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Introduction 
 

In this student laboratory, various calculations of the electronic bandstructure of a 

one-dimensional crystal are performed with the Kronig-Penney (KP) model.1 This 

model has an analytical solution and therefore allows for simple calculations. More 

realistic models always require extensive numeric calculations, often on the fastest 

computers available. The electronic band structure is directly related to many 

macroscopic properties of the material and therefore of large interest. Nowadays, 

hypothetical (nonexistent) materials are often investigated by band structure 

calculations – and if they show attractive properties, researchers try to prepare these 

materials experimentally. 

 

The KP model is a strongly simplified one-dimensional quantum mechanical model of 

a crystal. Despite of the simplifications, the electronic band structure obtained from 

this model shares many features with band structures that result from more 

sophisticated models. 

 

 

Details of the Kronig-Penney model 
 

The KP model is a single-electron problem. The electron moves in a one-dimensional 

crystal of length L. The periodic potential that the electrons experience in the crystal 

lattice is approximated by the following periodical function. 

 

                                                 
1 R. de L. Kronig and W. G. Penney, Proc. Roy. Soc. (London) A 130 (1931) 499. 



 

Figure 1: Potential for the electron in the Kronig-Penney model. 

 

 

The regions denoted II correspond to the positively charged ions of the crystal lattice. 

The regions denoted I represent the empty spaces between the ions. It is the choice of 

this oversimplified potential that makes an analytical solution possible. The lattice 

parameter is a = d + s.  

The KP potential is defined by three paramters, e.g., V0, a, and d. The choice of zero 

on the energy axis has no influence on the physics of the problem. 

 

The single-electron problem is described by the Schrödinger equation. 
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Equation (1) can be given separately for regions I and II: 
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The general solutions are 
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The coefficients A, B, C, D are complex constants determined by the boundary 

conditions and the normalizing  
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The boundary conditions are that both ψ and xddψ are continuous functions of x:  
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Further relations between the coefficient can be obtained from Bloch’s theorem. Each 

stationary solution of the Schrödinger equation for a periodical potential can be 

written in the form 

 

[ ] [ ] [ ]ikxxux kk exp=ψ                                               (6) 

 

where uk[x] has the same periodicity as the potential. From equation (6), it also 

follows that  



[ ] [ ] [ ]xikaax kk ψψ exp=+      (7) 

 

which means that a translation by a only results in a phase shift of exp[ika]. The same 

translation symmetry is valid for the derivative of the wave function. 

By considering the wave function at the points -d and s, we obtain 
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and from the derivatives at -d and s, we have 
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The four equations (5, 8, 9) form a homogeneous linear system of equations. In order 

to obtain nontrivial solutions, the system determinant must vanish. This condition 

leads to the final equation 

 

[ ]

[ ] [ ] [ ] [ ].sinsin
2

coscos

cos

22

sdsdF

Fka

βα
αβ

αββα +
−=

=
                      (10) 

 

Equation (10) relates energies E and indices k of possible Bloch functions. E is 

contained in the equation via α and β. Equation (10) only has real solutions for k in 

certain energy intervals, when 1<F . These solutions correspond to wavelike 

solutions. For 1>F , there are no Bloch electrons. The corresponding energy 

intervals are denoted energy or band gaps. 

 

 

 



Assignments 
 

You will implement equation (10) in Matlab and investigate several physical 

situations with the help of the implemented functions. The Matlab help function 

contains a lot of information and the instructions are rather easy to read. Matlab is 

very popular in Sweden, both at universities and in industry. ABB, e.g., requires 

knowledge of Matlab for many positions. In order to make the programming part a bit 

easier, we have included substantial guiding. 

 

Start by implementing the script kpmain, which defines global variables (electron 

mass, h , V0, a, d), constants, and sets a path to the folder where you will save your 

functions.  

 
% kpmain 

% kpmain defines global variables, constants, and sets a path 

 

global me hbar V0 a d 

 

me=5.68572e-32; 

hbar=6.58199e-16; 

path('X:/xxxx/xxxx/xxxx/xxxx',path);  

 

The most important function to be implemented is k[E], i.e., the wavenumber (or one-

dimensional wavevector) as a function of energy. Write a function k(E) that 

calculates the real part of another function kv(E), which calculates k from equation 

(10). Write a separate function F(E) that calculates F in equation (10). kv(E)calls 

F(E). F(E) itself calls the functions alpha(E) and beta(E), where 

alpha(E) calculates α and beta(E) calculates β from equation (3). As an 

example, possible implementations of  kv(E) and alpha(E) are given below. You 

might wonder why the electron mass has such a strange value. The reason is the 

chosen system of units: the laboratory uses the units Ångström for length, Å-1 for 

wave number, and eV for energy. If you define the electron mass as it is done in the 

example below, your results will be given in the above units. These units are much 

more convenient than SI units in the context of this laboratory. 

 



% k(E) 

% k(E) calculates the real part of the wave vector as a function of  

% energy. 

 

function [res]=k(E) 

 

vect=kv(E); 

le=length(vect); 

for j=1:1:le 

 if (abs(vect(j)) ~= real(vect(j))) % returns NaN in 

  vect(j)=NaN;   % the band gap 

 end; 

end; 

res=vect; 

 

 
% alpha: 

% alpha calculates alpha = sqrt(2*me*E/hbar^2) 

 

function [res] = alpha(E) 

global me hbar 

 

res = sqrt(2*me*E)/hbar; 

 

The free-electron model 

 

The KP model can of course be used to obtain the band structure for the case of free 

electrons as well. In this lab, we will model ‘one-dimensional aluminum’. Aluminum 

has a lattice constant of 4.05 Å. For our KP model, we choose to model aluminum 

along a direction that cuts through atomic planes with the highest packing density, 

i.e., we model along the [111] direction.  

 

We choose a in our model to be the distance between two (111) planes. Calculate this 

distance and define the variable a, either directly in the command window or via a 

script. To start with, define 2ad = . As we are investigating free electrons, set 

00 =V .  

 



Plot the band structure for energies between 0 and 30 eV. You can, e.g., write in the 

command window: 

 
E=0.1:0.1:30;  

plot(k(E),E); 

 

Write a function to calculate the band structure for free electrons and compare with 

the band structure obtained by the KP model. You can add graphs into an existing 

figure window by use of the command hold on. hold on can be switched off 

again by hold off. Can you observe any difference? 

 

Nearly free electrons 

 

Now raise the potential barrier to 0.1 eV. Why is this a low barrier – to which quantity 

should you compare in order to decide whether the barrier is low or high? 

 

Can you find any energy gap between the first and second band? – Zoom into the 

figure in order to determine the size of the bandgap. Note that you will obtain too 

large a value if you plot in large steps. Steps of 0.1 eV, e.g., are too large here. 

 

For nearly free electrons, the following can be shown (compare Kittel or Hook&Hall): 

The size of the first band gap is approximately 2|V1|, where V1 is the first term in the 

Fourier development of the potential. In general, the n-th Fourier coefficient of a 

potential U[x] with the period T is 
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In the case of the KP potential, we have 
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Calculate V1 and compare 2|V1| with the value that you obtained from your plot. When 

you calculate 2|V1|, you will see that the increase of the band gap is proportional to V0. 

Set 2.00 =V and check whether this is true for your KP model. 

 

Band structure for stronger potential 

 

Consider now stronger potential wells by increasing V0 to 5 eV and reducing d to 1 Å. 

Plot the band structure for energies from 0 to 35 eV. Have the band gaps increased in 

size? By which factor has the first gap increased? 

 

Surface states 

 

Inside the band gap, no real solutions exist for k[E]. However, solutions with 

imaginary k can be obtained. Imaginary k means that the wave function cannot be 

delocalized over the whole crystal because its amplitude would grow to infinity in one 

direction. The wavefunction with imaginary k can be written as  

 

[ ] [ ].expexp xkBxkA ++−=ψ    (13) 

 

Such a solution to the Schrödinger equation can exist as a surface state. For the left 

side of a one-dimensional crystal, e.g., the choice 0=B  yields a wave function that 

has the value A at the crystal surface and decays exponentially inside the crystal. 

 

Plot the imaginary part of k[E]. To this end, implement a function imk(E) that 

calculates the imaginary part of the wave vector. Comment on your results. (You can 

compare your results to Figure 12 on page 196 in the textbook by Kittel, seventh 

edition). Over how many atomic layers does a surface state extend in the center of the 

first bandgap? 

 



Group velocity 

 

Study the group velocity as a function of k in the first band. Define a function vg(E) 

for this purpose. The group velocity is defined as  
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What is the maximum vg, expressed in percents of the velocity of light?  

Can you give a physical explanation for this behaviour of vg  when approaching the 

boundary of the Brillouin zone? 

 

Effective mass 

 

Calculate the effective mass normalized to the mass of a free electron as a function of 

the energy and discuss the results. Give a physical interpretation of the change in sign 

of the effective mass. The effective mass is defined as  
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Laboratory report  
 

The report should be a self-consistent piece of work. This means that your report 

should be independent of this instruction. However, you can closely follow the order 

employed in this instruction, i.e., start with an introduction into the KP model and 

then introduce the different special cases and present and discuss your results. Please 

include your Matlab code in an appendix. 

 


