Lecture 2: Berry Phase and Chern number

Berry Phase review

Assuming a physical system is depended on some parameters $\mathbf{R}=(R_1,R_2,\cdots,R_N)$, we have the *snapshot* Hamiltonian $H(\mathbf{R})$, its eigen-values and eigen-states:

$$|H(\mathbf{R})|n(\mathbf{R})
angle = E_n(\mathbf{R})|n(\mathbf{R})
angle$$

where $|n(\mathbf{R})\rangle$ can have an arbitrary phase prefactor.

The parameters $\mathbf{R}(\mathbf{t})$ are slowly changed with time t, then the adiabatic evolution of time-dependent Schrodinger equation:

$$irac{d}{dt}|\psi(t)
angle=H({f R(t)})|\psi(t)
angle$$

Take the Ansatz: $|\psi(t)
angle=e^{i\gamma_n(t)}e^{-i\int_0^tE_n({f R}({f t}'))dt'}|n({f R}({f t}))
angle$, we have

$$-\left(rac{d}{dt}\gamma_{n}
ight)\left|n
ight
angle+i\left|rac{d}{dt}n
ight
angle=0$$

That gives the Berry phase expression:

$$\gamma_n(\mathcal{C}) = \int_{\mathcal{C}} i \langle n(\mathbf{R}) |
abla_{\mathbf{R}} n(\mathbf{R})
angle d\mathbf{R}$$

Define Berry connection:

$$\mathbf{A}^{(n)}(\mathbf{R}) = i \langle n(\mathbf{R}) |
abla_{\mathbf{R}} n(\mathbf{R})
angle = -Im \langle n(\mathbf{R}) |
abla_{\mathbf{R}} n(\mathbf{R})
angle$$

Gauge transformation:

$$|n({f R})
angle
ightarrow e^{ilpha({f R})}|n({f R})
angle$$

$$\mathbf{A}^{(n)}(\mathbf{R})
ightarrow \mathbf{A}^{(n)}(\mathbf{R}) -
abla_{\mathbf{R}} lpha(\mathbf{R})$$

 $\gamma = \oint {f A}({f R}) d{f R}$ is gauge invariant.

Gauge and Parallel transportation: recalling the arbitrary phase

$$|n({f R})
angle
ightarrow e^{ilpha({f R})}|n({f R})
angle$$

why shouldn't we choose one which makes

Lecture 2 : Berry Phase and Chern number — Physi... $\frac{d}{dt}|n\rangle \equiv 0$ http://phyx.readthedocs.io/en/latest/TI/Lecture notes...

from

$$-\left(rac{d}{dt}\gamma_{n}
ight)\left|n
ight
angle +i\left|rac{d}{dt}n
ight
angle =0$$

then we have

$$\gamma_n = 0$$

There is no Berry Phase in this frame, which is called *inertial frame*, the condition $\frac{d}{dt}|n\rangle\equiv 0$ is called *parallel transportation*. All the information resorted to $|n(\mathbf{R})\rangle$, similar to a transformation from active frame to passive frame.

Berry curvature

Define the Berry curvature:

$$\mathbf{B}(\mathbf{R}) = \nabla_{\mathbf{R}} \times \mathbf{A}^{(n)}(\mathbf{R})$$

Using Stokes theorem, we have for the Berry Phase:

$$\gamma_n(\mathcal{C}) = \int_{\mathcal{S}} \mathbf{B}^{(n)}(\mathbf{R}) d\mathcal{S}$$

where $\mathcal S$ is any surface whose boundary is the loop $\mathcal C$.

Two useful formula:

•
$$B_j = \epsilon_{jkl} \partial_k A_l = -Im \epsilon_{jkl} \partial_k \langle n | \partial_l n \rangle = -Im \epsilon_{jkl} \langle \partial_k n | \partial_l n \rangle$$
, that is $\mathbf{B}^{(n)} = -Im \sum_{n' \neq n} \langle \nabla n | n' \rangle \times \langle n' | \nabla n \rangle$.

$$ullet$$
 ${f B}^{(n)}=-Im\sum_{n'
eq n}\langle
abla n|n'
angle imes\langle n'|
abla n
angle$ to calculate $\langle n'|
abla n
angle$, start from:

$$egin{aligned} H(\mathbf{R})|n
angle &= E_n|n
angle \ \Rightarrow (
abla H)|n
angle + H|
abla n
angle &= (
abla E_n)|n
angle + E_n|
abla n
angle \ \Rightarrow \langle n'|
abla H|n
angle + \langle n'|H|
abla n
angle &= E_n\langle n'|
abla n
angle \ \Rightarrow \langle n'|
abla n
angle &= \frac{\langle n'|
abla H|n
angle}{E_n - E_{n'}} \end{aligned}$$

then we get:

$$\mathbf{B}^{(n)} = -Im\sum_{n'
eq n} \langle
abla n | n'
angle imes \langle n' |
abla n
angle = -Im\sum_{n'
eq n} rac{\langle n |
abla H | n'
angle imes \langle n' |
abla H | n
angle}{(E_n - E_{n'})^2}$$

We can use time-independent perturbation theory to derive the changes of instant snapshot basis:

$$H(\mathbf{R})|n(\mathbf{R})
angle = E_n(\mathbf{R})|n(\mathbf{R})
angle$$

we have

$$|n(\mathbf{R}+\mathbf{\Delta}\mathbf{R})
angle = |n(\mathbf{R})
angle + \sum_{m
eq n} rac{\langle m|H(\mathbf{R}+\mathbf{\Delta}\mathbf{R})-H(\mathbf{R})|n
angle}{E_n-E_m}|m(\mathbf{R})
angle$$

We see that $\langle n|\Delta n(\mathbf{R})\rangle=0$ which means we have used *parallel transport* gauge, more general, we should add a arbitrary phase factor in the above equation for $|n(\mathbf{R}+\Delta\mathbf{R})\rangle$.

$$|
abla_{f R}|n
angle = \sum_{m
eq n} rac{\langle m|
abla_{f R}H|n
angle}{E_n-E_m}|m
angle$$

From ${f B}^{(n)}=-Im\sum_{n'
eq n}\langle
abla n|n'
angle imes\langle n'|
abla n
angle$ we also get:

$$\mathbf{B}^{(n)} = -Im\sum_{n'
eq n}rac{\langle n|
abla H|n'
angle imes\langle n'|
abla H|n
angle}{(E_n-E_{n'})^2}$$

Also notice:

$$egin{aligned} \sum_{n}\mathbf{B}^{(n)} &= -Im\sum_{n}\sum_{n'
eq n}rac{\langle n|
abla H|n'
angle imes\langle n'|
abla H|n
angle}{(E_{n}-E_{n'})^{2}} \ &= -Im\sum_{n}\sum_{n'
eq n}rac{\langle n|
abla H|n'
angle imes\langle n'|
abla H|n
angle + \langle n'|
abla H|n
angle imes\langle n|
abla H|n'
angle}{(E_{n}-E_{n'})^{2}} \ &= 0 \end{aligned}$$

Which gives:

$$\sum_n \gamma_n(\mathcal{C}) = \int_{\mathcal{S}} \sum_n \mathbf{B}^{(n)}(\mathbf{R}) d\mathcal{S} = 0$$

Benchmark: Spin-1/2

Gauge!Gauge!Gauge!

2-level Hamiltonian $H(\mathbf{R}) = h_0(\mathbf{R})\sigma_0 + \mathbf{h}(\mathbf{R}) \cdot \sigma$, we can set $h_0 = 0$, because it does not affect the eigenstates, eigen-energy are $\pm |\mathbf{h}|$, introduce the unit vector: $\hat{\mathbf{h}} = \mathbf{h}/|\mathbf{h}|$, the endpoints of $\hat{\mathbf{h}}$ map out the surface of a unit sphere, called the *Bloch sphere* shows below:

3 of 4 05/26/2017 05:17 PM

