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12.1 Time-dependent potentials: general formalism

Consider then the Hamiltonian A = H, + V(t), where all time-dependence
enters through the potential V (¢). In the Schrédinger representation, the
dynamics of the system are specified by the time-dependent wavefunction,
[(t))s through the Schridinger equation iho|i(t))s = H(t))s. However,
iIn many cases, and in particular with the current application, it is convenient
to work in the Interaction representation,! defined by

()1 = et/ Al (1))

¢ where [1(0))1 = |4(0))s. With this definition, one may show thit the wave-
function obeys the equation of motion (exercise)

RO (8))1 = VA(t) [ ()1 (12.1)

where Vi(t) = ¢tHot/hy/ o~iHot/h Then, if we form the eigenfunction expansion,
()1 = 3, cn(t)|n), and contract_the equation of motion with a general
state, (n|, we obtain o o

P

-

ihém (t) = Z an(t)eiwmntcn(t) , (12.2)

'Note how this definition differs from that of the Heisenberg representation, [y =
eim/hldj(t))s in which all time-dependence is transferred into the operators.
. 5
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> INFO. The two-level system plays a special place in the modern development,
of quantum theory. In particular, it provides a platform to encode the simplest
quantum logic gate, the qubit. A classical computer has a memory made up of
bits, where each bit holds either a one or a zero. A quantum computer maintains a
sequence of qubits. A single qubit can hold a one, a zero, or, crucially, any quantum
superposition of these. Moreover, a pair of qubits can be in any quantum superposition
of four states, and three qubits in any superposition of eight. In general a quantum
computer with n qubits can be in an arbitrary superposition of up to 2" different
states simultaneously (this compares to a normal computer that can only be in one
of these 2" states at any one time). A quantum computer operates by manipulating
those qubits with a fixed sequence of quantum logic gates. The sequence of gatés to
be applied is called & quantum algorithm.

An example of an implementation of qubits for a quantum computer could start
with the use of particles with two spin states: [1) and [1), or |0) and [1)). In fact any
system possessing an observable quantity A which is conserved under time evolution
and such that A has at least two discrete and sufficiently spaced consecutive eigenval-
ues, is a suitable candidate for implementing a qubit. This is true because any such
system can be mapped onto an effective spin-1/2 system.

> EXAMPLE: Dynamics of a driven two-level system: Let us consider a
two-state system with

~ (B 0 _ 0 dewt
H"‘(o Ez)’ V(t)‘<<se-fwt 0 )

Specifying the wavefunction by the two-component vector, c(t) = (c1(t) ca(t)), Eq. (12.2)
translates to the equation of motion (exercise)

Hw—way )t
thGic =6 < ; : ' ) c(t),

et w—wa)t 0

where wo; = (B2 — E1)/h. With the initial condition c1(0) = 1, and ¢p(0) = 0, this
equation has the solution,

62

. .2 )2 — 1 _ 2
= 82 4 12 (w — way)?/4 sin” ¢, le1(B)* =1 — |ea(t)[?,

lea(t)[?

where Q = ((§/h)2+ (w—w21)?/4)'/? is known as the Rabij frequency. The solution,
which varies periodically in time, describes the transfer of probability from state 1 to

state 2 and back. The maximum probability of occupying state 2 is a Lorentzian with
A ——— o i e e, I e

,72

Y2 + A2 (w — wo1)?/4’

le2(t) [ax =

L e . —— ]

taking the value of unity at resonance, w = wny. 7 N N am.mqﬁ'ﬁ
g o1 ’ﬂqer& 5 no dlt/&uﬁu\f den ‘

> EXERCISE. Derive the solution from the equations of motion for c(t). Hint:
eliminate ¢; from the equations to obtain a second order differential equation for cs.

& INFO. The dynamics of the driven two-level system finds practical application
in the Ammonia maser: The ammonin molecule NH3 has a pryramidal structure
with an orientation characterisec by the position of the “lone-pair” of electrons sited
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on the nilrogen atom. At low temperature, the molecule can occupy bwo possible
states, |A) and |8}, involving symmetric (8) or an antisymmetric (A) atomic con-
figurations, separated by a small energy splitting, A, (More precisely, along the
axis of three-fold rotational symmetry, the effective potential energy of the nitrogen
atom fakes the form of a double-well. The tunneling of the nitr igen atom through the
double well leads to the symmetric and asymmetric combination of states.) In a time-
dependent, uniform electric field the molecules experience a potential V' = —p; - B,
where E = Fé, coswt, and f14 denotes the electric dipole moment. Since 4y isodd un-
der parity transformation, PP — —pty, and P|A) = —|A) and P|S) = |8), the ma-
trix elements of the electric dipole moment are off-diagonal: (S| 1alS) = (Alpey|Ay =0
and (S|ps4|A) = (S|py|4) # 0.

If we start with all of the molecules in the symmetric ground state, we have
shown above that the action of an oscillating field for a particular time can can drive
a collection of molecules from their ground state into the antisymmetric first excited
state. The ammonia maser works by sending a stream of ammonia molecules, traveling
al known velocity, down a tube having an oscillating field for a definite length, so the
molecules emerging at the other end are all (or almost all, depending on the precision
of ingoing velocity, etc.) in the first excited state. Application of a small amount of
electromagnetic radiation of the same frequency to the outgoing molecules will cause
some to decay, generating intense radiation and therefore a much shorter period for
all to decay, emitting coherent radiation.

Charles Hard Townes 1915-

(left)
is an American
Nobel prize-

winning physicist
and educator,
Townes is known
for his work on
the theory and
application of the maser ~ microwave
amplification by stimulated emission
of radiation, on which he got the
fundamental patent, and other work
in quantum electronics connected
with both maser and laser devices.
He received the Nobel Prize in
Physics in 1964.
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