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In mathematical physics, the WKB approximation or WKB method is a method for finding
approximate solutions to linear differential equations with spatially varying coefficients. It is
typically used for a semiclassical calculation in quantum mechanics in which the
wavefunction is recast as an exponential function, semiclassically expanded, and then either
the amplitude or the phase is taken to be slowly changing.

The name is an initialism for Wentzel–Kramers–Brillouin. It is also known as the LG or
Liouville–Green method. Other often-used letter combinations include JWKB and WKBJ,
where the "J" stands for Jeffreys.
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Brief history

This method is named after physicists Wentzel, Kramers, and Brillouin, who all developed it
in 1926. In 1923, mathematician Harold Jeffreys had developed a general method of
approximating solutions to linear, second-order differential equations, which includes the
Schrödinger equation. Even though the Schrödinger equation was developed two years later,
Wentzel, Kramers, and Brillouin were apparently unaware of this earlier work, so Jeffreys is
often neglected credit. Early texts in quantum mechanics contain any number of
combinations of their initials, including WBK, BWK, WKBJ, JWKB and BWKJ. An authoritative
discussion and critical survey has been given by R B Dingle.[1]

Earlier references to the method are: Carlini in 1817, Liouville in 1837, Green in 1837,
Rayleigh in 1912 and Gans in 1915. Liouville and Green may be said to have founded the
method in 1837, and it is also commonly referred to as the Liouville–Green or LG method.
[2][3]

The important contribution of Jeffreys, Wentzel, Kramers and Brillouin to the method was the
inclusion of the treatment of turning points, connecting the evanescent and oscillatory
solutions at either side of the turning point. For example, this may occur in the Schrödinger
equation, due to a potential energy hill.

WKB method
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Generally, WKB theory is a method for approximating the solution of a differential equation
whose highest derivative is multiplied by a small parameter ε. The method of approximation
is as follows.

For a differential equation

assume a solution of the form of an asymptotic series expansion

in the limit δ→ 0. The asymptotic scaling of δ in terms of ε will be determined by the
equation – see the example below.

Substituting the above ansatz into the differential equation and cancelling out the
exponential terms allows one to solve for an arbitrary number of terms S

n

(x) in the

expansion.

WKB theory is a special case of multiple scale analysis.[4][5][6]

An example

This example comes from the text of Bender and Orszag.[6] Consider the second-order
homogeneous linear differential equation

where . Substituting

results in the equation

To leading order (assuming, for the moment, the series will be asymptotically consistent), the
above can be approximated as
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In the limit δ→ 0, the dominant balance is given by

So δ is proportional to ε. Setting them equal and comparing powers yields

which can be recognized as the Eikonal equation, with solution

Considering first-order powers of ε fixes

This is the unidimensional transport equation, having the solution

where k
1

 is an arbitrary constant.

We now have a pair of approximations to the system (a pair, because S
0

 can take two signs);

the first-order WKB-approximation will be a linear combination of the two:

Higher-order terms can be obtained by looking at equations for higher powers of δ. Explicitly,

for n ≥ 2.

Precision of the asymptotic series

The asymptotic series for y(x) is usually a divergent series, whose general term δn

 S

n

(x) starts

to increase after a certain value n=n

max

. Therefore, the smallest error achieved by the WKB

method is at best of the order of the last included term.

For the equation
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with Q(x) <0 an analytic function, the value  and the magnitude of the last term can be

estimated as follows:[7]

where  is the point at which  needs to be evaluated and  is the (complex) turning

point where , closest to .

The number n
max

 can be interpreted as the number of oscillations between  and the closest

turning point.

If  is a slowly changing function,

the number n
max

 will be large, and the minimum error of the asymptotic series will be

exponentially small.

Application to the Schrödinger equation

The above example may be applied specifically to the one-dimensional, time-independent
Schrödinger equation,

which can be rewritten as

The wavefunction can be rewritten as the exponential of another function Φ (which is closely
related to the action), which could be complex,

so that

where Φ ' indicates the derivative of Φ with respect to x. This derivative Φ ' can be separated
into real and imaginary parts by introducing the real functions A and B,
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The amplitude of the wavefunction is then

while the phase is

The real and imaginary parts of the Schrödinger equation then become

Next, the semiclassical approximation is used. This means that each function is expanded as
a power series in ħ. From the above equations, it can be seen that the power series must
start with at least an order of 1/ħ to satisfy the real part of the equation. In order to achieve a
good classical limit, it is necessary to start with as high a power of Planck's constant ħ as
possible:

To the zeroth order in this expansion, the conditions on A and B can be written,

The first derivatives A'(x) and B'(x) were discarded, because they include factors of order 1/ħ,
higher than the dominant ħ−2.

Then, if the amplitude varies sufficiently slowly as compared to the phase ( ), it
follows that

which is only valid when the total energy is greater than the potential energy, as is always
the case in classical motion.

After the same procedure on the next order of the expansion, it follows that
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On the other hand, if it is the phase that varies slowly (as compared to the amplitude), (
) then

which is only valid when the potential energy is greater than the total energy (the regime in
which quantum tunneling occurs).

Finding the next order of the expansion yields, as in the example of the previous section,

It is evident in the denominator that both of these approximate solutions become singular
near the classical turning points, where E = V(x), and cannot be valid. These are the
approximate solutions away from the potential hill and beneath the potential hill.

Away from the potential hill, E>V(x), the particle acts similarly to a free wave—the
wave-function is oscillating. Beneath the potential hill, E<V(x), the particle undergoes
exponential changes in amplitude: barrier penetration.

To complete the derivation, the approximate solutions must be found everywhere and their
coefficients matched to comprise a global approximate solution. The approximate solution
near the classical turning points E = V(x) is yet to be found.

For a classical turning point x1 and close to E = V(x

1

), the term  can be

expanded in a power series,

To first order, one finds

This differential equation is known as the Airy equation, and the solution may be written in
terms of Airy functions,
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This solution should connect the far away and beneath solutions. Given the two coefficients
on one side of the classical turning point, the 2 coefficients on the other side of the classical
turning point can be determined by using this local solution to connect them. Thus, a
relationship between  and  can be found.

Fortunately, the Airy functions will asymptote into sine, cosine and exponential functions in
the proper limits. The relationship can be found to be as follows (often referred to as
the"connection formulas"):

Now the global (approximate) solutions can be constructed. The same can be done at the
other turning points; assume there is just another one, x2. The expression there, however,

will appear different than the one determined above at x1 by a difference in the argument of
these trigonometric functions.

Thus, single-valuedness of the resulting wave-function dictates an effective Bohr-Sommerfeld
quantization phase space constraint, modified by a Maslov correction, here 1/2, which thus
serves to specify the energy eigenvalues, E,

where  are the turning points of the potential discussed, where the integrand vanishes.

(For an estimate of the errors in this approximation, cf. Ch 15.6 of Hall.)

Applications of the WKB method to Schrödinger equations with a large variety of potentials
and comparison with perturbation methods and path integrals are treated in Müller-
Kirsten.[8]

See also

Instanton
Airy function
Field electron emission
Langer correction
Method of steepest descent / Laplace Method
Method of matched asymptotic expansions
Old quantum theory
Perturbation methods
Quantum tunneling
Slowly varying envelope approximation
Lagrangian Grassmannian#Maslov index
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