin in the ẑ direction in real

space; already at this level the spin is coupled to real space (the orbital) in Dirac theory.]
The spin-down solutions give nothing new, the zeroes in χ and Φ are interchanged with
the non-zero elements.. The ± sign in each eigenspinor corresponds to the corresponding

eigenvalues Ek = ±
√

h̄2k2c2 +m2c4.

(ii) Expand the eigenvalues in powers of h̄k/mc = k/κc ≡ γk to zero-th, first, and second
order, and interpret the result at each level.
Solution.

|Ek| = mc2[1 + γ2k ]
1/2] = mc2[1 +

1

2
γ2k −

1

8
γ4k + ....] ≈ mc2 +

h̄2k2

2m
− γ2k

4

h̄2k2

2m
+ ...

The zero-th term is the rest mass energy, the next term is h̄2k2

2m is simply the non-relativistic
kinetic energy we are very familiar with. The next term can be written in a few ways, here
it is given the interpretation of a correction -γ2k/4 to the non-relativistic kinetic energy.
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(iii) Expand the eigenvalues in the large γk regime, again to lowest, and next lowest, order
in γ−1

k . Try to explain what is up.
Solution. For large γk in the (far) relativistic regime, we can write the expansion as
γk(1+

1

2
γ−2

k + ...). The main term is ±h̄kc, which is the dispersion relation for a massless

particle (photon), only the next correction involves the mass. Expansion in this regime is
questionable because this is in the highly relativistic regime of kinetic energy greater than
the rest mass, where we now know that electron-positron creation can and does occur.

(iv) Expand the eigenvectors to first order in γk to compare the relative sizes of χ and Φ,
for both the positive energy and negative energy eigenstates. Compare the results for the
two independent states.

Solution. The non-trivial term in the eigenvectors is the denominator 1±
√

1 + γ2k . For

the positive energy solution, this is just 2 (to lowest order), so the non-zero component of
Φ is γk/2. For the negative energy solution, we get (expanding) 1− [1+γ2k + ....] = −γk/2.
This being in the denominator, the component of Φ is −2/γk.
If γk is small as usual, this looks disastrous. However, we need to recall that the nor-
malization factor becomes, for the negative energy bispinor, Nk = 1 + (γk/[−2/γ2k ])

2 →
1+(−γk/2)

2 ≈ γ2k/4. Including this factor, the component of Φ becomes −γk/2, the same
magnitude but the opposite sign compared to the positive energy solution.

(v) The Dirac spin matrix ~S is the 4×4 matrix that has ~σ along the (2×2) diagonal. First,
write the general expression for the expectation value < Ψ|~S|Ψ > in terms of χ and Φ.
Then evaluate the contribution to < Ψ|Sy|Ψ > from the two components of χ.

Solution. In the 2×2 (super)space that χ and Φ live within, ~S is diagonal. So

< ~S >=
h̄

2
[χ†~σχ+Φ†~σΦ].

Now, χ† = [1, 0], and multiplying χ†σyχ gives the (1,1) component of σy, which is zero.
Analogously, Φ will also pull out the (1,1) component of σy, also giving zero. So< Sy >= 0.
[Additional observation: σx also will give zero. This χ is pure spin in ẑ direction.]

(vi) What will the eigenspinor(s) whose expectation value is < ~S >= h̄
2
(1, 0, 0)?

Solution. For x̂ spin, χ† = [1, 1]/
√
2 and Φ will also be proportional to this. This is

a direct generalization of spinors we have studied earlier to the two-component χ and Φ
spinors.
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2. Dirac Electron in an Infinite Square Well. 10 points.

Consider a Dirac electron in one dimension in an infinite square well potential, V = 0 for
−a < x < +a, V = +∞ outside this well. The normal boundary condition applies, and
recall that the free particle solution is already given for you above.

(i) Solve for the ground state energy. (We are only interested in the positive energy
solutions).
Solution. Solution, involving the usual matching at boundaries, is provided on a separate
sheet.

(ii) For what value of a, the well halfwidth, will the ground state energy be 10% of the
(electron) rest mass energy?
Solution. This will also be given on the separate sheet.
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3. Scattering From of a Bound Dimer. 30 points.

A scattering center consists of two heavy (i.e. fixed in position) δ-function potentials at ~R
and −~R: V (r) = r3oVo[δ(~r− ~R)+ δ(~r+ ~R)]. (The r3o factor makes Vo have units of energy.)
Note that this scatterer is not spherically symmetric.

(i) Calculate the scattering amplitude in the Born approximation.

Solution.

(i) The scattering amplitude is

f(θ, φ) = − µ

2πh̄2

∫

e−i~q·~rV (~r)d3r = −µVor
3
o

2πh̄2
(e−i~q·~R + ei~q·

~R) = −2µVor
3
o

2πh̄2
cos(~q · ~R).

Here ~q ≡ ~kf − ~ki with both initial and final wavevectors having length k. Then |~q| = q =
2ksin(θ/2).

(ii) Consider the two cases where the line separating the two scatterers lies (1) parallel to
the incoming particle along the ẑ axis, and (2) perpendicular, along the x̂ axis. Which
orientation leads to the largest forward scattering amplitude? Is this independent of en-
ergy?
Solution. For parallel alignment (1) cos(~q · ~R) → cos(qzR), for perpendicular align-
ment (2) it is cos(qxR), R ≡ |~R|. Recall that ~q = ~kf − ~ki, with ~ki = kẑ, and ~kf =
k(sinθcosφ, sinθsinφ, cosθ), so ~q = k(sinθcosφ, sinθsinφ, cosθ − 1). Then
(1) cos(qzR) = cos(kR [cosθ − 1]),
(2) cos(qxR) = cos(kR sinθsinφ).
Forward scattering is θ = 0, and in each case the argument of cosine is zero. The ampli-

tudes are equal (and at the maximum value for any angle), and are independent of energy

(k).

(ii) Consider scattering at θ = π/2 and describe the differences in the magnitudes of the
scattering amplitudes. A simple sketch might help.
Solution. For this case θ = π/2 we have
(1) cos(qzR) = cos(kR [zero− 1]) = cos(kR),
(2) cos(qxR) = cos(kR sinφ).
So, these factors differ by having axial anisotropy for the x̂-directed pair. It is maximum
φ = 0 or π, i.e. maximum qx. At φ = ±π/2, f(θ, φ) is the same as for the ẑ-directed pair
– they are, after all, symmetrically oriented in this case of scattering in the ±ŷ directions.
The scattering strength oscillates with energy (k), oscillating faster with larger separation
R.

(iv) Considering again the same two cases as in part (ii), which falls off the fastest as θ
increases from zero? Interpret briefly.
Solution.

The angular factors for small θ are

(1) cos(kR[cosθ − 1]) ≈ cos(
1

2
θ2kR) ≈ 1− 1

4
θ4(kR)2, (1)

(2) cos(kRθsinφ) ≈ 1− 1

2
θ2(kR)2.

The variation of case (1) is much slower (θ4) than for the perpendicular alignment (2).
The dependence on energy is the same. Interpret? It is a matter of phase interference,
but that is what this problem is all about – with the mathematics doing everything for
us. One thing this result does point out is that the angular dependence of scattering can
be used to learn some things about the internal workings of the scattering center.
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4. The Relativistic H Atom. 20 points.

The eigenvalues for the Dirac hydrogen atom are given by

En,j/mc2 = [1 + (
α

n− (j + 1

2
) + [(j + 1

2
)2 − α2)]1/2

)2]−1/2.

Here n is the principal quantum number and j is the value of the total angular momentum
J = L+ S of the state, and α = e2/h̄c is the fine structure constant.

(i) Find the difference in energy between the 2p1/2 and 2p3/2 states to lowest non-vanishing
order in α2. Express this difference in a convenient atomic scale unit (eV, meV, Ry, mRy,
etc.), i.e. not just as a fraction of the rest mass energy.
Solution. The two states in question are the n=2, j=1/2 and 3/2 states. The rest is
largely a practice in expanding in the (very) small parameter α2. The zero-th order result
will be just the rest mass energy. The first order (in α2) result will be the usual (non-
relativistic) result En = 1Ry/n2. So the expansion must be to second order, i.e. to include
α4 terms. Might as well begin expanding at the “innermost” layer of the expression to
order α2. Notation: let J ≡ j + 1

2
. Then

[J2 − α2)]1/2 = J(1− α2

J2
)1/2 ≈ J(1− 1

2

α2

J2
)

so the denominator is

n− J + [J2 − α2)]1/2 ≈ n− J + (J − 1

2

α2

J
) = n(1− 1

2

α2

nJ
).

Inverting this keeping the α2 term (which will be multiplied by the α2 already in the
numerator, we obtain

Enj/mc2 ≈ (1 +
α2

n2
[1− 1

2

α2

nJ
]−2)−1/2 (2)

≈ (1 +
α2

n2
[1 +

α2

nJ
])−1/2

= (1 +
α2

n2
+

α4

n3J
])−1/2

≈ (1− 1

2

α2

n2
+

3

8

α4

n4
− 1

2

α4

n3J
]

= 1 +
1

2

α2

n2
− 1

2

α4

n4
(
n

J
− 3

4
)

with J ≡ j+1. Observe: the coefficient in the α2 term is correct, giving the non-relativistic
eigenvalues of (1Ha/2)/n2 = 1Ry/n2.
The question is the difference between the 2p1/2 and 2p3/2 energies. The first minus the
second is simply from the last term involving n/J = n/(j + [1/2]) with n=2:

∆E = −mc2
1

2

α4

n4
(
n

2
− n

1
) = −1

2

mc2α4

n4
[−1] = 2Ry

1

2

α2

16
=

α2

16
Ry.

This is 3.3×10−6 Ry = 4.5 ×10−5 eV = 45 µeV, with the 2p3/2 level higher in energy.
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