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Abstract

Density functional theory (DFT) based electronic structure calculations have been

widely used to study, and have successfully described, various properties of many con-

densed matter systems. In my research, I have applied DFT to study the microscopic

mechanisms of magnetism and superconductivity in several strongly correlated rare

earth materials, conventional superconductor yttrium and calcium under high pres-

sure, and the newly discovered iron-pnictide superconductors.

This dissertation is divided into 5 chapters. After a short introduction to elec-

tronic structure calculations and several condensed matter systems of current inter-

ests in chapter one, I briefly describe DFT, linear response method, tight binding

approach and Wannier functions in chapter two.

Chapter three is devoted to three strongly correlated rare-earth materials. First,

the evolution of the magnetic moment and various features of the electronic structure

of fcc Gd metal under pressure are studied using the LDA+U correlated band method.

I found that the Gd magnetic moment is very robust under pressure, even up to 500

GPa. The occupation of 4f orbitals is found to increase under pressure, which is

consistent with experimental x-ray spectra. Then I apply the LDA+U method to

study the chemical bonding and changes in 4f states across the lanthanide series

in RB4 (R= rare earth) compounds and find that a set of boron bonding bands

are well separated from the antibonding bands. The trends in the mean 4f level

for both majority and minority, and occupied and unoccupied, states are presented

and interpreted. At last, I calculate the electronic structure of a heavy fermion
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compound YbRh2Si2 in a relativistic framework using the LDA+U+SO method. The

calculated band structure manifests a 4f 13 spin-polarized configuration of Yb atom,

leaving the unoccupied state at 1.4 eV above the Fermi energy. The calculated Fermi

surfaces are nearly identical to experimental Fermi surfaces obtained from angle-

resolved photoemission spectra (ARPES).

The electronic structures and lattice dynamics of two conventional elemental su-

perconductors yttrium and calcium under pressure are discussed in chapter 4, using

DFT and linear response calculations. In both systems, strong electron-phonon cou-

pling (λ > 1) is found to be responsible for the rather high Tc (up to 20 K in Y and 25

K in Ca) over a wide pressure range. The contributions to λ are found to come from

only a few specific vibration modes restricted in a small part of the Brillouin zone

(BZ). The observed “simple cubic” structure of Ca at room temperature under 32-

109 GPa pressure is badly unstable based on linear response calculations. However,

the “sc” x-ray diffraction pattern can be explained as a locally noncrystalline, highly

anharmonic phase derived from various structures, which are thermally accessible at

room temperature, according to the small calculated differences in enthalpy at T=

0 K of four sc-related (non-close-packed) structures, whose enthalpies are lower than

the sc phase.

In the last chapter, I study the electronic structures of the newly discovered iron-

pnictide superconductors. I first study LaFeAsO and find that the As position is

crucial in determining the band structure. The stripe antiferromagnetic ordering is

found to be the ground state. The effects of exchange-correlation functional, z(As),

doping, and pressure on the electronic structure of LaFeAsO are studied and pre-

sented in details. The electronic field gradients (EFG) for all atoms in LaFeAsO are

calculated and compared with available data. Then, I investigate the crucial role of
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the pnictogen atom in this class and predict the structures and properties of the N

and Sb counterparts that have not yet been reported experimentally. After that, I

study the effect of antiphase magnetic boundary (with different densities) imposed on

the stripe-AFM phase. Many experimental observations can be understood based on

our calculated results, when dynamic antiphase boundaries are assumed. Finally, I

try to understand the structural transitions and antiferromagnetic transitions in these

compounds. I construct the Wannier functions for the Fe 3d orbitals and calculate

the hopping parameters in tight binding approach. The resulting hopping parameters

indicate that electrons in the Fe 3dxz (3dyz) orbital have a larger amplitude to hop

in the y (x) direction rather than the x (y) direction. A weak stripe antiferromag-

netism makes the spin-majority electron in Fe 3dxz (but not the 3dyz) orbital hop

in both x and y directions, which induces anisotropy, structural transition such that

the lattice constant a (aligned-spin direction) is smaller than b. To take advantage

of a kinetic energy gain from this additional hopping process, orbital fluctuation is

favored, which reduces the ordered Fe magnetic moment in the stripe antiferromag-

netic phase, consistent with experimental observations. I also find that the pnictide

atom is influential to form the stripe antiferromagnetism. Interlayer hopping of Fe

3d electrons in the z direction may help to stabilize the ordered magnetic moment of

Fe in the stripe antiferromagnetic phase.
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ergy of the QM AFM state (eV), the total energy differences between

NM and QM AFM state (EE(NM)-EE(QM AFM) (40 meV/Fe), the

magnetic moment (µB) of the QM AFM states as a function of V/V0. 177

5.2.11 The bandstructure and total DOS of QM LaFeAsO computed for

0.975V0, 0.925 V0 and 0.875 V0. z(As) has been shifted. . . . . . . . 178

5.2.12 The Fermi surface of QM LaFeAsO computed for 0.975V0, 0.925 V0

and 0.875 V0. z(As) has been shifted. . . . . . . . . . . . . . . . . 179

5.3.1 Plot of LaFePO band structure in QM AFM state and total DOS in

both QM AFM and NM states at ambient conditions with experi-

mental lattice parameters. . . . . . . . . . . . . . . . . . . . . . . . 185

5.3.2 Fermi surface of QM AFM LaFePO, showing the very strong differ-

ences compared to LaFeAsO. . . . . . . . . . . . . . . . . . . . . . 186

5.3.3 Plot of QM AFM LaFeSbO band structure and total DOS at 1.138

V0 with both optimized and shifted z(Sb). . . . . . . . . . . . . . . 189

xxvii



5.3.4 Plot of LaFeNO QM AFM band structure and total DOS at 0.850V′
0,

0.825 V′
0 and 0.800 V′

0 with shifted z(N). . . . . . . . . . . . . . . . 191

5.4.1 The structure of FeAs layer in the Q-SDW state showing the an-

tiphase boundary in the center of the figure. Fe spin 1 (filled circle)

and spin 2 (empty circle) have two different sites A (‘bulklike’) and

B (‘boundary-like’). As above Fe plane (filled square) and below Fe

plane (empty square) have three sites 1, 2, 3 whose local environ-

ments differ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.4.2 The calculated errors of z(As) compared to experimental values in

the NM and SDW states when using LDA (PW92) and GGA (PBE)

XC functionals in CaFe2As2, SrFe2As2, BaFe2As2, and LaFeAsO. . . 198

5.5.1 LaFeAsO band structure in the NM (top panel) and QM AFM (bot-

tom panel) phases. Dash (red) lines are the Fe 3d tight-binding bands

fitting to the DFT-LSDA Fe-derived bands (solid black), which gen-

erally have very good overall agreements. . . . . . . . . . . . . . . 209

5.5.2 LaFeAsO Wannier functions of Fe 3d orbitals in the NM (top panel)

and QM AFM (bottom panel) phases: showing (a) 3dyz, (b) 3dxz,

(c) 3dxy, (d) 3dz2 and (e) 3dx2−y2 . In the NM phase, these Wannier

functions are well localized at the Fe site, however, in the QM AFM

phase, the Wannier functions for 3dxy and 3dxz orbitals are more

delocalized, especially for the dxz orbital, with significant density at

the nearest-neighbor As sites. The isosurface is at the same value

(density) in each panel. . . . . . . . . . . . . . . . . . . . . . . . . 211

xxviii



5.6.1 LaFeAsO band structure with highlighted Fe 3dyz and 3dxz fatband

characters in the NM (top panel) and QM AFM (bottom panel)

phases. Compared to the NM phase, the Fe 3dxz bands near Fermi

level in the QM AFM phase, especially along Γ − X and Γ − Y

directions, change dramatically due to the formation of the stripe

antiferromagnetism with large ordered Fe magnetic moment of 1.9

µB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

5.6.2 LaFePO band structure with highlighted Fe 3dyz and 3dxz fatband

characters in the NM (top panel) and QM AFM (bottom panel)

phase. Compared to LaFeAsO, the Fe 3dxz bands near Fermi level

in the QM AFM phase change less significantly from the NM phase,

due to the relatively small ordered Fe magnetic moment of 0.5 µB. 214

5.6.3 Possible orbital orderings of iron in iron-pnictides. Left panel: Both

(a) and (b) form the QM AFM ordering. However, (a) is favored

because it gains more kinetic energy from nearest-neighbor hoppings

according to second-order perturbation theory (see text). Right panel

(from top to bottom) shows the simplified symbols for Fe 3dyz and

3dxz orbitals, the chosen x and y directions, up arrows for spin up

electrons and down arrows for spin down electrons, where black ar-

rows for 3dyz orbital and red arrows for 3dxz orbital. . . . . . . . . 216

xxix



1

Chapter 1

Introduction

1.1 Electronic Structure Calculations

The theory of electrons has been a great challenge to physicists since the discovery

of the electron in 1896 by Lorentz and Zeeman and also by Thomson in 1897. There

is no big progress until the establishment of quantum mechanics in the 1920s. In the

1930s, band theory for independent electrons was gradually formed, leading to the

classification of materials into insulators, semiconductors, and metals, according to

the number of electrons and filling of bands. Also in the 1930s, several methods were

proposed which are still in use today, including Hartree-Fock method, augmented

plane wave (APW) method (further developed in the 1950s), orthogonalized plane

wave (OPW) method, and effective potential method (forerunner of pseudopotential

method). Band structure calculations for high-symmetry simple metals (eg: Na

and Cu) and ionic solids (eg: NaCl) were done in the 1930s and 1940s. Accurate

calculations of bands for more difficult materials such as semiconductors were done

in the early 1950s. Rapid developments in electronic structure calculations were

made after the formation of density functional theory (DFT) in 1960s, based on the
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Hohenberg-Kohn theorem which states that all properties of a many-body system

are completely determined by the ground state charge density. Electronic structure

calculations based on density functional theory were very limited by the inaccessibility

of powerful computers from the 1960s to 1980s. With the rapid advancement in

computer technology in the 1990s, especially after 2000, a single personal computer

is able to do such calculations for small and medium systems (typically less than 100

atoms in one unit cell).

Since the 1990s, electronic structure calculations based on density functional the-

ory become more and more popular in condensed matter physics, quantum chem-

istry and material science. Density functional theory is by far the most widely used

approach for electronic structure calculations nowadays. It is usually called first

principle method or ab initio method, because it allows people to determine many

properties of a condensed matter system by just giving some basic structural informa-

tion without any adjustable parameter. It provides an alternative way to investigate

condensed matter systems, other than the traditional experimental method and pure

theoretical method based on quantum (field) theory. It is becoming a useful tool

used by both experimentalists and theorists to understand characteristic properties

of materials and to make specific predictions of experimentally observable phenomena

for real materials and to design new materials.

The most widely used programs today are based on the Kohn-Sham ansatz to

the original density functional theory. The Kohn-Sham ansatz is to replace the

original many-body problem by an auxiliary independent-particle system, specifi-

cally, it maps the original interacting system with real potential onto a fictitious

non-interacting system whereby the electrons move within an effective Kohn-Sham

single-particle potential. The many-body effects are approximated by a so-called
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exchange-correlation functional in the effective Kohn-Sham single-particle potential.

The most widely used exchange-correlation functionals are local (spin) density ap-

proximation (L(S)DA) and generalized gradient approximation (GGA). The former

comes from the exchange-correlation functional of a homogeneous electron gas by a

point-by-point mapping and the latter is a generalization of the former by including

contributions from electron density gradient. In order to better describe correla-

tion effects in some strongly correlated systems such as compounds with transition

metals (3d electrons) and lanthanides (4f electrons), several extensions to LDA and

GGA have been made, including L(S)DA(GGA)+U method and dynamical mean

field theory (DMFT) (usually used as a combination of LDA and DMFT, so called

LDA+DMFT).

Other methods for electronic structure calculations include quantum Monte Carlo,

GW method, as well as some generalizations of DFT known as time-dependent DFT

(TD-DFT), density functional perturbation theory (DFPT), etc. The field of elec-

tronic structure calculations is rapidly developing in basic theory, new algorithms,

computational methods and computational power.

1.2 Strongly Correlated Systems

The term “strongly correlated systems” usually refers to materials containing tran-

sition metals, lanthanides or actinides, where the 3d or 4d electrons of the transition

metals, the 4f electrons of the lanthanides, and 5f electrons of the actinides, are

localized and strongly correlated. LDA and GGA usually fail in these systems. A

famous example is the transition metal oxides. LDA (GGA) predicts them as metals

but they are actually Mott insulators. To account for the strong correlations, orbital-

dependent potentials are introduced for these d and f electrons. LDA+U method



Chapter 1.3. Conventional Superconductors 4

is the most widely used one among such methods. In this approach, an additional

screened Coulomb parameter U and Hund’s exchange parameter J are included for

the d and f electrons (see chapter 2 for details of this method). In this dissertation,

LDA+U method is applied to fcc Gd under pressure, the rare earth tetraborides RB4,

and a heavy fermion compound YbRh2Si2. Detailed results are presented in chapter

3.

1.3 Conventional Superconductors

Conventional superconductors, also called phonon-mediated superconductors, are

those solids for which superconductivity can be explained by electron-phonon in-

teractions (electron motion coupled with lattice vibrations) which provide the (net)

attractive force (between electrons) to pair electrons and form Cooper pairs–the cen-

tral concept in BCS theory. BCS theory was proposed by Bardeen, Cooper, and

Schrieffer in 1957 and is the most successful theory to explain superconductivity in

certain superconductors, although superconductivity in many systems remains in-

completely understood. The superconducting critical temperature (Tc) of phonon-

mediated superconductors is usually very low, less than 10 K. Only a handful of

conventional superconductors have Tc close to or higher than 20 K. The most strik-

ing one is the hexagonal MgB2 with Tc =40 K discovered in 2001. The next big

surprise is the simple free electron metal Li with Tc up to 20 K under 35-50 GPa

pressure. These superconductors with Tc close to or higher than 20 K are usually

strongly electron-phonon coupled. Although its Tc can be explained well by Eliash-

berg theory (an extension of BCS theory), a simple physical picture of the rather

high Tc is still lacking. In these superconductors, only a few specific lattice vibration

modes restricted in a small region of the Brillouin zone (BZ) contribute most to the
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rather high Tc, i.e., there are very sharp pictures of the “mode” λ. These specific

phonon modes are varying from material to material and a clear physical explana-

tion is still demanding. By applying linear response calculation, I have investigated

yttrium and calcium under high pressure. Yttrium is conventionally classified as a

rare earth metal and was found to superconduct at 20 K under 115 GPa pressure in

early 2006. Calcium is a simple alkaline earth metal and was found to superconduct

at 25 K under 161 GPa pressure in August, 2006. What is more peculiar of calcium

is that it is simple cubic structurally at room temperature in a wide range of pressure

from 32 GPa to 109 GPa observed in experiments. In the same range of pressure, it

begins to superconduct and its Tc increases rapidly with pressure. The results and

discussions of our calculations on these two metals are given in Chapter 4.

1.4 High Tc Superconductors: Cuprates and Iron-

Pnictide Compounds

The cuprate superconductors are layered materials with two dimensional Cu and

O planes sandwiched by layers with other elements such as lanthanides and alkali-

earth metals. In 1986, Bednorz and Müller discovered a lanthanum-based cuprate

perovskite material with Tc of 35 K. The highest Tc in this class by now is 150

K. The superconductivity in this class is believed to closely relate to Cu 3dx2−y2

orbital, but a convincing, generally accepted theory is still lacking. The mechanism

of superconductivity in this class is still one of the major outstanding challenges of

theoretical condensed matter physics.

A new class of iron-based superconductors–the iron-pnictide compounds was dis-

covered in February 2008 by Hosono et al. in a fluorine-doped tetragonal material
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LaFeAsO1−xFx with Tc = 26 K. The parent compound LaFeAsO contains FeAs layers

sandwiched by LaO layers. Each FeAs layer consists of a square-lattice Fe plane with

As atoms above and below the plane alternatively. Very soon after this discovery,

the Tc in this class went up to 56 K by replacing La with other rare earth elements

Ce, Pr, Nd, Sm, and Gd. Later on, a few other families of iron-based superconduc-

tors were found with similar values of Tc. Now in these iron-based superconduc-

tors, the parent compounds are ReFeAsO (1111-type), MFe2As2 (122-type), AFeAs

(111-type), M ′FeAsF (another 1111-type), FeTe and FeSe (11-type), Fe2As2Sr4X2O6

(22426-type), where R= rare earth elements; M=Ca, Sr, Ba, and Eu; A =Li and Na,

M ′=Ca and Sr, X=Sc and Cr. With similarities and differences of these iron-based

superconductors and cuprate superconductors, scientists have more chances to unveil

the underlying theory of superconductivity in these materials.

I have done a lot of calculations on the parent compounds of these iron-based

superconductors. I have obtained the basic electronic structures of the nonmagnetic

and stripe antiferromagnetic states. I discussed the role of the rare earth elements

and pnictide elements in RFePnO (R=rare earth metal and Pn=pnictides). I pre-

dicted and calculated the electronic structure of the hypothetic materials LaFeSbO

and LaFeNO. I analyzed the effect of antiphase boundary with varying density im-

posed on the stripe antiferromagnetic order in these iron pnictide compounds through

calculations of total energies, electric field gradients and hyperfine fields of Fe and As.

I have also constructed the Wannier functions for the Fe 3d orbitals, and calculated

the hopping parameters in tight binding method. Based on these hopping parame-

ters, I discussed the structural transition and antiferromagnetic transition associated

with the change of one of the hopping parameters, which is closely related to the Fe

3dxz Wannier function. The detailed discussions are presented in Chapter 5.
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Chapter 2

Theoretical Background: Density

Functional Theory and Linear

Response Calculations

2.1 Density Functional Theory

Over the past few decades, density functional theory (DFT) has been the most suc-

cessful, widely used method in condensed-matter physics, computational physics and

quantum chemistry to describe properties of condensed matter systems, which include

not only standard bulk materials but also complex materials such as molecules, pro-

teins, interfaces and nanoparticles. The main idea of DFT is to describe a many-body

interacting system via its particle density and not via its many-body wavefunction.

Its significance is to reduce the 3N degrees of freedom of the N-body system to only

three spatial coordinates through its particle density. Its basis is the well known

Hohenberg-Kohn (HK) theorem[1], which claims that all properties of a system can
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be considered to be unique functionals of its ground state density. Together with the

Born-Oppenheimer (BO) approximation[2] and Kohn-Sham (KS) ansatz[3], practical

accurate DFT calculations have been made possible via approximations for the so-

called exchange-correlation (XC) potential, which describes the effects of the Pauli

principle and the Coulomb potential beyond a pure electrostatic interaction of the

electrons. Since it is impossible to calculate the exact XC potential (by solving the

many-body problem exactly), a common approximation is the so-called local density

approximation (LDA) which locally substitutes the XC energy density of an inhomo-

geneous system by that of a homogeneous electron gas evaluated at the local density.

In many cases the results of DFT calculations for condensed-matter systems

agreed quite satisfactorily with experimental data, especially with better approxi-

mations for the XC energy functional since the 1990s. Also, the computational costs

were relatively low compared to traditional ways which were based on the compli-

cated many-electron wavefunction, such as Hartree-Fock theory[4, 5] and its descen-

dants. Despite the improvements in DFT, there are still difficulties in using DFT to

properly describe intermolecular interactions; charge transfer excitations; transition

states, global potential energy surfaces and some other strongly correlated systems;

and in calculations of the band gap of some semiconductors.
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2.1.1 The Many-Body System and Born-Oppenheimer (BO)

Approximation

The Hamiltonian of a many-body condensed-matter system consisting of nuclei and

electrons can be written as:

Htot = −
∑

I

~
2

2MI

∇2
RI

−
∑

i

~
2

2me

∇2
ri

+
1

2

∑

I,J

I 6=J

ZIZJe
2

|RI − RJ |

+
1

2

∑

i,j

i6=j

e2

|ri − rj|
−

∑

I,i

ZIe
2

|RI − ri|

(2.1.1)

where the indexes I, J run on nuclei, i and j on electrons, RI and MI are positions and

masses of the nuclei, ri and me of the electrons, ZI the atomic number of nucleus I.

The first term is the kinetic energy of the nuclei, the second term is the kinetic energy

of the electrons, the third term is the potential energy of nucleus-nucleus Coulomb

interaction, the fourth term is the potential energy of electron-electron Coulomb

interaction and the last term is the potential energy of nucleus-electron Coulomb

interaction. The time-independent Schrödinger equation for the system reads:

HtotΨ({RI}, {ri}) = EΨ({RI}, {ri}) (2.1.2)

where Ψ({RI}, {ri}) is the total wavefunction of the system. In principle, everything

about the system is known if one can solve the above Schrödinger equation. However,

it is impossible to solve it in practice. A so-called Born-Oppenheimer (BO) approx-

imation was made by Born and Oppenheimer[2] in 1927. Since the nuclei are much

heavier than electrons (the mass of a proton is about 1836 times the mass of an elec-

tron), the nuclei move much slower (about two order of magnitude slower) than the
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electrons. Therefore we can separate the movement of nuclei and electrons. When

we consider the movement of electrons, it is reasonable to consider the positions of

nuclei are fixed, thus the total wavefunction can be written as:

Ψ({RI}, {ri}) = Θ({RI})φ({ri}; {RI}) (2.1.3)

where Θ({RI}) describes the nuclei and φ({ri}; {RI}) the electrons (depending para-

metrically on the positions of the nuclei). With the BO approximation, Eq. (2.1.2)

can be divided into two separate Schrödinger equations:

Heφ({ri}; {RI}) = V ({RI})φ({ri}; {RI}) (2.1.4)

where

He = −
∑

i

~
2

2me

∇2
ri

+
1

2

∑

I,J

I 6=J

ZIZJe
2

|RI − RJ |
+

1

2

∑

i,j

i6=j

e2

|ri − rj|
−

∑

I,i

ZIe
2

|RI − ri|
(2.1.5)

and

[−
∑

I

~
2

2MI

∇2
RI

+ V ({RI})]Θ({RI}) = E ′Θ({Ri}) (2.1.6)

Eq. (2.1.4) is the equation for the electronic problem with the nuclei positions fixed.

The eigenvalue of the energy V ({RI}) depends parametrically on the positions of the

nuclei. After solving Eq. (2.1.4), V ({RI}) is known and by applying it to Eq. (2.1.6),

which has no electronic degrees of freedom, the motion of the nuclei is obtained. Eq.

(2.1.6) is sometimes replace by a Newton equation, i.e., to move the nuclei classically,

using ∇V as the forces. Then the whole problem is solved.

The significance of the BO approximation is to separate the movement of electrons
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and nuclei. Now we can consider that the electrons are moving in a static external

potential Vext(r) formed by the nuclei, which is the starting point of DFT. The

BO approximation was extended by Bohn and Huang known as Born-Huang (BH)

approximation [6] to take into account more nonadiabatic effect in the electronic

Hamiltonian than in the BO approximation.

2.1.2 Thomas-Fermi-Dirac Approximation

The predecessor to DFT was the Thomas-Fermi (TF) model proposed by Thomas[7]

and Fermi[8] in 1927. In this method, they used the electron density n(r) as the basic

variable instead of the wavefunction. The total energy of a system in an external

potential Vext(r) is written as a functional of the electron density n(r) as:

ETF [n(r)] = A1

∫

n(r)5/3dr +

∫

n(r)Vext(r)dr +
1

2

∫ ∫

n(r)n(r′)

|r − r′| drdr
′ (2.1.7)

where the first term is the kinetic energy of the non-interacting electrons in a homo-

geneous electron gas (HEG) with A1 = 3
10

(3π2)2/3 in atomic units (~ = me = e =

4π/ǫ0 = 1). The kinetic energy density of a HEG is obtained by adding up all of the

free-electron energy state εk = k2/2 up to the Fermi wavevector kF = [3π2n(r)]1/3 as:

t0[n(r)] =
2

(2π)3

∫ kF

0

k2

2
4πk2dk

= A1n(r)5/3

(2.1.8)

The second term is the classical electrostatic energy of the nucleus-electron Coulomb

interaction. The third term is the classical electrostatic Hartree energy approximated

by the classical Coulomb repulsion between electrons. In the original TF method, the

exchange and correlation among electrons was neglected. In 1930, Dirac[9] extended
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the Thomas-Fermi method by adding a local exchange term A2

∫

n(r)4/3dr to Eq.

(2.1.7) with A2 = −3
4
(3/π)1/3, which leads Eq. (2.1.7) to

ETFD[n(r)] = A1

∫

n(r)5/3dr +

∫

n(r)Vext(r)dr

+
1

2

∫ ∫

n(r)n(r′)

|r − r′| drdr
′ + A2

∫

n(r)4/3dr

(2.1.9)

The ground state density and energy can be obtained by minimizing the Thomas-

Fermi-Dirac equation (2.1.9) subject to conservation of the total number (N) of elec-

trons. By using the technique of Lagrange multipliers, the solution can be found in

the stationary condition:

δ{ETFD[n(r)] − µ(

∫

n(r)dr −N)} = 0 (2.1.10)

where µ is a constant known as a Lagrange multiplier, whose physical meaning is the

chemical potential (or Fermi energy at T=0 K). Eq. (2.1.10) leads to the Thomas-

Fermi-Dirac equation,

5

3
A1n(r)2/3 + Vext(r) +

∫

n(r′)

|r − r′|dr
′ +

4

3
A2n(r)1/3 − µ = 0 (2.1.11)

which can be solved directly to obtain the ground state density.

The approximations used in Thomas-Fermi-type approach are so crude that the

theory suffers from many problems. The most serious one is that the theory fails

to describe bonding between atoms, thus molecules and solids cannot form in this

theory.[10] Although it is not good enough to describe electrons in matter, its concept

to use electron density as the basic variable illustrates the way DFT works.
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2.1.3 The Hohenberg-Kohn (HK) Theorems

DFT was proven to be an exact theory of many-body systems by Hohenberg and

Kohn[1] in 1964. It applies not only to condensed-matter systems of electrons with

fixed nuclei, but also more generally to any system of interacting particles in an

external potential Vext(r). The theory is based upon two theorems.

The HK theorem I:

The ground state particle density n(r) of a system of interacting particles in an

external potential Vext(r) uniquely determines the external potential Vext(r), except for

a constant. Thus the ground state particle density determines the full Hamiltonian,

except for a constant shift of the energy. In principle, all the states including ground

and excited states of the many-body wavefunctions can be calculated. This means

that the ground state particle density uniquely determines all properties

of the system completely.

Proof of the HK theorem I:

For simplicity, here I only consider the case that the ground state of the system

is nondegenerate. It can be proven that the theorem is also valid for systems with

degenerate ground states.[11] The proof is based on minimum energy principle. Sup-

pose there are two different external potentials Vext(r) and V ′
ext(r) which differ by

more than a constant and lead to the same ground state density n0(r). The two

external potentials would give two different Hamiltonians, Ĥ and Ĥ ′, which have the

same ground state density n0(r) but would have different ground state wavefunctions,

Ψ and Ψ′, with ĤΨ = E0Ψ and Ĥ ′Ψ′ = E ′
0Ψ

′. Since Ψ′ is not the ground state of Ĥ,
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it follows that

E0 < 〈Ψ′ | Ĥ | Ψ′〉

< 〈Ψ′ | Ĥ ′ | Ψ′〉 + 〈Ψ′ | Ĥ − Ĥ ′ | Ψ′〉

< E ′
0 +

∫

n0(r)[Vext(r) − V ′
ext(r)]dr

(2.1.12)

Similarly

E ′
0 < 〈Ψ | Ĥ ′ | Ψ〉

< 〈Ψ | Ĥ | Ψ〉 + 〈Ψ | Ĥ ′ − Ĥ | Ψ〉

< E0 +

∫

n0(r)[V
′
ext(r) − Vext(r)]dr

(2.1.13)

Adding Eq. (2.1.12) and (2.1.13) lead to the contradiction

E0 + E ′
0 < E0 + E ′

0 (2.1.14)

Hence, no two different external potentials Vext(r) can give rise to the same ground

state density n0(r), i.e., the ground state density determines the external potential

Vext(r), except for a constant. That is to say, there is a one-to-one mapping between

the ground state density n0(r) and the external potential Vext(r), although the exact

formula is unknown.

The HK theorem II:

There exists a universal functional F [n(r)] of the density, independent of the

external potential Vext(r), such that the global minimum value of the energy functional

E[n(r)] ≡
∫

n(r)Vext(r)dr + F [n(r)] is the exact ground state energy of the system

and the exact ground state density n0(r) minimizes this functional. Thus the exact

ground state energy and density are fully determined by the functional E[n(r)].

Proof of the HK theorem II:
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The universal functional F [n(r)] can be written as

F [n(r)] ≡ T [n(r)] + Eint[n(r)] (2.1.15)

where T [n(r)] is the kinetic energy and Eint[n(r)] is the interaction energy of the

particles. According to variational principle, for any wavefunction Ψ′, the energy

functional E[Ψ′]:

E[Ψ′] ≡ 〈Ψ′ | T̂ + V̂int + V̂ext | Ψ′〉 (2.1.16)

has its global minimum value only when Ψ′ is the ground state wavefunction Ψ0,

with the constraint that the total number of the particles is conserved. According to

HK theorem I, Ψ′ must correspond to a ground state with particle density n′(r) and

external potential V ′
ext(r), then E[Ψ′] is a functional of n′(r). According to variational

principle:

E[Ψ′] ≡ 〈Ψ′ | T̂ + V̂int + V̂ext | Ψ′〉

= E[n′(r)]

=

∫

n′(r)V ′
ext(r)dr + F [n′(r)]

> E[Ψ0]

=

∫

n0(r)Vext(r)dr + F [n0(r)]

= E[n0(r)]

(2.1.17)

Thus the energy functional E[n(r)] ≡
∫

n(r)Vext(r)dr + F [n(r)] evaluated for the

correct ground state density n0(r) is indeed lower than the value of this functional

for any other density n(r). Therefore by minimizing the total energy functional of

the system with respect to variations in the density n(r), one would find the exact

ground state density and energy.
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The HK theorems can be generalized to spin density functional theory with spin

degrees of freedom.[12] In this theory, there are two types of densities, namely, the

particle density n(r) = n↑(r)+n↓(r) and the spin density s(r) = n↑(r)−n↓(r) where ↑

and ↓ denote the two different kinds of spins. The energy functional is generalized to

E[n(r), s(r)]. In systems with magnetic order or atoms with net spins, the spin density

functional theory should be used instead of the original one-spin density functional

theory. DFT can also be generalized to include temperature dependence[13] and time

dependence known as time-dependent density functional theory (TD-DFT).[14]

Although HK theorems put particle density n(r) as the basic variable, it is still

impossible to calculate any property of a system because the universal functional

F [n(r)] is unknown. This difficulty was overcome by Kohn and Sham[3] in 1965, who

proposed the well known Kohn-Sham ansatz.

2.1.4 The Kohn-Sham (KS) Ansatz

It is the Kohn-Sham (KS) ansatz[3] that puts Hohenberg-Kohn theorems into prac-

tical use and makes DFT calculations possible with even a single personal computer.

This is part of the reason that DFT became the most popular tool for electronic

structure calculations. The KS ansatz was so successful that Kohn was honored the

Nobel prize in chemistry in 1998.

The KS ansatz is to replace the original many-body system by an auxiliary

independent-particle system and assume that the two systems have exactly the same

ground state density. It maps the original interacting system with real potential onto

a fictitious non-interacting system whereby the electrons move within an effective

Kohn-Sham single-particle potential VKS(r). For the auxiliary independent-particle
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system, the auxiliary Hamiltonian is

ĤKS = −1

2
∇2 + VKS(r) (2.1.18)

in atomic units ~ = me = e = 4π/ǫ0 = 1. For a system with N independent electrons,

the ground state is obtained by solving the N one-electron Schrödinger equations,

(
1

2
∇2 + VKS(r))ψi(r) = εiψi(r) (2.1.19)

where there is one electron in each of the N orbitals ψi(r) with the lowest eigenvalues

εi. The density of the auxiliary system is constructed from:

n(r) =
N

∑

i=1

|ψi(r)|2 (2.1.20)

which is subject to the conservation condition:

∫

n(r)dr = N (2.1.21)

The non-interacting independent-particle kinetic energy TS[n(r)] is given by,

TS[n(r)] = −1

2

N
∑

i=1

∫

ψ∗
i (r)∇2ψi(r)dr (2.1.22)

Then the universal functional F [n(r)] was rewritten as

F [n(r)] = TS[n(r)] + EH [n(r)] + EXC [n(r)] (2.1.23)
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where EH [n(r)] is the classic electrostatic (Hartree) energy of the electrons,

EH [n(r)] =
1

2

∫ ∫

n(r)n(r′)

|r − r′| drdr
′ (2.1.24)

and EXC [n(r)] is the XC energy, which contains the difference between the exact

and non-interacting kinetic energies and also the non-classical contribution to the

electron-electron interactions, of which the exchange energy is a part. Since the

ground state energy of a many-electron system can be obtained by minimizing the

energy functional E[n(r)] = F [n(r)] +
∫

n(r)Vext(r)dr, subject to the constraint that

the number of electrons N is conserved,

δ{F [n(r)] +

∫

n(r)Vext(r)dr − µ(

∫

n(r)dr −N)} = 0 (2.1.25)

and the resulting equation is

µ =
δF [n(r)]

δn(r)
+ Vext(r)

=
δTS[n(r)]

δn(r)
+ VKS(r)

(2.1.26)

where µ is the chemical potential,

VKS(r) = Vext(r) + VH(r) + VXC(r)

= Vext(r) +
δEH [n(r)]

δn(r)
+
δEXC [n(r)]

δn(r)

(2.1.27)
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is the KS one-particle potential with the Hartree potential VH(r)

VH(r) =
δEH [n(r)]

δn(r)

=

∫

n(r′)

|r − r′|dr
′

(2.1.28)

and the XC potential VXC(r)

VXC(r) =
δEXC [n(r)]

δn(r)
(2.1.29)

Equations (2.1.19), (2.1.20), (2.1.27) together are the well-known KS equations, which

must be solved self-consistently because VKS(r) depends on the density through the

XC potential. In order to calculate the density, the N equations in Eq. (2.1.19) have

to be solved in KS theory as opposed to one equation in the TF approach. However an

advantage of the KS method is that as the complexity of a system increases, due to N

increasing, the problem becomes no more difficult, only the number of single-particle

equations to be solved increases.

Although exact in principle, the KS theory is approximate in practice because of

the unknown XC energy functional EXC [n(r)]. An implicit definition of EXC [n(r)]

can be given as

EXC [n(r)] = T [n(r)] − TS[n(r)] + Eint[n(r)] − EH [n(r)] (2.1.30)

where T [n(r)] and Eint[n(r)] are the exact kinetic and electron-electron interaction

energies of the interacting system respectively. It is crucial to have an accurate

XC energy functional EXC [n(r)] or potential VXC(r) in order to give a satisfactory

description of a realistic condensed-matter system. The most widely used approx-
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imations for the XC potential are the local density approximation (LDA) and the

generalized-gradient approximation (GGA).

The KS energy eigenvalues of Eq. (2.1.19) are not for the original interacting

many-body system and have no physical meaning. They cannot be interpreted as

one-electron excitation energies of the interacting many-body system, i.e., they are

not the energies to add or subtract from the interacting many-body system, because

the total energy of the interacting system is not a sum of all the eigenvalues of

occupied states in equation (2.1.19), i.e., Etot 6=
∑occ.

i εi. The only exception is the

highest eigenvalue in a finite system which is the negative of the ionization energy, -I,

because it determines the asymptotic long-range density of the bound system which

is assumed to be exact. No other eigenvalue is guaranteed to be correct by the KS

theory. Nevertheless, within the KS theory itself, the eigenvalues have a well-defined

meaning and they are used to construct physically meaningful quantities. They have

a definite mathematical meaning, often known as the Slater-Janak theorem. The

eigenvalue is the derivative of the total energy with respect to occupation of a state,

i. e.

εi =
dEtotal

dni

=

∫

dEtotal

dn(r)

dn(r)

dni

dr

(2.1.31)

2.1.5 Local (Spin) Density Approximation (L(S)DA)

The KS ansatz successfully maps the original interacting many-body system onto a set

of independent single-particle equations and makes the problem much easier. In the

meantime, without knowing the exact form of the XC energy functional EXC [n(r)],

the KS equations are unsolvable. Although the exact XC energy functional EXC [n(r)]

should be very complicated, simple but successful approximations to it have been
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made, which not only predict various properties of many systems reasonably well but

also greatly reduce computational costs, leading to the wide use of DFT for electronic

structure calculations. Of these approximations, the local density approximation

(LDA) is the most widely used one. In LDA, the XC energy per electron at a point

r is considered the same as that for a homogeneous electron gas (HEG) that has

the same electron density at the point r. The total exchange-correlation functional

EXC [n(r)] can be written as,

ELDA
XC [n(r)] =

∫

n(r)ǫhom
XC (n(r))dr

=

∫

n(r)[ǫhom
X (n(r)) + ǫhom

C (n(r))]dr

= ELDA
X [n(r)] + ELDA

C [n(r)]

(2.1.32)

for spin unpolarized systems and

ELSDA
XC [n↑(r), n↓(r)] =

∫

n(r)ǫhom
XC (n↑(r), n↓(r))dr (2.1.33)

for spin polarized systems[15], where the XC energy density ǫhom
XC (n(r)) is a function

of the density alone, and is decomposed into exchange energy density ǫhom
X (n(r)) and

correlation energy density ǫhom
C (n(r)) so that the XC energy functional is decom-

posed into exchange energy functional ELDA
X [n(r)] and correlation energy functional

ELDA
C [n(r)] linearly. Note that ELSDA

XC [n↑(r), n↓(r)] is not written in the way

ELSDA
XC [n↑(r), n↓(r)] =

∫

[n↑(r)ǫ
hom
XC,↑(n↑(r)) + n↓(r)ǫ

hom
XC,↓(n↓(r))]dr (2.1.34)
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as one may think. The exchange energy functional ELDA
X [n(r)] employs the expression

for a HEG by using it pointwise, which is known analytically as[9]

ELDA
X [n(r)] =

∫

n(r)ǫhom
X (n(r))dr

= −3

4
(
3

π
)1/3

∫

n(r)4/3dr

(2.1.35)

where

ǫhom
X (n(r)) = −3

4
(
3

π
)1/3n(r)1/3 (2.1.36)

is the exchange energy density of the unpolarized HEG introduced first by Dirac.[9]

Analytic expressions for the correlation energy of the HEG are unknown except in

the high and low density limits corresponding to infinitely weak and infinitely strong

correlations. The expression of the correlation energy density of the HEG at high

density limit has the form

ǫC = Aln(rs) +B + rs(Cln(rs) +D) (2.1.37)

and the low density limit takes the form

ǫC =
1

2
(
g0

rs

+
g1

r
3/2
s

+ · · · ) (2.1.38)

where the Wigner-Seitz radius rs is related to the density as

4

3
πr3

s =
1

n
. (2.1.39)

In order to obtain accurate values of the correlation energy density at intermediate

density, accurate quantum Monte Carlo (QMC) simulations for the energy of the
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HEG are needed and have been performed at several intermediate density values.[16]

Most local density approximations to the correlation energy density interpolate these

accurate values from QMC simulations while reproducing the exactly known limiting

behavior. Depending on the analytic forms used for ǫC , different local density approx-

imations were proposed including Vosko-Wilk-Nusair[17] (VWM), Perdew-Zunger[18]

(PZ81), Cole-Perdew[19] (CP) and Perdew-Wang[20] (PW92).

For spin polarized systems, the exchange energy functional is known exactly from

the result of spin-unpolarized functional:

EX [n↑(r), n↓(r)] =
1

2
(EX [2n↑(r)] + EX [2n↓(r)]) (2.1.40)

The spin-dependence of the correlation energy density is approached by the relative

spin-polarization:

ζ(r) =
n↑(r) − n↓(r)

n↑(r) + n↓(r)
(2.1.41)

The spin correlation energy density ǫC(n(r), ζ(r)) is so constructed to interpolate

extreme values ζ = 0,±1, corresponding to spin-unpolarized and ferromagnetic situ-

ations.

The XC potential VXC(r) in LDA is

V LDA
XC =

δELDA
XC

δn(r)

= ǫXC(n(r)) + n(r)
∂ǫXC(n(r))

∂n(r)

(2.1.42)
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Within LDA, the total energy of a system is:

Etot[n(r)] = TS[n(r)] + EH [n(r)] + EXC [n(r)] +

∫

n(r)Vext(r)dr

=
occ.
∑

i

〈ψi(r) | −
1

2
∇2 | ψi(r)〉 + EH [n(r)] + EXC [n(r)] +

∫

n(r)Vext(r)dr

=
occ.
∑

i

〈ψi(r) | −
1

2
∇2 + VH(r) + VXC(r) + Vext(r) | ψi(r)〉

−
occ.
∑

i

〈ψi(r) | VH(r) | ψi(r)〉 −
occ.
∑

i

〈ψi(r) | VXC(r) | ψi(r)〉

−
occ.
∑

i

〈ψi(r) | Vext(r) | ψi(r)〉 + EH [n(r)] + EXC [n(r)] +

∫

n(r)Vext(r)dr

=
occ.
∑

i

εi −
1

2

∫

n(r)n(r′)

|r − r′| drdr
′ +

∫

n(r)(ǫXC(r) − VXC(r))dr

=
occ.
∑

i

εi −
1

2

∫

n(r)n(r′)

|r − r′| drdr
′ −

∫

n(r)2∂ǫXC(n(r))

∂n(r)
dr.

(2.1.43)

As mentioned before, Etot 6=
∑occ.

i εi.

The LDA is very simple, corrections to the exchange-correlation energy due to

the inhomogeneities in the electronic density are ignored. However it is surprisingly

successful and even works reasonably well in systems where the electron density is

rapidly varying. One reason is that LDA gives the correct sum rule to the exchange-

correlation hole. That is, there is a total electronic charge of one electron excluded

from the neighborhood of the electron at r. In the meantime, it tends to under-

estimate atomic ground state energies and ionization energies, while overestimating

binding energies. It makes large errors in predicting the energy gaps of some semi-

conductors. Its success and limitations lead to approximations of the XC energy

functional beyond the LDA, through the addition of gradient corrections to incorpo-

rate longer range gradient effects (GGA), as well as LDA+U method to account for
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the strong correlations of the d electrons in transition elements and f electrons in

lanthanides and actinides.

2.1.6 Generalized-Gradient Approximation (GGA)

As mentioned above, the LDA neglects the inhomogeneities of the real charge den-

sity which could be very different from the HEG. The XC energy of inhomogeneous

charge density can be significantly different from the HEG result. This leads to the

development of various generalized-gradient approximations (GGAs) which include

density gradient corrections and higher spatial derivatives of the electron density and

give better results than LDA in many cases. Three most widely used GGAs are

the forms proposed by Becke[21] (B88), Perdew et al.[22], and Perdew, Burke and

Enzerhof[23] (PBE).

The definition of the XC energy functional of GGA is the generalized form in Eq.

(2.1.33) of LSDA to include corrections from density gradient ∇n(r) as

EGGA
XC [n↑(r), n↓(r)] =

∫

n(r)ǫhom
XC (n↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|, · · · )dr

=

∫

n(r)ǫhom
X (n(r))FXC(n↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|, · · · )dr

(2.1.44)

where FXC is dimensionless and ǫhom
X (n(r)) is the exchange energy density of the

unpolarized HEG as given in Eq. (2.1.36). FXC can be decomposed linearly into

exchange contribution FX and correlation contribution FC as FXC = FX +FC . For a

detailed treatment of FX and FC in different GGAs, please refer to Chapter 8 of the

book by Martin.[24]

GGA generally works better than LDA, in predicting bond length and binding

energy of molecules, crystal lattice constants, and so on, especially in systems where
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the charge density is rapidly varying. However GGA sometimes overcorrects LDA

results in ionic crystals where the lattice constants from LDA calculations fit well

with experimental data but GGA will overestimate it. Nevertheless, both LDA and

GGA perform badly in materials where the electrons tend to be localized and strongly

correlated such as transition metal oxides and rare-earth elements and compounds.

This drawback leads to approximations beyond LDA and GGA.

2.1.7 LDA+U Method

Strongly correlated systems usually contain transition metal or rare-earth metal ions

with partially filled d or f shells. Because of the orbital-independent potentials in

L(S)DA and GGA, they cannot properly describe such systems. For example, L(S)DA

predicts transition metal oxides to be metallic with itinerant d electrons because of

the partially filled d shells. Instead, these transition metal oxides are Mott insulators

and the d electrons are well localized. In order to properly describe these strongly

correlated systems, orbital-dependent potentials should be used for d and f electrons.

There are several approaches available nowadays to incorporate the strong electron-

electron correlations between d electrons and f electrons. Of these methods including

the self-interaction correction (SIC) method [25], Hartree-Fock (HF) method [26], and

GW approximation [27], LDA+U method [28] is the most widely used one.

In the LDA+U method, the electrons are divided into two classes: delocalized s,

p electrons which are well described by LDA (GGA) and localized d or f electrons for

which an orbital-dependent term 1
2
U

∑

i6=j ninj should be used to describe Coulomb

d − d or f − f interaction, where ni are d− or f−orbital occupancies. The total
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energy in L(S)DA+U method is given as[28]:

ELDA+U
tot [ρσ(r), {nσ}] = ELSDA[ρσ(r)] + EU [{nσ}] − Edc[{nσ}] (2.1.45)

where σ denotes the spin index, ρσ(r) is the electron density for spin-σ electrons

and {nσ} is the density matrix of d or f electrons for spin-σ, the first term is the

standard LSDA energy functional, the second term is the electron-electron Coulomb

interaction energy given by[28]

EU [{n}] =
1

2

∑

{m},σ

{〈m,m′′ | Vee | m′,m′′′〉nmm′,σnm′′m′′′,−σ

− (〈m,m′′ | Vee | m′,m′′′〉 − 〈m,m′′ | Vee | m′′′,m′〉)nmm′,σnm′′m′′′,σ}
(2.1.46)

where m denotes the magnetic quantum number, and Vee are the screened Coulomb

interactions among the d or f electrons. The last term in Eq. (2.1.45) is the double-

counting term which removes an averaged LDA energy contribution of these d or f

electrons from the LDA energy. It is given by[28]

Edc[{nσ}] =
1

2
UN(N − 1) − 1

2
J [N↑(N↑ − 1) +N↓(N↓ − 1)] (2.1.47)

where Nσ = Tr(nmm′,σ) and N = N↑ + N↓. U and J are screened Coulomb and

exchange parameters.

As a simple approximation, if the exchange and non-sphericity is neglected, Eq.

(2.1.45) is simplified to[28]

ELDA+U
tot = ELDA +

1

2
U

∑

i6=j

ninj −
1

2
UN(N − 1) (2.1.48)
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The orbital energies εi are derivatives of Eq. (2.1.48) with respect to orbital occupa-

tions ni:

εi =
∂E

∂ni

= εLDA + U(
1

2
− ni) (2.1.49)

In this simple consideration, the LDA orbital energies are shifted by −U/2 for oc-

cupied orbitals (ni = 1) and by +U/2 for unoccupied orbitals (ni = 0), resulting in

lower and upper Hubbard bands separated by U, which opens a gap at the Fermi

energy in transition metal oxides.

In the general case, the effective single-particle potential is

Vmm′,σ =
∂(EU [{nσ}] − Edc[{nσ}])

∂nmm′,σ

=
∑

{m}

{〈m,m′′ | Vee | m′,m′′′〉nm′′m′′′,−σ − (〈m,m′′ | Vee | m′m′′′〉

− 〈m,m′′ | Vee | m′′′,m′〉)nm′′m′′′,σ} − U(N − 1

2
) + J(Nσ − 1

2
)

(2.1.50)

which is used in the effective single-particle Hamiltonian

Ĥ = ĤLSDA +
∑

mm′

| inlmσ〉Vmm′,σ〈inlm′σ | (2.1.51)

where i denotes the site, n the main quantum number, and l the orbital quantum

number.

The matrix elements of Vee can be expressed in terms of complex spherical har-

monics and effective Slater integrals Fk as[29]

〈m,m′′ | Vee | m′,m′′′〉 =
∑

k

ak(m,m
′,m′′,m′′′)Fk (2.1.52)
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where 0 ≤ k ≤ 2l and

ak(m,m
′,m′′,m′′′) =

4π

2k + 1

k
∑

q=−k

〈lm | Ykq | lm′〉〈lm′′ | Y ∗
kq | lm′′′〉 (2.1.53)

Fk ≈
∫ ∫ ∞

0

dr1dr2(r1Ri(r1))
2(r2Ri(r2))

2 rk
<

rk+1
>

, for k > 0 (2.1.54)

Here, r< is the smaller of r1 and r2 and r> the larger. The relations between the

Slater integrals and the screened Coulomb and exchange parameters U and J are:

U = F0; J = (F2 + F4)/14, for 3d or 4d systems,

U = F0; J = (286F2 + 195F4 + 250F6)/6435, for 4f or 5f systems,

(2.1.55)

The ratio F4/F2 and F6/F2 are taken from atomic situations. F4/F2 ∼ 0.625 for

3d transition elements[30] and F4/F2 ∼ 2/3, F6/F2 ∼ 1/2 for 4f lanthanides. The

screened Coulomb parameter U can be calculated from the constraint LDA method[31],

so that the LDA+U method remains a first principle method (no adjustable param-

eters).

For the double-counting term, there are two different treatments: the so-called

around mean field (AMF) and fully localized limit (FLL) (also called atomic limit)

approaches. The former is more suitable for small U systems[32] and the latter is

more suitable for large U systems.[33] The energies for the double counting are given

by[34]

Edc
AMF =

1

2

∑

m6=m′,σσ′

[Umm′ − δσ,σ′Jmm′ ]n̄n̄

=
1

2
UN2 − U + 2lJ

2l + 1

1

2

∑

σ

N2
σ

(2.1.56)
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Edc
FLL =

1

2

∑

m6=m′,σσ′

[Umm′ − δσ,σ′Jmm′ ]n̄σn̄σ′

=
1

2
UN(N − 1) − 1

2
J

∑

σ

Nσ(Nσ − 1)

(2.1.57)

where n̄ = N/2(2l + 1) is the average occupation of the correlated orbitals and

n̄σ = Nσ/(2l+ 1) is the average occupation of a single spin of the correlated orbitals.

Note that, Eq. (2.1.57) is the same as Eq. (2.1.47). For a detailed comparison of the

different double counting terms, please refer to [34].

2.1.8 Solving Kohn-Sham Equations

By using independent-particle methods, the KS equations provide a way to obtain the

exact density and energy of the ground state of a condensed matter system. The KS

equations must be solved consistently because the effective KS potential VKS and the

electron density n(r) are closely related. This is usually done numerically through

some self-consistent iterations as shown in Fig. 2.1.1. The process starts with an

initial electron density, usually a superposition of atomic electron density, then the

effective KS potential VKS is calculated and the KS equation is solved with single-

particle eigenvalues and wavefunctions, a new electron density is then calculated from

the wavefunctions. After this, self-consistent condition(s) is checked. Self-consistent

condition(s) can be the change of total energy or electron density from the previous

iteration or total force acting on atoms is less than some chosen small quantity, or

a combination of these individual conditions. If the self-consistency is not achieved,

the calculated electron density will be mixed with electron density from previous

iterations to get a new electron density. A new iteration will start with the new

electron density. This process continues until self-consistency is reached. After the
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self-consistency is reached, various quantities can be calculated including total energy,

forces, stress, eigenvalues, electron density of states, band structure, etc..

The most timing consuming step in the whole process is to solve KS equation

with a given KS potential VKS. There are several different schemes to the calculation

of the independent-particle electronic states in solids where boundary conditions are

applied. They are basically classified into three types[24]:

1.Plane waves.

In this method, the wavefunctions (eigenfunctions of the KS equations) are ex-

panded in a complete set of plane waves eik·r and the external potential of nuclei

are replaced by pseudopotentials which include effects from core electrons. Such

pseudopotentials have to satisfy certain conditions. Most widely used pseudopoten-

tials nowadays include norm-conserving pseudopotentials[35] (NCPPs) and ultrasoft

pseudopotentials[36] (USPPs). In norm-conserving pseudopotentials, five require-

ments should be satisfied:

a. the pseudo valence eigenvalues should agree with all-electron valence eigenvalues

for the chosen atomic reference configuration;

b. the pseudo valence wavefunctions should match all-electron valence wavefunctions

beyond a chosen core radius Rc;

c. the logarithmic derivatives of the pseudo and the all-electron wavefunctions should

agree at Rc,

d. the integrated charge inside Rc for each wavefunction agrees (norm-conservation);

and

e. the first energy derivative of the logarithmic derivatives of the all-electron and

pseudo wavefunctions agree at Rc, and therefore for all r ≤ Rc.

In ultrasoft pseudopotentials, the norm-conservation condition is not required so
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that the pseudo wavefunctions are much softer than pseudo wavefunctions in norm-

conserving pseudopotentials. As a result, it significantly reduces the number of plane

waves needed to expand the wavefunctions (smaller energy cutoff for wavefunctions).

Plane waves have played an important role in the early orthogonalized plane

wave[37, 38, 39] (OPW) calculations and are generalized to modern projector aug-

mented wave[40, 41, 42] (PAW) method. Because of the simplicity of plane waves and

pseudopotentials, computational load is significantly reduced in these methods and

therefore it is most suitable for calculations of large systems. In this method, forces

can be easily calculated and it can be easily developed to quantum molecular dynam-

ics simulations as well as response to (small) external perturbations. However, results

from plane wave methods using pseudopotentials are usually less accurate than results

from all-electron full potential methods. And great care should be taken when one

generates a pseudopotential and it should be tested to match results from all-electron

calculations. The most widely used codes using plane waves and pseudopotentials are

plane wave self-consistent field (now known as Quantum ESPRESSO)[43] (PWscf),

ABINIT[44], VASP[45] (which uses PAW method too).

2. Localized atomic(-like) orbitals.

The most well-known methods in this category are linear combination of atomic

orbitals[46] (LCAO), also called tight-binding[46] (TB) and full potential non-orthogonal

local orbital[47] (FPLO). The basic idea of these methods is to use atomic orbitals

as the basis set to expand the one-electron wavefunction in KS equations.

In FPLO, in addition to the spherical average of the crystal potential, a so-called

confining potential Vcon = (r/r0)
m is used to compress the long range tail of the

local orbitals (wave functions), where m is the confining potential exponent with

a typical value of 4, r0 = (x0rNN/2)3/2 is a compression parameter with x0 being
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a dimensionless parameter and rNN the nearest neighbor distance. Therefore, the

atomic-like potential is written as

Vat(r) = −(1/4π)

∫

V (r − R − τ)d3r + Vcon(r), (2.1.58)

where the first term is the spherical average of the crystal potential mentioned above.

For systems containing atom(s) with partially filled 4f and 5f shells, the confining

potential exponent m needs to be increased to 5 or 6. In practice, the dimensionless

parameter x0 is taken as a variational parameter in the self-consistent procedure.

3. Atomic sphere methods.

Methods in the class can be considered as a combination of plane wave method

and localized atomic orbitals. It uses localized atomic orbital presentation near the

nuclei and plane waves in the interstitial region. The most widely used methods are

(full potential) linear muffin-tin orbital[48] (LMTO) as implemented in LMTART[49]

by Dr. Savrasov and (full potential) linear augment plane wave[48, 50] (LAPW) as

implemented in WIEN2K[51].

2.2 Linear Response Calculations and Supercon-

ductivity

2.2.1 Lattice Dynamics and Phonons

To calculate the lattice dynamical properties, we have linear response method[52] and

density functional perturbation theory (DFPT) [53], which are closely related. In

both methods, it is essential to calculate the second-order perturbation of DFT total

energy, i.e., δ2E, in the framework of density functional theory. The perturbation
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Figure 2.1.1: Flowchart of self-consistency loop for solving KS equations.
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is induced by small displacements δR of the nuclei from their equilibrium positions,

which result in changes in the external potential Vext, the wave functions Ψ of the

KS equations and hence the electron charge density. δ2E is obtained by expanding

the DFT total energy with respect to the changes in the wave functions to first order

and external potentials up to second order. Detailed expressions can be found in

Ref[52, 53].

Phonon spectra can be obtained by first calculating the dynamical matrix

Dij(q) =
∑

R′

e−iq·R′ ∂2E

∂ui(R + R′)∂uj(R)
(2.2.1)

with respect to the atomic displacements u(R) for each atom in each direction, (i,

j=1, 2, 3, corresponding to x, y and z directions), and then by solving the equation

D(q)~ε = Mω2
q~ε (2.2.2)

which gives the phonon frequencies ωq of the phonons with wave vector q, where M

is a diagonal matrix with the atomic masses on the diagonal.

2.2.2 Electron-Phonon Interaction and Tc

Electron-phonon interaction plays a crucial role in conventional superconductivity. It

provides the attractive interaction between electrons needed in BCS theory in order

to form Cooper pairs. The physical picture is that the first electron attracts its nearby

positive ions (to form phonons) which polarizes its nearby environment leading to a

domain with positive charges, which in turn attracts the second electron, resulting

in an effective attractive interaction between electrons. A net attractive interaction

between electrons can be obtained if the above attraction is strong enough to override
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the repulsive screened Coulomb interaction.

In the framework of density functional linear-response method, the electron-

phonon (EP) interaction can be calculated by evaluating the EP matrix element[54]

gq,ν
k+qj′,kj = 〈k + qj′|δqνVeff |kj〉 (2.2.3)

which is the interaction between electronic potential and phonon mode ωqν , or in

other words, it is the probability of scattering from the one-electron state |kj〉 to

the state |k + qj′〉 via the phonon ωqν , where δqνVeff is the change in the effective

potential induced by the presence of a phonon mode ωqν , and ψkj and ψk+qj′ have

the Fermi energy εF .

The phonon linewidth γqν can be evaluated as

γqν = 2πωqν

∑

kjj′

|gqν
k+qj′,kj|2δ(εkj − εF )δ(εk+qj′ − εF ). (2.2.4)

The electron-phonon spectral distribution functions α2F (ω) can be written in

terms of γqν ,

α2F (ω) =
1

2πN(εF )

∑

qν

γqν

ωqν

δ(ω − ωqν), (2.2.5)

where N(εF ) =
∑

k δ(εk − εF ) is the electronic density of states (DOS) per atom per

spin at the Fermi level, F (ω) =
∑

q δ(ω − ωq) is the phonon density of states.

The electron-phonon coupling parameter λ is given by

λ = 2

∫

α2F (ω)

ω
dω, (2.2.6)
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and the average phonon frequency 〈ωn〉 is given by

〈ωn〉 =
2

λ

∫

ωn−1α2F (ω)dω. (2.2.7)

Alternatively, λ can be obtained from the “mode” λ

λqν =
γqν

πω2
qνN(εF )

=
2

ωqνN(εF )

∑

kjj′

|gq,ν
k+qj′,kj|2δ(εkj − εF )δ(εk+qj′ − εF ).

(2.2.8)

by adding up the mode λ

λ =
∑

qν

λqν . (2.2.9)

The parameter λ plays the role of the BCS parameter N(εF )Vph and is the most

important single number characterizing electron-phonon coupling.[55] In BCS theory,

the superconducting critical temperature Tc is given by

Tc = 1.13〈ω〉e−1/N(εF )Vph , (2.2.10)

where Vph is an effective interaction parameter to simplify the complicated net at-

tractive interaction of electrons near Fermi energy, while here it is estimated by the

McMillan equation[56]

Tc =
〈ω〉
1.20

e−
1.04(1+λ)

λ−µ∗(1+0.62λ) (2.2.11)

where µ∗ is the screened Coulomb pseudopotential. In the strong coupling limit

(λ > 1), the above McMillan equation is generalized to Allen-Dynes equation[57]

Tc =
ωlog

1.20
f1f2e

−
1.04(1+λ)

λ−µ∗(1+0.62λ) (2.2.12)
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where ωlog is the average phonon frequency 〈ωn〉1/n with n→ 0, and

f1 = (1 + (λ/Λ1)
3/2)1/3, f2 = 1 +

(ω2/ωlog − 1)λ2

λ2 + Λ2
2

(2.2.13)

contain the strong-coupling corrections which are important for λ > 1, with Λ1 =

2.46(1 + 3.8µ∗), Λ2 = 1.82(1 + 6.3µ∗)(ω2/ωlog), where ω2 being the average phonon

frequency 〈ωn〉1/n with n = 2.

2.2.3 Nesting Function

Note that λqν , or γqν , incorporates a phase space factor, the “nesting function” [58]

ξ(q) describing the phase space that is available for electron-hole scattering across

the Fermi surface(εF = 0),

ξ(q) =
1

N

∑

k

δ(εk)δ(εk+q) ∝

∮

L

dLk

|~vk × ~vk+q|
. (2.2.14)

Here L is the line of intersection of an undisplaced Fermi surface and one displaced

by q, and ~vk is the electron velocity at k. These equations presume the adiabatic

limit, in which the phonon frequencies are small compared to any electronic energy

scale. This limit applies to elemental Y and Ca, which will be discussed in details in

chapter 4.

In the case of the free electron limit, εk = k2/2, in two dimension, the “Fermi

surface” is a circle with a radius of kF (or a cylinder in 3D), the nesting function is

ξ(q) ∝ 1

|q|
√

4k2
F − q2

, if |q| < 2kF ;

= 0, if |q| > 2kF ,

(2.2.15)
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while in 3D, the Fermi surface is a sphere of radius kF , the nesting function is then

ξ(q) ∝ π

2|q| , if |q| < 2kF ;

= 0, if |q| > 2kF .

(2.2.16)

In real materials, the Fermi surfaces are usually very complicated and the nesting

function needs to be calculated numerically.

2.3 Tight Binding Method and Wannier Functions

2.3.1 Local Orbitals and Tight Binding

Tight binding method provides a simple way to calculate electronic band structure

and ground state energy, by expanding the wave function ψ(r) in terms of atomic

orbitals φn(r − R) of isolated atoms at each atomic site, or in terms of other local

orbitals (eg: Wannier functions). This method is sometimes also regarded as linear

combination of atomic orbital (LCAO) approach and applies to non-crystalline ma-

terials (eg: molecules) and crystalline materials, although the latter is more common

where the atoms are located on a periodic lattice. This approach is valid in systems

where the electrons are more localized than itinerant, i.e., the electrons are bound to

each atom instead of moving through the crystal. Therefore it applies to insulators

and some semiconductors but certainly not simple metals. Recently, the tight binding

method became a basic tool in the study of strongly correlated systems where the 3d

and 4f electrons are highly localized.

In tight-binding model, the total Hamiltonian H(r) of the crystal is a sum of the

atomic Hamiltonians Hat(r−R− ~τi) located at each atomic site plus an interaction
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term δU(r), which is considered as a small perturbation,

H(r) =
∑

R

Hat(r − R − ~τi) + δU(r). (2.3.1)

where ~τi is the atomic position to the origin of the cell at R.

A basis state ϕni,k(r) with wave vector k (restricted to the first Brillouin zone) can

be constructed from the atomic orbitals φn(r−R−~τi), (which satisfy Hat(r)φn(r) =

Enφn(r)), according to Bloch theorem

ϕni,k(r) =
1√
N

∑

R

eik·(R+~τi)φn(r − R − ~τi). (2.3.2)

The crystal wave function ψk(r) is then constructed from the above basis functions

ψk(r) =
∑

ni

bni(k)ϕni,k(r), (2.3.3)

where bni(k) are coefficients depending on k. It is easy to show that ψk(r) satisfies

the Bloch theorem,

ψk(r + R) = eik·Rψk(r). (2.3.4)

From the Schrödinger equation,

Hψk = εkψk, (2.3.5)

we have
∑

nj

Hmi,nj(k)bnj(k) = εk
∑

nj

Smi,nj(k)bnj(k), (2.3.6)
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where

Hmi,nj(k) =

∫

ϕ∗
mi,k(r)Hϕnj,k(r)dr

=
1

N
eik·(~τj−~τi)

∑

R1,R2

eik·(R2−R1)

∫

φ∗
m(r − R1 − ~τi)Hφn(r − R2 − ~τj)dr

=
1

N
eik·(~τj−~τi)

∑

R1,R2

eik·(R2−R1)Hmi,nj(R2 + ~τj − R1 − ~τi)

= eik·(~τj−~τi)
∑

R

eik·RHmi,nj(R + ~τj − ~τi)

(2.3.7)

and

Smi,nj(k) =

∫

ϕ∗
mi,k(r)ϕnj,k(r)dr

=
1

N
eik·(~τj−~τi)

∑

R1,R2

eik·(R2−R1)

∫

φ∗
m(r − R1 − ~τi)φn(r − R2 − ~τj)dr

=
1

N
eik·(~τj−~τi)

∑

R1,R2

eik·(R2−R1)Smi,nj(R2 + ~τj − R1 − ~τi)

= eik·(~τj−~τi)
∑

R

eik·RSmi,nj(R + ~τj − ~τi)

(2.3.8)

which are usually called the Hamiltonian matrix and the overlap matrix. Hmi,nj(R+

~τj − ~τi) is the amplitude that an electron in the orbital φn at site (R + ~τj) will hop

to the orbital φm at position ~τi of origin under the action of the Hamiltonian Ĥ, and

is usually denoted as hopping parameter

tmi,nj(R + ~τj − ~τi) ≡ Hmi,nj(R + ~τj − ~τi), (2.3.9)

where the on-site (R = 0, ~τj − ~τi = 0) term is

tmi,ni(0) = εnδm,n. (2.3.10)
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Similarly Smi,nj(R + ~τj − ~τi) is called the overlap of φm(r − ~τi) and φn(r − R − ~τj),

denoted as overlap matrix

smi,nj(R + ~τj − ~τi) ≡ Smi,nj(R + ~τj − ~τi); smi,ni(0) = δm,n. (2.3.11)

A general Hamiltonian matrix element involves three center integrals –contributions

to the Hamiltonian Ĥ from a third atom and the two sites upon which the orbitals

are centered. But in practice, the three center contributions are neglected as in the

two-center approximation introduced by Slater and Koster.[46]

In the simplest case with only a single atomic s-level on a lattice with only one

atom per primitive cell, m = n = s, i = j = 1 and ~τi = ~τj = 0 are imposed on the

above equations. Eq. (2.3.6) is simplified to

Hs,s(k)bs(k) = εkSs,s(k)bs(k). (2.3.12)

The solution to the energy dispersion εk is then

εk =
Hs,s(k)

Ss,s(k)

=

∑

R t(R)eik·R

∑

R s(R)eik·R

=
εs +

∑

R 6=0 t(R)eik·R

1 +
∑

R 6=0 s(R)eik·R

(2.3.13)

2.3.2 Wannier Functions

As mentioned above, in tight binding method, the Bloch wave functions can also be

expanded using other local orbitals instead of atomic orbitals. Wannier functions,

first proposed by G. Wannier[59], is a candidate of such local orbitals, although they
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are not localized in some cases when the bandwidths are large, where the Wannier

functions are not like the atomic wave functions at all. Technically, Wannier functions

are Fourier transformations of Bloch wave functions ψnk(r). Since ψnk(r) is periodic

in the reciprocal lattice, i.e., ψnk+G(r) = ψnk(r), where G is a reciprocal lattice

vector, ψnk(r) can be expanded in plane waves as

ψnk(r) =
∑

R

wn(r − R)eiR·k, (2.3.14)

where the coefficients wn(r−R) are Wannier functions, which depend only on r−R

instead of r and R independently due to the Bloch theorem.

The Wannier functions wn(r − R) can be obtained by inverse transformations

wn(r − R) =
Ωcell

(2π)3

∫

BZ

e−iR·kψnk(r)dk, (2.3.15)

where Ωcell is the volume of the real-space primitive cell of the crystal.

The Wannier functions so obtained are not unique because any Bloch function

ψnk(r) doesn’t change any physically meaningful quantity under a “gauge transfor-

mation”

ψnk(r) → ψ̃nk(r) = eiφn(k)ψnk(r). (2.3.16)

A more general construction of the Wannier functions is given by

wn(r − R) =
Ωcell

(2π)3

∫

BZ

eiφn(k)e−iR·kψnk(r)dk, (2.3.17)

The non-uniqueness of the Wannier functions is totally due to presence of the phase

factor φn(k).

In addition to the freedom in the choice of phase factor φn(k), there is also a degree
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of freedom associated with the choice of a full unitary matrix Uk
nm, which transforms

the N Bloch wave functions ψnk(r) between themselves at every wavevector k, but

leaves the electronic energy functional (in an insulator) invariant. This leads to the

most general construction of Wannier functions from Bloch wave functions ψnk(r) in

the form

wn(r − R) =
Ωcell

(2π)3

∫

BZ

N
∑

m=1

Uk
nme

−iR·kψmk(r)dk, (2.3.18)

where Uk is a M ×N unitary matrix with M ≤ N . Note that Uk is not necessarily

a square matrix, as one can use this procedure to construct M Wannier functions

out of N bands. Again, in the procedure, the choice of Uk is not unique. Actually,

one can use this freedom to construct Wannier functions with properties of one’s

own interest, such as the most symmetric, or maximally projected, or maximally

localized. A widely used one is the maximally localized Wannier functions proposed

by Vanderbilt and coworkers[60, 61], in which the quantity

Ω =
N

∑

n=1

(〈r2〉n − 〈r〉2n) (2.3.19)

is minimized by choosing appropriate Uk, where 〈· · · 〉n is the expectation value over

the n-th Wannier function in the unit cell. There are also other Wannier functions

in use which are constructed by using projections onto local orbitals to emphasize

symmetries.[62, 63]

The Wannier functions wn(r−R) for all band n and R form a complete orthogonal

set. That is to say, the Wannier functions are orthogonal at different site and/or

different band,
∫

wm(r − Ri)wn(r − Rj) = δm,nδi,j. (2.3.20)
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In the tight binding approach, if Wannier functions are used as the local orbitals, the

overlap matrix sm,n(R) is greatly simplified to

sm,n(R) = δm,nδ0,R. (2.3.21)

As a result,

Sm,n(k) =
∑

R

eik·Rsm,n(R)

=
∑

R

eik·Rδm,nδ0,R

= δm,n

(2.3.22)

and Eq. (2.3.6) is simplified to

∑

n

Hm,n(k)bn(k) = εkbm(k). (2.3.23)

This is a main advantage to use Wannier functions in tight binding method.

In practice, Wannier functions are constructed from the results of DFT calcula-

tions and used as the local orbitals in tight binding method. The hopping parame-

ters εn (on-site energy) and tm,n(R) are obtained by fitting the εn(k) (from the tight

binding method) to the band structures of DFT calculations. (Note that the overlap

matrix is the identity matrix due to the use of Wannier functions as local orbitals.)

The hopping parameters are then used to construct model Hamiltonians to study

many-body effects. As mentioned above, the Wannier functions are not localized if

the bands have large bandwidths. Therefore, the above procedure works better for

systems with an isolated set of narrow bands.
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Chapter 3

Strongly Correlated Systems: the

Lanthanide Metals and

Compounds

3.1 Stability of the Gd Magnetic Moment under

High Pressure

This section was published as[64] “Stability of the Gd magnetic moment to the 500

GPa regime: An LDA+U correlated band method study”, Z. P. Yin and W. E. Pickett,

Phys. Rev. B 74, 205106 (2006).

3.1.1 Introduction

The behavior of the 4f rare earth metals and their compounds under pressure has

been discussed for decades, with the volume collapse transition under pressure at-

tracting a great deal of attention. It has been known for some time that there are
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volume collapse transitions in Ce (15% at 0.7 GPa, the famous γ-fcc to α-fcc phase

transition, not structural transition.[65]), Pr (10% at 20 GPa, hR24(hexagonal) to

α-uranium structural transition.[66]), Gd (5% at 59 GPa, dfcc-bcm (monoclinic)

structural transition.[67]) and Dy (6% at 73 GPa, hR24 (hexagonal) to bcm (mon-

oclinic) structural transition.[68]), while no significant volume collapses have been

detected in Nd, Pm, and Sm. The equation of state of these metals, and references

to the original work, has been collected by McMahan et al..[65] High temperature

experiments[69] have seen signatures that are likely related to the localized→itinerant

transition, at 50 GPa in Nd and 70 GPa in Sm.

The question can be stated more generally as: what form does the localized →

itinerant transition of the 4f states take, and what is the correct description? This

transition is intimately related to the question of behavior of magnetic moments,[65]

although the questions are not the same. There have been two main viewpoints on

the volume collapse transition. One is the “Mott transition of the 4f system” elab-

orated by Johansson,[70] in which the crucial ingredient is the change from localized

(nonbonding) to more extended states (participating in bonding), with an accompa-

nying drop in magnetic tendency. The other is the “Kondo volume collapse” view

introduced by Allen and Martin[71] and Lavagna et al.[72], in which the main feature

is the loss of Kondo screening of the local moment, with a decrease in localization of

the 4f state not being an essential feature.

At ambient conditions the 4f electrons form a strongly localized fn configuration

that is well characterized by Hund’s rules. Under reduction of volume, several things

might be anticipated to happen. At some point the 4f system begins to respond to

the non-spherical environment. Initially, perhaps, it is just a matter of crystal field

splitting becoming larger. Then the 4f orbitals actually begin to become involved
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in the electronic structure, by overlapping orbitals of neighboring atoms. The con-

sequences of this are possible participation in bonding, and that the orbital moment

becomes less well defined (the beginning of quenching i.e. the loss of Hund’s second

rule, which has already occurred in magnetic 3d systems). Additionally, the 4f lev-

els can shift and increase their interaction with the itinerant conduction (c) bands

(Kondo-like coupling), which can change the many-body behavior of the coupled

4f − c system. At some point the kinetic energy increase, characterized by the 4f

bandwidth Wf , compared to the on-site interaction energy Uf reaches a point where

the spin moment begins to decrease. Finally, at small enough volume (large enough

Wf ) the 4f states simply form nonmagnetic conduction bands.

Just how these various changes occur, and in what order and at what volume re-

duction, is being addressed in more detail by recent high pressure experiments. Here

we revisit the case of Gd, whose volume collapse was reported by Hua et al.[73] and

equation of state by Akella et al.[74] The deviation from the series of close-packed

structures below Pc=59 GPa and the lower symmetry bcm (body-centered mono-

clinic) high pressure structure signaled the expected onset of f -electron participation

in the bonding, and Hua et al. seemed to expect that the moment reduction and

delocalization of the 4f states would accompany this collapse.

New information has been reported by Maddox et al.,[75] who have monitored

the resonant inelastic x-ray scattering and x-ray emission spectra of Gd through Pc

and up to 113 GPa. They find that there is no detectable reduction in the magnetic

moment at the volume collapse transition, so the volume-collapse is only a part of a

more complex and more extended delocalization process of the 4f states. Maddox et

al emphasize the Kondo-volume-collapse[76, 77] aspects of the transition at Pc.

The treatment of the 4f shell, and particularly the volume collapse and other
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phenomena that may arise (see above), comprises a correlated-electron problem for

theorists. Indeed there has been progress in treating this volume-collapse, moment-

reduction problem in the past few years. The issue of the (in)stability of the local

moment seems to involve primarily the local physics, involving the treatment of the

hybridization with the conduction bands and interatomic f − f interaction, with

Kondo screening of the moment being the subsequent step. Dynamical mean field

studies of the full multiband system have been carried out for Ce[65, 78, 79] and for

Pr and Nd.[79] These calculations were based on a well-defined free-energy functional

and included the conduction bands as well as the correlated 4f bands. One simpli-

fication was that only an orbital-independent Coulomb interaction U was treated,

leaving the full orbital-dependent interaction (fully anisotropic Hund’s rules) for the

future. Density functional based correlated band theories have also been applied

(at zero temperature). Self-interaction corrected local density approximation (LDA)

was applied to Ce, obtaining a volume collapse comparable to the observed one.[80]

Four correlated band theories have been applied[81] to the antiferromagnetic insu-

lator MnO. Although their predictions for critical pressures and amount of volume

collapse differed, all obtained as an S=5/2 to S=1/2 moment collapse rather than a

collapse to a nonmagnetic phase.

Clearly there remain fundamental questions about how the magnetic moment

in a multielectron atom disintegrates as the volume is reduced: catastrophically, to

an unpolarized state, or sequentially, through individual spin flips or orbital-selective

delocalization. If the latter, the total (spin + orbital) moment could actually increase

initially in Gd. If the occupation change is toward f 8, the decrease in spin moment

(from S=7/2 to S=3) could be more than compensated by an orbital moment (L=3).

If the change is toward f 6, the onset of an L=3 orbital configuration could oppose
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the S=3 spin (Hund’s third rule), leaving a non-magnetic J=0 ion (as in Eu3+) even

though the 4f orbitals are still localized. Still another scenario would be that the

increasing crystal field quenches the orbital moment (as in transition metals) and the

remaining problem involves only the spins.

Our objective here is to look more closely at the stability of the Gd atomic mo-

ment, in the general context of the localized→itinerant transition of the 4f system

under pressure. Consideration of the changes in electronic structure under pressure

go back at least to the broad study of Johansson and Rosengren[82] but most have not

considered the magnetism in detail. We apply the LDA+U (local density approxima-

tion plus Hubbard U) method to study the evolution of the electronic structure and

magnetism as the volume is reduced. Although this correlated band method neglects

fluctuations and the dynamical interaction with the conduction electrons, it does treat

the full multiorbital system in the midst of itinerant conduction bands. The resulting

moment vs. volume surely provides only an upper limit to the pressure where the

moment decreases rapidly. However, we can invoke studies of the insulator-to-metal

transition in multiband Hubbard models to provide a more realistic guideline on when

the localized→itinerant (or at least the reduction in moment transition within the

4f system may be expected to occur. The results suggest stability of the moment to

roughly the 500 GPa region.

3.1.2 Electronic Structure Methods

In the section we apply the full potential local orbital code[47] (FPLO5.00-18) to Gd

from ambient pressure to very high pressure (a few TPa). We use the fcc structure

with space group Fm3m (#225) and ambient pressure atomic volume (corresponding

to the fcc lattice constant a0=5.097Å). The basis set is (core)::(4d4f5s5p)/6s6p5d+.
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We use 483 k point mesh and Perdew and Wang’s PW92 functional[20] for exchange

and correlation. We have tried both 5.0 and 6.0 for the confining potential exponent

(See Section 2.1.8 for definition of the confining potential and the related confining

potential exponent), with very similar results, so only the results using exponent=5

will be presented here. We perform both LDA and LDA+U calculations (see below).

Due to the extreme reduction in volume that we explore, any band structure method

might encounter difficulties. For this reason we have compared the FPLO results on

many occasions with parallel calculations with the full potential linearized augmented

plane wave method WIEN2k.[51] The results compared very well down to V/Vo=0.5,

beyond which the WIEN2k code became more difficult to apply. We use the notation

v ≡ V/Vo for the specific volume throughout the section.

We assume ferromagnetic ordering in all calculations. The Curie temperature has

been measured only to 6 GPa,[83, 84, 85] where it has dropped from 293 K (P=0) to

around 210 K. Linear extrapolation suggests the Curie temperature will drop to zero

somewhat below 20 GPa. However, as the 4f bands broaden at reduced volume the

physics will change substantially, from RKKY coupling at ambient pressure finally to

band magnetism at very high pressure. Antiferromagnetic (AFM) ordering does not

affect the 4f bandwidth[86] until f − f overlap becomes appreciable. AFM ordering

might affect some of the quantities that we look at in this study at very high pressure,

but such effects lie beyond the scope of our present intentions.

LDA+U Method

For the strength of the 4f interaction we have used the volume dependent U(V )

calculated by McMahan et al.,[65] which is shown below. Due to the localized 4f

orbital and the large atomic moment, we use the “fully localized limit” version of
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LDA+U as implemented in the linearized augmented planewave method,[87] and as

usual the ratio of Slater integrals is fixed at F4/F2=0.688, F6/F2=0.495. Since we are

particularly interested in the stability of the atomic moment, the exchange integral

J that enters the LDA+U method deserves attention. In atomic physics, and in

the LDA+U method, the exchange integral plays two roles. It describes the spin

dependence of the Coulomb interaction, that is, the usual Hund’s rule coupling. In

addition, it carries the orbital off-diagonality; with J=0 all 4f orbitals repel equally

by U , whereas in general the anisotropy of the orbitals leads to a variation[88] that

is described by J .

For a half filled shell for which the orbital occupations nm↑ = 1 and nm↓=0 for

all suborbitals m, the exchange effect primarily counteracts the effect of U , since the

anisotropy of the repulsion averages out. As a result, using Ueff ≡ U−J with Jeff=0

is almost equivalent, for a perfectly half-filled shell, to using U and J separately as

normally is done. Since it could be argued that Hund’s first rule is treated adequately

by the LDA exchange-correlation functional, for our calculations we have set J=0.

This becomes approximate for the off-diagonality effects when the minority 4f states

begin to become occupied at high pressure. However, we have checked the effect at

a/ao=0.8 (v = 0.5, P=60 GPa). Comparing U = 6.9 eV, J=1 eV with U = 5.9

eV, J=0, we find the energy is exactly the same (to sub-mRy level) and the moment

is unchanged. This result is in line with the Ueff , Jeff argument mentioned above.

Changing J from 1 eV to 0 with U = 5.9 eV also leaves the energy unchanged,

illustrating the clear unimportance of J . The J=1 eV calculation does result in a

0.03 µB larger moment. At much smaller volumes, where the minority bands overlap

the Fermi level, the changes become noticeable and would affect the equation of state,

but only in a very minor way. In general, neglect of J will tend to underestimate
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the stability of the magnetic moment, which we show below already to be extremely

stable.

Structure

The observed structures of Gd follow the sequence hcp→Sm-type→dhcp→dfcc →bcm

(dfcc≡distorted fcc, which is trigonal; bcm≡body-centered monoclinic). All except

the bcm phase are close-packed arrangements, differing only in the stacking of hexag-

onal layers. The bcm phase is a lower symmetry phase that suggests f -electron

bonding has begun to contribute.

For our purpose of studying trends relating only to the atomic volume, it is best

to stay within a single crystal structure. We expect the results to reflect mostly

local physics, depending strongly on the volume but only weakly on the long-range

periodicity. Therefore we have kept the simple fcc structure for the results we present.

3.1.3 LDA+U Results

The overall result of our study is that evolution of the volume and the Gd moment are

predicted by LDA+U to be continuous under reduction of volume, with no evidence

of a volume-collapse transition (or any other electronic phase change) in the region

where one is observed (59 GPa), or even to much higher pressure. This result provides

some support for the suggestion that the volume collapse is Kondo-driven, or involves

in an essential way fluctuations, neither of which are accounted for in our approach.

While we will usually quote volumes or the relative volume v, it is useful to be able

to convert this at least roughly to pressure. We provide in Fig. 3.1.1 the calculated

equation of state, plotted as log P vs. V/Vo. It can be seen that the pressure is very

roughly exponential in -V/Vo from v=0.8 down to v=0.15 (2 GPa to 4 TPa). The
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Figure 3.1.1: Log plot of the calculated pressure versus volume. The relatively small
difference between the LDA+U and LDA results is evident. The relation is roughly
exponential below V/Vo < 0.8. Current static diamond anvil cells will only take Gd
to the V/Vo ∼ 0.35 region.

change in slope around v=0.4 (in the vicinity of 100-200 GPa) is discussed below.

Magnetic Moment vs. Volume

The behavior of the total spin moment (4f plus conduction) in LDA+U is compared

in Fig. 3.1.2 with that of LDA. The general trend is similar, but the decrease in

moment is extended to smaller volume by the correlations in LDA+U. Specifically,

the moment is reduced not by decrease of majority spin population (which would

be f 7 → f 6) but rather by increase in the minority spin population (f 7 → f 8; see

discussion below). Thus LDA+U enhances the stability of the moment by raising the

unoccupied minority 4f states in energy, thus reducing and delaying compensation of
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Figure 3.1.2: Behavior of the calculated moment/cell (4f spin moment plus conduc-
tion electron polarization) of Gd versus reduction in volume, from both LDA and
LDA+U methods. For the more realistic LDA+U method, there is very little de-
crease in moment down to V/Vo=0.45 (∼110 GPa), with a rapid decline beginning
only around V/Vo ≈ 0.2 (1.5 TPa).

the filled majority states. It has been noted elsewhere[89] that raising the minority

states is the main beneficial effect of the LDA+U method for Gd at ambient pressure.

The decrease in moment is minor down to v = 0.45 (∼90-100 GPa) beyond which

the decrease from 7µB to 6µB occurs by v = 0.2 (P ∼ 1 TGa). Only beyond this

incredibly high pressure does the moment decrease more rapidly, as the 4f states

become band-like. Even in LDA this collapse does not occur until below v=0.3 (P ∼

300-400 GPa). With the neglect of fluctuations, the simplistic interpretation of the

LDA+U results is that the Gd “bare” spin moment is relatively stable to ∼1 TPa.

It might be thought that, for the region of spin moment of 6 µB and below, where

the minority occupation is one or more, there might be an orbital moment of the

minority system. However, at these volumes (see below) the minority 4f bandwidth
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is 5 eV or more, which we think makes an orbital moment unlikely. Therefore we

have not pursued this possibility.

4f Bandwidth

The behavior of the 4f states, which become bands, is better illustrated in Fig. 3.1.3,

where the evolution of the 4f “bands” (the 4f projected density of states (PDOS))

is provided graphically. At a/ao=0.80 (v=0.51, P ≈ 60 GPa, where the volume

collapse is observed) the majority PDOS is somewhat less than 2 eV wide and still

atomic-like, since it does not quite overlap the bottom of the conduction band. Above

this pressure range the 4f states begin to overlap the conduction bands, primarily

due to the broadening of the conduction bandwidth. By a/ao=0.70 (v=0.34, P ≈

200 GPa) the width is at least 3 eV and the shape shows the effect of hybridization

and formation of bands. For yet smaller volumes the bandwidth becomes less well

defined as the bands mix more strongly with the conduction states and broaden. The

minority PDOS lies in the midst of Gd 5d bands and is considerably broader down

to a/ao=0.70, beyond which the difference becomes less noticeable.

The position of the 4f states relative to the semicore 5p, and conduction 5d states,

and their evolution with volume, are pictured in Fig. 3.1.4. The semicore 5p bands

broaden to ∼10 eV by 200 GPa, but it requires supra-TPa pressures to broaden

them into the range of the majority 4f states. The upturn in the logP vs. V curve

in Fig. 3.1.1 in the vicinity of 100-200 GPa is probably due to 5p semicore overlap

on neighboring atoms (repulsion of closed shells as they come into contact). The 5d

bands broaden in the standard way under pressure, and begin to rise noticeably with

respect to the 4f states beyond 60 GPa.

The minority 4f bands fall somewhat with respect to EF as they broaden, both
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Figure 3.1.3: View of the 4f projected density of states under compression, with
majority spin plotted upward and minority plotted downward. The curves are dis-
placed for clarity, by an amount proportional to the reduction in lattice constant.
The legend provides the ratio a/ao, which is decreasing from above, and from below,
toward the middle of the figure.
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effects contributing to an increase in the minority 4f occupation at the expense of

5d and 6sp character. Since the majority 4f states remain full, the effect is that the

total f count increases and the spin moment decreases (as discussed above).

The volume dependence of the 4f bandwidth in nonmagnetic Gd has been looked

at previously by McMahan et al.[65] They identified the intrinsic width Wff from the

bonding and antibonding values of the 4f logarithmic derivative; Wff lies midway

(roughly halfway) between our majority and minority bandwidths, see Fig. 3.1.4.

McMahan et al. also obtained a hybridization contribution to the 4f width; both of

these would be included in our identified widths. Our widths, obtained for ferromag-

netically ordered Gd, are difficult to compare quantitatively with those of McMahan

et al., because the positions of our minority and majority states differ by 12 eV at

P=0, decreasing under pressure. Note that our minority and majority widths, ob-

tained visually from Fig. 3.1.3 differ by a factor of ∼ 6 at v=1.0, still by a factor of

2.5 at v=0.3, and only become equal in the v < 0.2 range.

Comments on Mott Transition

In the simplest picture (single-band Hubbard model) the Mott transition is controlled

by the competition of kinetic (W ) and potential (U) energies, with the transition

occurring around W ≈ U . This transition is normally pictured as a simultaneous

insulator-to-metal, moment collapse, and presumably also volume collapse transition.

In Gd, however, no change in moment is observed[75] across the volume collapse

transition at 59 GPa.

In Fig. 3.1.5 the 4f bandwidths (majority and minority) and the Coulomb U of

McMahan et al.[65] are plotted versus volume. The region W ≈ U occurs around

v ∼0.20-0.25. This volume corresponds to a calculated pressure in the general neigh-
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Figure 3.1.4: Plot of band positions (lines) and widths (bars) of the majority and
minority 4f states, the semicore 5p bands, and the valence 5d bands, for ferromagnetic
Gd. The bar at V/Vo=0.5 (∼59 GPa) marks the observed volume collapse transition,
while the arrow at 113 GPa denotes the highest pressure achieved so far in experiment.
These results were obtained from LDA+U method, with U varying with volume as
given by McMahan et al[65].
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borhood of 1 TPa, indicative of an extremely stable moment well beyond present

capabilities of static pressure cells. This criterion however presumes a simple single

band system, which Gd is not.

Gunnarsson, Koch, and Martin have considered the Mott transition in the multi-

band Hubbard model,[90, 91, 92] and found that the additional channels for hopping

favored kinetic processes that reduced the effect of the Coulomb repulsion. They ar-

gued that the criterion involved the inverse square root of the degeneracy, which can

be characterized by an effective repulsion U∗ = U/
√

7 (for f states the degeneracy

is 2ℓ +1 = 7). The Mott transition could then be anticipated in the range W ≈ U∗,

for which U∗(V ) has also been included in Fig. 3.1.5. Taking W as the average of

the majority and minority widths gives the crossover around vc ∼0.35 (Pc ∼ 200

GPa); taking W more realistically as the majority bandwidth gives vc ∼0.25 (Pc ∼

750 GPa).

Another viewpoint on the “Mott transition” in the 4f system is that it can be

identified with the ‘metallization’ of the 4f bands, which might be expected to be

where the occupied and unoccupied bands overlap. These are respectively the ma-

jority and minority bands. Significant overlap occurs only above 2 TPa (v < 0.20)

in Fig. 3.1.5. The fact is that metallization (however defined for a 4f system in

the midst of uncorrelated itinerant conduction bands) and moment collapse need not

coincide, and the concept of Mott transition may need to be generalized.

3.1.4 Summary

In this section we have applied the correlated band theory LDA+U method to probe

the electronic and magnetic character of elemental Gd under pressure. The calcu-

lated moment decreases slowly down to V/Vo = 0.20 (P > 1 TPa), and only at
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smaller volumes does the moment decrease more rapidly. Still, no identifiable mo-

ment collapse has been obtained. Metallization, defined as overlap of unoccupied

with occupied bands, also does not occur until the same range of volume/pressure.

However, information from studies of the multiband Hubbard model, and compari-

son of the bandwidth to U/
√
N ratio (N=7 is the 4f degeneracy) suggests a “Mott

transition” might be expected in the broad vicinity of 500 GPa.

The same LDA+U method, and three different correlated band methods have

been applied to antiferromagnetic MnO. The manganese configuration is half-filled

and fully polarized, as is Gd, with the difference being that it is 3d and an antiferro-

magnetic insulator rather than 4f in a background of itinerant bands. All methods

obtained a volume collapse from a high-spin to low-spin configuration. Surprisingly,

the collapse was not to nonmagnetic but rather to a spin-half result.

The critical pressures for transitions suggested by the present study (minimum of

200 GPa, more likely around 750 GPa) lie well above the volume collapse transition

that is observed at 59 GPa. At this point in our understanding of the 4f shell in Gd,

there seems to be no viable alternative to the suggestion by Maddox et al. that Gd

provides an example of the Kondo volume collapse mechanism.[75]
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3.2 Rare-earth-boron Bonding and 4f State Trends

in RB4 Tetraborides

This section was published as[93] “Rare-earth-boron bonding and 4f state trends in

RB4 tetraborides”, Z. P. Yin and W. E. Pickett, Phys. Rev. B 77, 035135 (2008).

3.2.1 Background and Motivation

The tendency of the metalloid boron to form clusters has led to widespread study

of the properties of condensed boron. Of the many classes of compounds that

B forms, B-rich metal borides include classes with very important, and intensely

studied, properties. One example is MgB2, which is the premier phonon-coupled

superconductor[94] (at 40 K). Although this structural class includes several transi-

tion metal borides and other simple metal borides (such as LaB2), MgB2 is unique

in this single-member class of quasi-two-dimensional s-p metal with very high super-

conducting transition temperature due to strong covalent B-B bonds that are driven

metallic[95] by the crystal structure and chemistry.

Another class that has received great attention is the hexaborides MB6 formed

from vertex-linked B6 octahedra that enclose the metal ion in the cubic interstitial

site. This class includes the divalent metals (M=Ca, Sr, Ba) that are small gap

semiconductors.[96, 97, 98, 99, 100, 101, 102, 103, 104, 105] The stability of this

structure was understood decades ago, when cluster studies established[96, 97] that

the bonding states of linked B6 clusters are filled by 20 electrons, which requires two

per B6 unit in addition to the B valence electrons. There are many trivalent hexa-
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borides as well, including lanthanide members which have very peculiar properties:

unusual magnetic ordering, heavy fermion formation, and superconductivity.[99, 100,

104, 106, 107, 108, 109] Two monovalent members, NaB6 [110] and KB6 [111], have

been reported.

Yet another class that has been known for decades is the metal (mostly rare earths)

tetraboride RB4 family, which is richer both structurally and electronically and for

which considerable data is available (see: for several RB4, Refs. [112, 113, 114, 115];

YB4, Refs. [116, 117, 118, 119, 120]; LaB4, Ref. [121]; CeB4, Refs. [122, 123,

124]; NdB4, Ref. [125]; GdB4, Refs. [126, 127, 128, 129, 130, 131]; TbB4, Refs.

[132, 133, 134, 135, 136, 137]; DyB4, Refs. [138, 139, 140, 141, 142, 143]; ErB4,

Refs. [137, 144, 145]). Yttrium and all the lanthanides except Eu and Pm form

isostructural metallic tetraborides RB4 with space group P4/mbm (#127), described

below and pictured in Fig. 3.2.1. Presumably Eu is not stable in the tetraboride

structure because of its preference for the divalent configuration in such compounds.

The Sr and Ba tetraborides also are not reported. A “calcium tetraboride” with

formula Ca(B1−xCx)4, x ≈ 0.05 was reported[146] recently.

These rare-earth tetraborides exhibit an unusual assortment of magnetic proper-

ties. While CeB4 and YbB4 (f 1 and f 13 respectively) don’t order and PrB4 orders

ferromagnetically at Tc=25 K,[129] all of the others (R=Nd, Sm, Gd, Tb, Dy, Ho,

Er, Tm) order antiferromagnetically, with Néel temperature TN (see Table I) span-

ning the range 7-44 K. A noteworthy peculiarity is that TN doesn’t obey de Gennes’

scaling law, which says that the magnetic transition temperature is proportional to

(gJ − 1)2J(J + 1) across an isostructural series where the rare-earth atom is the only

magnetic component.[136, 147] (here J is the Hund’s rule total angular momentum

index, gJ is the corresponding Landé g-factor.) In the rare earth nickel borocarbide



Chapter 3.2. RB4 65

series, for example, de Gennes scaling is obeyed faithfully.[148] This lack of scaling in-

dicates that magnetic coupling varies across the series, rather than following a simple

RKKY-like behavior with a fixed Fermi surface.

Both the ferromagnetic member PrB4 and antiferromagnetic onesRB4 show strong

magnetic anisotropy. For ferromagnetic PrB4 the c axis is the easy axis. The situa-

tion is more complicated for the antiferromagnetic compounds, which display varying

orientations of their moments below TN , and some have multiple phase transitions.

GdB4 and ErB4 have only one second order phase transition, while both TbB4 and

DyB4 have consecutive second order phase transitions at distinct temperatures. A yet

different behavior is shown by HoB4 and TmB4, which have a second order phase tran-

sition followed by a first order phase transition at lower temperature. The magnetic

ordering temperatures, primary spin orientations, and experimental and theoretical

effective (Curie-Weiss) magnetic moments have been collected in Table I.

The variety of behavior displayed by these tetraborides suggests a sensitivity to

details of the underlying electronic structure. Unlike the intense scrutiny that the

tetraborides have attracted, there has been no thorough study of the tetraboride

electronic structure, which contains a new structural element (the “boron dimer”)

and an apical boron that is inequivalent to the equatorial boron in the octahedron.

We provide here a detailed analysis, and in addition we provide an initial look into

the trends to be expected in the 4f shells of the rare earth ions.

3.2.2 Crystal Structure

The full RB4 structure was first reported by Zalkin and Templeton[124] for the Ce,

Th, and U members. These tetraborides crystallize at room temperature in the

tetragonal space group P4/mbm, D5
4h with four formula units occupying the positions
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Figure 3.2.1: Structure of RB4 viewed from along the c direction. The large metal
ion spheres (red) lie in z=0 plane. Apical B1 atoms (small black) lie in z ≃ 0.2 and
z ≃ 0.8 planes. Lightly shaded (yellow) dimer B2 and equatorial B3 (dark, blue)
atoms lie in z=0.5 plane. The sublattice of R ions is such that each one is a member
of two differently oriented R4 squares, and of three R3 triangles.

Table 3.1: Data on magnetic ordering in the RB4 compounds.[112, 114, 129, 143]
The columns provide the experimental ordering temperature(s) Tmag, the ordering
temperature Tth predicted by de Gennes law (relative to the forced agreement for
the GdB4 compound), the orientation of the moments, and the measured ordered
moment compared to the theoretical Hund’s rule atomic moment (µB).

Tmag (K) Tth (K) direction µ(exp) µ(th)
PrB4 24 2.1 ‖ c 3.20 3.58
SmB4 26 12 – – 0.84
GdB4 42 42 ⊥ c 7.81 7.94
TbB4 44, 24 28 ⊥ c 9.64 9.72
DyB4 20.3, 12.7 19 ‖ c 10.44 10.63
HoB4 7.1, 5.7(1st) 12 ‖ c 10.4 10.6
ErB4 15.4 7 ‖ c 9.29 9.60
TmB4 11.7, 9.7(1st) 3 ⊥ c 7.35 7.56
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Figure 3.2.2: Plot of experimental lattice constants of RB4 vs position in the Periodic
Table (atomic number), showing a lanthanide contraction of about 5% for a, 3% for
c. The smooth lines show a quadratic fit to the data.

listed in Table 3.2. The lattice constants for the reported rare earth tetraborides are

presented in Table 3.3.

The B1 and B3 atoms form B6 octahedra (apical and equatorial vertices, respec-

tively) that are connected by B2 dimers in the z=1/2 plane. The B6 octahedra,

which are arrayed in centered fashion in the x-y plane within the cell, are flattened

somewhat, with distances from the center being 1.20 Å along the c axis and 1.29 Å

in the x-y plane (taking GdB4 as an example). Each B2 atom is bonded to two B1

atoms in separate octahedra and to one other B2 atom. A suggestive form for the

chemical formula then is [R2B2B6]2. The rare-earth atoms lie in the large interstitial

holes in the z=0 plane, and form a 2D array that can be regarded as fused squares

and rhombuses.[128]

The R site symmetry is mm. The symmetry of an R site is important for the

properties of the compounds, as it dictates the crystal field splitting of the ion with
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Table 3.2: Site designations, symmetries, and atomic positions of the atoms in the
RB4 crystal.

R 4g mm (x, 1
2
+x, 0)

B1 4e 4 (0, 0, z)
B2 4h mm (x, 1

2
+x, 1

2
)

B3 8j m (x, y, 1
2
)

total angular momentum ~J = ~L+ ~S and thereby the resulting magnetic state at low

temperature. The R ion is coordinated by seven B atoms in planes both above and

below, three of them being dimer B2 atoms (two 2.88 Å distant and one at a distance

of 3.08 Å) and four of them equatorial B3 atoms (two each at distances of 2.76 Å and

2.84 Å). Within the unit cell the four R sites form a square of side d = 0.518a =

3.70Å, oriented at about 15◦ with respect to the square sublattice of B6 octahedra.

The (low) site symmetries of the apical B1, dimer B2, and equatorial B3 atoms are

4,mm,m, respectively.

The reported lattice constants for the lanthanides are plotted in Fig. 3.2.2. It is

evident that most fall on smooth lines reflecting the lanthanide contraction in this

system. The behavior is representative of trivalent behavior, from La through to Lu.

The big exception is Ce, which has smaller volume suggesting that, rather than being

simple trivalent, the 4f electron is participating in bonding. Pm with all unstable

isotopes has not been reported. EuB4 also has not been reported; Eu typically prefers

the divalent state (due to the gain in energy of the half-filled 4f shell) so it is not

surprising that it is different. However, some divalent tetraborides do form in this

structure (e.g. CaB4, see Sec. IV) so it cannot be concluded that EuB4 is unstable

simply on the basis of divalency. Finally, the small deviation of Yb from the smooth

curves suggest it maybe be mixed or intermediate valent (although close to trivalent).
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Table 3.3: Tabulation of the lattice constants and internal structural parameters used
in our calculations. Considering the extreme regularity of the internal coordinates
through this system, the irregularity in zB1 for Dy should be treated with skepticism.

R a(Å) c(Å) xR zB1 xB2 xB3 yB3 Ref.
Y 7.111 4.017 0.318 0.203 0.087 0.176 0.039 [116]
La 7.324 4.181 0.317 0.209 0.088 0.174 0.039 [115],[121]
Ce 7.208 4.091 0.318 0.203 0.087 0.176 0.039 [115],[123]
Pr 7.235 4.116 0.318 0.203 0.087 0.176 0.039 [114]
Nd 7.220 4.102 0.318 0.203 0.087 0.176 0.039 [115],[125]
Pm 7.193 4.082 0.318 0.203 0.087 0.176 0.039
Sm 7.179 4.067 0.318 0.203 0.087 0.176 0.039 [114]
Eu 7.162 4.057 0.318 0.203 0.087 0.176 0.039
Gd 7.146 4.048 0.317 0.203 0.087 0.176 0.038 [128]
Tb 7.120 4.042 0.317 0.202 0.087 0.176 0.039 [134],[136]
Dy 7.097 4.016 0.319 0.196 0.086 0.175 0.039 [114],[144]
Ho 7.085 4.004 0.318 0.203 0.087 0.176 0.039 [114]
Er 7.071 4.000 0.318 0.203 0.086 0.177 0.038 [136],[144]
Tm 7.057 3.987 0.318 0.203 0.087 0.176 0.039 [115]
Yb 7.064 3.989 0.318 0.203 0.087 0.176 0.039 [115]
Lu 7.036 3.974 0.318 0.203 0.087 0.176 0.039 [115]

3.2.3 Calculational Methods

The full potential local orbital (FPLO) code[47] (version 5.18) was used in our calcu-

lations. Both LDA (PW92 of Perdew and Wang[20]) and LDA+U (using the atomic

limit functional) are used. We used a k mesh of 123 in the full Brillouin zone. For the

density of states (DOS) plot and Fermi surface plot, we used a k mesh of 243 for more

precision. The basis set was 1s2s2p3s3p3d4s4p::(4d4f5s5p)/6s6p5d+ for all metal el-

ements(except Y(1s2s2p3s3p3d::(4s4p)/5s5p4d+) and Ca(1s2s2p::(3s3p)/4s4p3d+)).

For boron atoms we used the basis ::1s/(2s2p3d)+.

In the LDA+U calculations we used values typical for 4f atoms U = 8 eV and

J = 1 eV (corresponding to Slater integrals F1=8.00, F2=11.83, F4=8.14, F6=5.86)

throughout all calculations. The high symmetry points in the tetragonal zone are
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3.2.4 General Electronic Structure

The valence-conduction band structure of YB4 (where there are no 4f bands) is shown

in Fig. 3.2.3. For LaB4, which differs in volume and conduction d level position, the

bands are very similar, with only slightly differing Fermi level crossings along the

M-Γ direction. The occupied valence bandwidth is 11 eV (not all bands are shown

in this figure). One striking feature of the bands is the broad gap of more than 3 eV

along the top (and bottom) edges R-A-R of the Brillouin zone. Bands along these

lines stick together in pairs due to the non-symmorphic space group, and nearly all

bands disperse very weakly with kx (or ky) along these edges. This gap closes along

the kz = π/c plane of the zone only for small in-plane components of the wavevectors.

It is such gaps enclosing EF that often account for the stability of a crystal structure,

and the stability of boride structures, including this one, has been a topic of interest

for decades.[96, 97, 150, 151]

The band structure of a divalent cation member (CaB4) is also included in Fig.

3.2.3 for comparison. The largest difference is the band filling, as expected, although

some band positions differ in important ways near the Fermi level. Still the 3d bands

of Ca are not quite empty, as a band with substantial 3d character lies at EF at R

and is below EF all along the R-A line. CaB4 can be fairly characterized, though, as

having nearly filled bonding B 2p bands and nearly empty Ca 3d bands.
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Figure 3.2.3: Band structure of YB4 (top panel) and CaB4 (lower panel) within 6
eV of the Fermi level along high symmetry directions, showing the gap that opens
up around EF (taken as the zero of energy) throughout much of the top and bottom
portions of the tetragonal Brillouin zone. Notice the lack of dispersion along the
upper and lower zone edges R-A-R (kz=π/c, and either kx or ky is π/a). Note also
that, due to the non-symmorphic space group, bands stick together in pairs along
X-M (the zone ‘equator’) and along R-A (top and bottom zone edges).
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Figure 3.2.4: Projected density of states per atom of each of the B atoms for YB4.
The curves are shifted to enable easier identification of the differences. The B 2p
bonding-antibonding gap can be identified as roughly from -1 eV to 4-5 eV.

Figure 3.2.5: Enlargement of the partial densities of states of Y 4d and B 2p states
(per atom) near the Fermi level. The states at the Fermi level, and even for almost
2 eV below, have strong 4d character. The apical B2 character is considerably larger
than that of B1 or B3 in the two peaks below EF , but is only marginally larger exactly
at EF .
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Bonding and Antibonding Bands

As mentioned in the Introduction, the stability of the hexaborides is understood in

terms of ten bonding molecular orbitals of the B6 octahedron. This octahedron occurs

also in these tetraborides, along with one additional B2 dimer that is bonded only

in the layer (sp2). Lipscomb and Britton[96, 97] started from this point, and argued

that each of the B2 atoms in a dimer forms single bonds with two B3 atoms but a

double bond with its dimer neighbor, so each B2 atom needs four electrons. The total

of 20+8 electrons for each set of 6+2 boron atoms leaves a deficit of four electrons,

or a deficit of 8 electrons in the cell. This amount of charge can be supplied by

four divalent cations, with CaB4 as an example. Most tetraborides contain trivalent

cations, however, so this is an issue worth analyzing.

An empirical extended Hückel band structure study[146] for CaB4 indeed gave a

gap, albeit a very narrow one. The Hückel method can be very instructive but is not

as accurate as self-consistent density functional methods. Our FPLO calculation on

CaB4, shown in Fig. 3, gives a metallic band structure. However, the ‘valence’ (oc-

cupied) and ‘conduction’ (unoccupied) bands in the bands (Hückel, and also FPLO)

are readily identified, and it clear that there are disjoint sets of bands with different

characters. There are the boron bonding bands (at EF and below) that can be clearly

distinguished from conduction bands at and above EF . These conduction bands are

primarily metal d bands (with an interspersed nonbonding B2 pz band, see below).

If they were ∼0.5 eV higher it would result in an insulating band structure in CaB4.

The boron antibonding bands lie higher, above 5 eV at least and mix strongly with

the metal d bands.

The separation into bonding and antibonding B 2p bands agrees (almost) with the

ideas of Lipscomb and Britton, and confirms their counting arguments. However, the



Chapter 3.2. RB4 74

existence of numerous R3+B4 compounds and only one divalent member shows that

the extra electron is not a destabilizing influence, while it increases the conduction

electron density (hence, the conductivity, and magnetic coupling).

In covalently bonded materials it is common to be able to identify the distinction

between the bonding bands and the antibonding bands. In covalent semiconductors,

for example, they lie respectively below and above the band gap, an absolutely clean

separation. In the RB4 system the d bands lie within the corresponding bonding-

antibonding gap and complicate the picture. Analysis of the orbital-projected bands

clarify this aspect. The B1 and B3 atoms, being engaged in three-dimensional bond-

ing (within an octahedron and to another unit (octahedron or dimer)), have a clear

bonding-antibonding splitting of a few eV (beginning just below EF ). Likewise, the

dimer B2 px, py states display a similar splitting.

The B2 pz orbital is quite different. As is the case in MgB2 (whose planar structure

is similar to the local arrangement of a B2 atom), pz bands extend continuously

through the gap in the B bonding/antibonding bands, and mix fairly strongly with

the rare earth d states in that region. There is considerable B2 pz character in the

bands near (both below and above) EF at the zone edge M point, as well as the Y 4d

character that is evident in Fig. 3.2.3. So while there is some B1 and B3 character

in the rare earth metal d bands that lie within the boron bonding-antibonding gap,

the amount of B2 pz character is the primary type of B participation in these bands

that provide conduction and magnetic coupling.

Pseudogap in the Density of States

From the projected DOS of the three types of B atoms of YB4 (see Fig. 3.2.4), one

can detect only relatively small differences in the distribution of B1, B2, and B3
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character arising from their differing environments. First, note that in the DOS of

B1 and B3 there is a peak around -15 eV, while there is no such peak for B2. This

peak arises from the overlap of 2s and 2pσ states of each of the boron atoms forming

the B6 octahedra (B1 and B3); the 2s character is about three times as large as the

2pσ character, and the remaining 2s character is mixed into the lower 2p bands. This

state is a well localized B6 cluster orbital, and there are two such orbitals (octahedral

clusters) per cell. The bridging B2 atoms do not participate in any such bound state.

Another difference in characters of the B sites is that, in the region below but

within 2 eV of the Fermi level, the DOS of the dimer B2 atom is significantly larger

than that of B1 and B3 atoms, as can be seen in Fig. 3.2.5. Together with plots

showing the band character (not shown), this difference reflects the fact that all of the

2p orbitals of B1 and B3 (octahedron) atoms are incorporated into bonding (filled)

and antibonding (empty) bands. The distinct characteristic of the B2 pz state was

discussed in the previous subsection. All B 2p states do hybridize to some degree

with the metal d bands, however, and all B atoms have some contribution at the

Fermi level.

The full Y 4d DOS (not shown) establishes that these bands are centered about

4 eV above EF , with a ‘bandwidth’ (full width at half maximum) of 6-7 eV (a ‘full

bandwidth’ would be somewhat larger). The largest Y character near EF along sym-

metry lines is 4d(x2 − y2), primarily in the bands dispersing up from -0.5 eV at Z

toward Γ. The flat bands around -1 eV along Γ−X−M−Γ are strongly 4d(z2) char-

acter, indicative of a nonbonding, almost localized state in the x-y plane. Note that

these bands disperse strongly upward along (0, 0, kz) and lie 3-4 eV above EF in the

kz = π/c plane. Thus the 4d(z2) orbitals form two nearly separate one-dimensional

bands along kz, and give rise to flat parts of some Fermi surfaces (see following sub-
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Figure 3.2.6: Fermi surfaces of YB4. Light (yellow) surfaces enclose holes, dark (red)
surfaces enclose electrons. The wide gap the throughout the top and bottom edges
of the zone account for the lack of Fermi surfaces there.
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section). These bands can be modeled by a tight-binding band −tddσcoskzc with

hopping amplitude tddσ ≈ 1 eV. Most of the 4d(xz), 4d(yz) character and 4d(xy)

character lies above EF , and is centered 3-4 eV above EF . The B2 2pz state mixes

primarily with Y 4dxz, 4dyz near the M point (near EF and above). The B2 2pz

orbitals are shifted up somewhat with respect to the 2px, 2py states by the ligand

field effects (there is a bonding interaction within the x-y plane only).

Fermi Surface

The Fermi surfaces of YB4, shown in Fig. 3.2.6, will be representative of those of

the trivalent RB4 compounds although small differences may occur due to element-

specific chemistry of trivalent rare earths and due to the lanthanide contraction. The

large gap along the R-A-R edges precludes any FS on or near most of the kz = π
c

face. The Fermi surfaces can be pictured as follows. Square hole pyramids with only

slightly rounded vertices lie midway along the Γ−Z line, and similar nested electron

pyramids lie along the M − A line near the M point. A pointed ellipsoid oriented

along kz sits at the Z point. Surrounding Γ is lens-type electron surface joined to

pointed ellipsoids along the (110) directions. Finally, there are two “tortoise shell”

shaped hole surfaces within the zone, centered along the Γ − Z lines.

These surfaces, and the small variation through the lanthanide series, is surely

relevant to the varying magnetic behavior observed in RB4 compounds. There are

nesting possibilities between the bases of the square pyramids, for example, which

will appear as RKKY coupling as the associated nesting vectors. The ellipsoidal

attachments on the zone-centered lens surface may provide some weak nesting.
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Figure 3.2.7: The full valence band structure of DyB4, and up to 5 eV in the
conduction bands. This plot is for ferromagnetic alignment of the spin moments,
with the solid bands being majority and the lighter, dashed lines showing the minority
bands. The flat bands in the -4.5 eV to -11 eV are 4f eigenvalues as described by
the LDA+U method.
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Figure 3.2.8: Band structure of DyB4 on a fine scale around the Fermi energy, see
Fig. 3.2.7. The exchange splitting (between solid and dashed bands) gives a direct
measure of the coupling between the polarized Dy ion and the itinerant bands (see
text).

3.2.5 The Lanthanide Series

Any effective one-electron treatment of the electronic structure of 4f electron sys-

tems faces serious challenges. The root of the difficulty is that the ground state

of an open 4f shell has intrinsic many-body character, being characterized by the

spin S and angular momentum L of all of the 4f electrons, and the resulting total

angular momentum J , following Hund’s rules. Although it is possible to delve into

the extent to which the LDA+U method can reproduce the z-components of such

configurations,[152] that is not the intention here. LDA+U reliably gets the high

spin aspect, which contains much of the physics that determines relative 4f level po-

sitions and hence trends across the series. There is recent evidence from calculations

on rare earth nitrides[153] that, if spin-orbit coupling is neglected and the symmetry

is lowered appropriately, the high orbital moment (Hund’s second rule) can usually
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Figure 3.2.9: Calculated mean 4f eigenvalue position (symbols connected by lines)
with respect to EF , and the spread in eigenvalues, of RB4 compounds. The smooth
behavior from Pr to Tm (except for Eu) reflects the common trivalent state of these
ions. Eu and Yb are calculated to be divalent and deviate strongly from the trivalent
trend. Ce has a higher valence than three, accounting for its deviation from the
trivalent trend.
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be reproduced. The exceptions are the usual difficult (and interesting) cases of Eu

and Yb.

The Hund’s rule ground state of the ion often breaks the local symmetry of the

site, and if one is exploring that aspect the site symmetry should be allowed to be

lower than the crystalline symmetry. As stated, we are not interested here in those

details. In the calculations reported here, the crystal symmetry is retained. The

site symmetry of the lanthanide ion is already low (mm), reflected in its 14-fold

coordination with B atoms. In addition, spin-orbit coupling has not been included.

Band Structure

Most of the RB4 lanthanide tetraborides follow the usual trivalent nature of these

ions, and the itinerant parts of their band structures are very similar to those of YB4

and LaB4. The exceptions are R = Eu and Yb, which tend to be divalent to achieve

a half-filled or filled shell, respectively.

By way of illustration of the complexity of the full RB4 bands, the full band

structure of DyB4 is presented in Fig. 3.2.7 for ferromagnetic ordering. The 4f

bands themselves can be identified by their flat (weakly hybridizing) nature. An

enlarged picture of the bands within 1 eV of EF is given in Fig. 8. The splitting

of the majority and minority itinerant bands provide a direct measure of the Kondo

coupling of the 4f moment to the band states. Note that the sign of this splitting

can vary from band to band.

Figure 8 suggests that the Fermi surfaces will be different in the magnetic tetra-

borides (compared to YB4) in specific ways. For Dy, the Γ-centered surface splits

almost imperceptibly. The surfaces that cross the Γ-Z line also are relatively unaf-

fected by exchange splitting. At the M point, however, a new surface appears due to
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the magnetism: an electron surface of minority spin. For this band, the polarization is

opposite to the direction of the Dy spins. This figure is specifically for ferromagnetic

alignment, while DyB4 actually orders antiferromagnetically (see Sec. I).

Position of 4f Levels

The mean position of 4f levels is displayed in Fig. 3.2.9, separated into occupied

and unoccupied, and majority and minority, and trends are more meaningful than

absolute energies. Simple ferromagnetic alignment is used here, in order to follow

the chemical trends in the simplest manner. For the occupied majority states, the

4f level drops rapidly from Pr (-3 eV) to Sm (-7 eV), then becomes almost flat for

Gd-Tm (around -8 eV). For the unoccupied minority states, the mean 4f level drops

almost linearly from Pr (+5 eV) to Er (+2 eV), and for Tm the 4f level is very

close to EF . The unoccupied majority levels, which become occupied minority levels

beyond the middle of the series, drop more steeply, with slope almost -1 eV per unit

increase in nuclear charge.

There are the usual exceptions to these overall trends. Ce is very different, indicat-

ing that it is very untypical (the calculational result is tetravalent and nonmagnetic).

Both Eu and Yb are divalent in the calculation; an ‘extra’ 4f state is occupied so

their mean 4f level position is 6 eV (8 eV for Yb) higher than the trivalent line.

The spread in 4f eigenvalues is also displayed in Fig. 3.2.9. This spread is

sensitive to the specific configuration that is obtained, and also has no direct relation

to spectroscopic data, although it does reflect some of the internal potential shifts

occurring in the LDA+U method. The distinctive features are unusually large spread

for the occupied majority levels in Dy (two electrons past half-filled shell), and for

the unoccupied minority (and also unoccupied majority) levels in Pr (two electrons
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above the empty shell).

3.2.6 Summary

In this section we have provided an analysis of the electronic structure of trivalent

tetraborides, using YB4 as the prototype, and compared this with a divalent member

CaB4. In agreement with earlier observations on the likely bonding orbitals in the

B atoms, it is found that bonding states are (nearly) filled and antibonding states

are empty. The states at the Fermi level in the trivalent compounds are a com-

bination of the (dimer) B2 pz nonbonding orbitals whose bands pass through the

bonding-antibonding gap, and the cation d orbitals. Since the extra electron in the

trivalent compounds does not go into an antibonding state, there is no significant

destabilization of the crystal structure.

The trends in the energy positions of the 4f states in the rare earth tetraborides

has been found to be consistent with expectations based on other rare earth systems,

as is the fact that Eu and Yb tend to be divalent rather than trivalent. Investigations

of the magnetic behavior of rare earth tetraborides will require individual study.

Nearest neighbor magnetic interactions may involve a combination of 4f −4d−2pz −

4d−4f interactions, and longer range RKKY interactions that may bring in the Fermi

surface geometry. Another possible coupling path is the direct 4f − 2pz − 4f path.

The coupling is likely to be even more complicated than in the rocksalt EuO and

Eu chalcogenides, where competition between direct and indirect magnetic coupling

paths has received recent attention.[154] The tetraboride structure is fascinating in

several respects. A relevant one, if coupling does proceed directly via 4f−2pz−4f , is

that the (dimer) B2 atom coordinates with three neighboring rare earths ions, which

will introduce frustration when the interaction has antiferromagnetic sign.



Chapter 3.3. YbRh2Si2 84

3.2.7 Acknowledgments

I have benefited from discussion of the calculations with D. Kasinathan, K. Koepernik,

and M. Richter, and from communication about data on DyB4 with E. Choi. This

work was supported by National Science Foundation Grant No. DMR-0421810.

3.3 Electronic Band Structure and Kondo Cou-

pling in YbRh2Si2

The work presented in this section is a part of the published paper[155]: Electronic

band structure and Kondo coupling in YbRh2Si2, G. A. Wigger, F. Baumberger, and

Z.-X. Shen, Z. P. Yin, W. E. Pickett, S. Maquilon, and Z. Fisk, Phys. Rev. B 76,

035106 (2007).

3.3.1 Introduction

Heavy fermion (HF) systems on the border of a zero-temperature magnetic transition

have been particularly attractive in the past years[156] because of their anomalous

low-temperature thermodynamic, transport, and magnetic properties that deviate

strongly from Landau Fermi liquid theory. Recently, an increasing number of exam-

ples of Ce- and U-based systems such as CeCu6−xAux, CePd2Si2, CeIn3, and U2Pt2In

have been found to exhibit magnetic quantum criticality by either doping or pressure

tuning.[157, 158, 159, 160] YbRh2Si2 has attracted attention as the first observed Yb-

based and stoichiometric HF system with competing Kondo and Ruderman-Kittel-

Kasuya-Yosida interaction, i.e., the dominant exchange mechanisms in metals where

the moments interact through the intermediary conduction electrons.[161, 162] In-
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deed, in YbRh2Si2, a very weak antiferromagnetic order with a tiny magnetic mo-

ment of Yb µ ≈ (10−2 − 10−3)µB is observed[163] at ambient pressure below the

Néel temperature TN ≃ 70 mK. Pronounced non-Fermi liquid behavior has been

observed in the resistivity ρ(T ) and the electronic specific heat ∆C(T ) at low tem-

peratures, showing ∆ρ = ρ − ρ0 ∝ T and ∆C/T ∝ −ln(T ), respectively.[164, 165]

The ground-state properties of YbRh2Si2 can be easily tuned around the magnetic

quantum critical point by control parameters such as pressure, magnetic field, or

doping.[156] An external pressure compresses the atomic lattice leading to an in-

crease of the antiferromagnetic coupling with a maximal Néel temperature of 1 K at

2.7 GPa.[164, 166] On the other hand, expanding the lattice by replacing Si by Ge

[167] or Yb by La favors the Kondo coupling and reduces TN . Approximately 5% Ge

or La doping completely destroys the antiferromagnetic order in YbRh2Si2. Electron-

spin-resonance and nuclear-magnetic-resonance experiments have demonstrated the

importance of magnetic fluctuations at low T.[163, 168] At intermediate tempera-

tures, a regime emerges for which it is believed that the quantum critical fluctuations

dominate and the notion of a well defined quasiparticle breaks down. Remarkably,

in YbRh2Si2, this regime extends up to 10 K.[165]

A Hall-effect measurement suggested a discontinuity in the Fermi-surface (FS)

volume of one charge carrier across the quantum phase transition.[169] Based on a

local-density approximation (LDA) calculation, the change in the FS volume by unit

charge was suggested to arise from a shift of the f levels across a quantum transition

from the antiferromagnetic phase to the Kondo Fermi liquid.[170] Concurring theories

on critical heavy Fermi liquids assume f electrons to be partly integrated into a

large FS and distinguish between visible quasiparticle peaks spin-density wave case

versus a vanishing Kondo resonance.[171] A direct measurement of the electronic
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band structure and especially the location and renormalization of f -derived electronic

bands, their hybridization with the conduction bands, and their incorporation into

the FS could provide a stringent test of such theories. Angle-resolved photoemission

spectroscopy (ARPES) has proven to be uniquely powerful in its capability to directly

probe the electronic structure of solids.[172]

We report here the band-structure calculations reflecting the Yb3+ ion that is ob-

served by macroscopic experiments at elevated temperatures. Previous calculations

have only modeled a nonmagnetic Yb2+ ion. We compare the angle-resolved photoe-

mission spectra for YbRh2Si2 in the ordinary Kondo-screened state with those for

LuRh2Si2. The comparison of the Yb and Lu compounds provides a definitive iden-

tification of the 4f -derived states in the Yb compound. Most importantly, we have

directly observed evidence of hybridization between the 4f state and valence states,

yielding hybridization gaps ranging from 30 to 80 meV. We performed an analysis[155]

of the 4f -derived spectrum within the single-impurity Anderson model[173] using pa-

rameters suggested by the band-structure calculation, which leads to a picture that

differs from those presented in previous studies. This analysis explains ρν(ǫ) and

macroscopic parameters such as the Kondo temperature TK in reasonable agreement

with the experiments.

3.3.2 Structure

The crystal structure of YbRh2Si2, displayed in Fig. 3.3.1, is body-centered tetragonal

(bct) with I4/mmm space group (space group 139). The Yb ion occupies the 2a

site which has full tetragonal 4/mmm symmetry and forms a bct sublattice, which

becomes important in the interpretation of its magnetic behavior. Rh resides in a

4d site (4̄m2 symmetry), and lie on a simple tetragonal sublattice rotated by 45◦ in
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Figure 3.3.1: Crystal structure of YbRh2Si2.

the plane and having lattice constants a/
√

2 and c/2. Si is in the 4e site (4mm);

the Si-Si interatomic distances 2.46 Åis only 5% longer than in diamond structure

Si, so one view of the structure is in terms of Si2 dimers oriented along the ẑ axis.

Yb atoms and the dimers form a centered square lattice in the x − y plane. Yb is

eightfold coordinated by Rh at a distance of 3.17 Å. The atomic positions are [in

units of (a, a, c)]: Yb (0,0,0), Rh (0,1
2
, 1

4
), Si (0,0,0.375); note that the Si height is

not determined by symmetry and is accidentally equal to 3
8
. The experimental lattice

constants a = 4.010 Å and c = 9.841 Å have been used in our calculations.

For reference, we have also calculated the band structure of isostructural and

isovalent LuRh2Si2 (a = 4.090Å, c = 10.18Å). In this compound, Lu has a filled 4f

shell under all conditions and the compound is a conventional nonmagnetic metallic

Fermi liquid.
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3.3.3 Methods

Rare earth atoms, and other atoms with strong effective intra-atomic Coulomb repul-

sion U (Hubbard U) pose a serious challenge for band theoretical methods. Density

functional theory addresses at the most basic level the ground state, which gives the

Hund’s rule ground state of the Yb ion a central role. Hund’s rule implies that one

leaves consideration of spin-orbit coupling (SOC) until after the spin S and angular

momentum L have been maximized. For interpreting single-particle-like excitations,

which is the main topic of this section, one wants to obtain the j = ℓ ± 1
2

character

of the excitations (which is evident in spectra). Thus one must include SOC at the

one-electron level, and that is the viewpoint that we take here. From the Curie-Weiss

susceptibility at high temperature in YbRh2Si2 it is clear that the Yb ion is primarily

in an 4f 13 configuration (at elevated temperature, at least), corresponding to S = 1
2
,

L = 3, J = 7
2

in the absence of crystal fields.

To be able to include the necessary combination of exchange splitting (magnetic

order), SOC, and also the LDA+U approach that is necessary for rare earth atoms, we

have used the WIEN2K electronic structure code.[51] An f 13 configuration necessarily

requires a magnetic ion, and we consider only the simplest (ferromagnetic) alignment

of Yb spins. With magnetization along (001) direction, spin-orbit coupling reduces

the symmetry to Abm2 (space group 39). The around-mean-field version of LDA+U

(appropriate for small spin) was used, with U=8.0 eV and J=1.0 eV ( Ueff = U−J =

7.0 eV). In the result presented below, the m=0 4f orbital was unoccupied. We have

also obtained a solution with the m = −2 orbital unoccupied. (The Hund’s rule

state would have m = +3 unoccupied.) There is no difference in the results that

are discussed here, only minor difference in the placement of the Yb 4f bands. The

filled f 14 shell of Lu does not present any of these complications. To obtain an
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accurate determination of the Fermi surface, we have used a k mesh of 203 (641 k-

points in the IBZ), R Kmax=9, and the Perdew-Burke-Ernzerhof generalized gradient

approximation[23] for exchange correlation potential. An energy range from -7.00 Ry

to 7.00 Ry is used when SOC is incorporated.

3.3.4 Band Structure Results

The band structure shown in Fig. 3.3.2 is characterized by the expected 4f 13 spin-

polarized configuration of the Yb ion. Without SOC this would correspond to one

hole in the minority 4f shell. With SOC included, as here, the flat 4f band complex is

spin-mixed and split into a 4f5/2 complex and a 4f7/2 complex separated by the spin-

orbit splitting of roughly 1.3 eV. Although each 4f band is quite flat, each of these

complexes of 2j + 1 bands (j = 5
2
, 7

2
) is split somewhat due to the anisotropy of the

Coulomb interaction[174] within the 4f shell, which is included fully in the LDA+U

method. However, the 4f electrons are polarized (one hole, S=1
2
) so there is also an

exchange splitting which complicates the identification in the figure of the 4f5/2 and

4f7/2 states separately. However, the result that is pertinent to this section is that

this electronic structure calculation fully includes magnetic and relativistic effects,

and leaves one hole in the 4f shell consistent with the Curie-Weiss susceptibility.

The unoccupied 4f band lies 1.4 eV above the Fermi level EF and can be seen to

mix exceedingly weakly with the itinerant (Rh+Yb+Si) bands The occupied levels

lie 2.5 eV or more below EF and also hybridize weakly. Hence at the band struc-

ture level the 4f states are well away from the Fermi level. Many-body interactions

arising through coupling to the conduction bands may, of course, lead to large renor-

malizations as reflected in the experimental data.[155] We focus first on the states

near and at EF , and then return to the (Kondo) coupling of the 4f moment to the
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Figure 3.3.2: Band structure of YbRh2Si2 along tetragonal symmetry lines. The
Cartesian symmetry line indices are Γ(0,0,0), X(1,0,0), M(1,1,0), Z(0,0,1), in units
of [π

a
, π

a
, 2π

c
]. Top panel: bands with total Rh 4d emphasized using the fatbands

representation. Bottom panel: same bands with total Yb 5d emphasized using the
fatbands representation.



Chapter 3.3. YbRh2Si2 91

-3 -2 -1 0 1 2 3
E-E

F
 (eV)

-4

-3

-2

-1

0

1

2

3

4
Y

bR
h 2S

i 2 D
O

S
 (

st
at

es
/e

V
/c

el
l) total

Yb 5d
Rh 4d
Si 3p

Figure 3.3.3: Total and projected (per atom) densities of states of YbRh2Si2 corre-
sponding to the band structure in Fig. 3.3.2. Rh 4d character dominates around the
Fermi level.

Fermi surfaces.

The total Rh 4d and total Yb 5d character are shown separately in the projected

orbital character (fatband) representations in Fig. 3.3.2. (see Fig. 3.3.3 for the

density of states.) Much of the Rh 4d bands are occupied, while most of the Yb 5d

bands are unoccupied, however there is Yb 5d character around and below the Fermi

level. The Si 3p character is spread fairly evenly through the valence and conduction

bands. The bands around EF have mostly Rh 4d character, with some Yb 5d mixed

in, and the bands along symmetry lines are clearly associated with certain symmetry-

determined irreducible representations ag (d3z2−r2), b1g(dx2−y2), b2g(dxy) or eg(dxz, dyz)

of the Rh and Yb d states.

The first noteworthy feature is the band lying 0.1 eV below EF at Γ, which is
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completely flat along Γ−Z [(0, 0, kz) line] and disperses upward in the plane: this is

a pure Rh dx2−y2 band, whose two-dimensionality near the band edge will give rise to

a (small) step increase in the density of states N(E). There is also strong Rh 4dx2−y2

character at -5 eV (within the 4f bands), presumably the bonding combination of

dx2−y2 orbitals on the two Rh atoms in the cell. The Rh dx2−y2 band crossing EF

contributes the cylindrical faces of the electron-type tall pillbox P Fermi surface with

(near circular) mean radius in the plane of kF =0.133 π
a
. All three FSs are displayed

in Fig. 3.3.4. The Fermi level is intersected along Γ − Z by a band composed of Rh

4d3z2−r2 , Yb 5d3z2−r2 character and 2 eV wide. This band defines the top and bottom

faces of the Γ-centered pillbox, with Fermi wavevector kF = 0.2652π
c

along the ẑ axis.

This pillbox contains ∼ 4 × 10−3 carries/f.u.

From the bands in Fig. 3.3.2 it can be observed that a hole-type surface nearly

closes at theX=(π
a
, 0, 0) point. Because the point we callX is not on the bct Brillouin

zone boundary (the true zone is shown in Fig. 3.3.4), this is not a small ellipsoid

as might be guessed, but rather part of tubes of a multiply connected jungle gym

surface J . The largest part of this surface encircles nearly all of the upper zone face

centered on the Z=(0, 0, 2π
c
) point. The character near X is Rh 4dxz, 4dyz, and some

Yb 5d character. There is also strong Rh 4dxz, 4dyz character in the flat band along

Γ−Z near -3 eV. Rh 4dxy character dominates the flat band at -1.5 eV along Γ−Z,

which disperses downward from there within the plane.

The other Fermi surface, also shown in Fig. 3.3.4, is a fluted donut D centered

at the Z point and oriented in the x − y plane. It arises partially from the upward

dispersion in the x − y plane of the band that lies at 30 meV at Z. This donut D

surface contains electrons. The FS of LuRh2Si2 is nearly identical, as anticipated from

the identical structures and the isovalence of the rare-earth ions. One change occurs
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due to a small difference in band energy at and near the X point. The J surface

changes its connectivity and shape as a result but remains a large (and generally

similar) FS.

3.3.5 Aspects of Kondo Coupling

YbRh2Si2 is a heavy fermion compound, whose J = L+S = 7
2

ion and associated local

moment will be affected by crystal fields and finally screened by conduction electrons

at low temperature (a tiny moment survives and orders in YbRh2Si2). Thus, while

our ferromagnetic state with S = 1
2

is not expected to describe the interacting ground

state, it has the virtue of providing a measure of the degree of Kondo coupling of the

Yb moment to the two Fermi surfaces, because the exchange splitting of the Fermi

surfaces reflects the coupling of the local moment to the itinerant bands.

The exchange splitting of the Γ cylinder is 6 meV around its waist (in the x− y

plane) and 30 meV at top and bottom, a strong anisotropy resulting from the different

characters of wave functions on the different parts of the surface. For points on the

J surface near the X point, the exchange splitting is 20 meV at both (0.95, 0, 0)π
a

and (1, 0.2, 0)π
a
. Thus, the Kondo coupling, and likewise the carrier scattering by

the moments, differs by at least a factor of 5 around the Fermi surfaces.

3.3.6 Discussion of Bands and Fermi Surfaces

This fully relativistic, spin-polarized LDA+U band structure and resulting Fermi

surfaces can be compared with previous unpolarized relativistic LDA prediction. [170,

175, 176] Not surprisingly there are substantial differences, as expected from LDA’s

4f 14 configuration versus our magnetic 4f 13 bands; this difference in Yb 4f charge

state puts Norman’s Fermi level one electron lower with respect to the Rh 4d + Yb
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Figure 3.3.4: The three calculated Fermi surfaces of YbRh2Si2 with 4f 13 configura-
tion, pictured within the crystallographic Brillouin zone. Top panel: fluted donut
D surface centered around the upper zone face midpoint Z. Middle panel: multiply-
connected jungle gym J surface. Bottom panel: tall pillbox surface P , containing
electrons at the zone center Γ. The Fermi surfaces of LuRh2Si2 are very similar, see
text.



Chapter 3.3. YbRh2Si2 95

5d + Si 3p itinerant bands. As a result, the flat Rh 4dx2−y2 band that lies 0.1 eV

below EF in our bands lies 0.1 eV above EF in the LDA bands, and the Fermi surfaces

are entirely different. This will lead to a different prediction for the Hall coefficient.

On the qualitative level, our Fermi surfaces include large sheets with canceling

positive and negative contributions to the Hall coefficient, as do Norman’s. The Hall

coefficient, usually thought of (in the constant relaxation times approximation) as

being an average of the Fermi-surface curvature, will bear no relation to the number

of carriers. Discussion of the Hall tensor will be deferred to a future publication. No

doubt it will be quite anisotropic, given the strong tetragonality of the FSs. The

edges of the pillbox P may give large contributions (and make evaluation difficult);

likewise, the sharp edges on the donut D will also have large curvatures.

The “curvature” interpretation of the Hall tensor relies on the isotropic scattering

time approximation. This situation is unlikely to be the case in YbRh2Si2, where the

main scattering arises from the Kondo coupling to local moments. As pointed out

in the previous subsection, this coupling varies strongly over the Fermi surface (by

at least a factor of 5). Hence, this system is an example of a multiband (correlated)

metal with large Fermi surfaces of varying curvature, having large and anisotropic

scattering. Its Hall tensor, versus temperature, field, and magnetic ordering, promises

to be very challenging to understand.

3.3.7 Summary

In this section, we have presented the results of an electronic band-structure calcu-

lation within a relativistic framework including correlation corrections for YbRh2Si2.

The characteristic of the electronic structure is the 4f 13 ground state as required by

the Curie-Weiss moment that is observed at high temperature. A small FS cylinder
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of 4dx2−y2 symmetry is centered at Γ, a fluted donut D surface situated around the

upper zone face midpoint Z, and a multiply connected jungle-gym J surface. The

angle-resolved photoemission spectrum manifests true many-body intensities origi-

nating from 4f 13
7/2 and 4f 13

5/2 final-state excitations separated by 1.3 eV, the value for

the spin-orbit interaction obtained from the calculation. These excitations are eight-

fold (sixfold) degenerate and do not manifest the splitting due to the anisotropic

Coulomb interaction inherent to the single-particle energy states.

An analysis[155] of the 4f spectrum according the degenerate Anderson impurity

model using the parameters obtained from the band-structure calculations explains

the appearance of a peak related to the 4f7/2 excitations at 45 meV below EF . The

Kondo splittings obtained from the bandstructure calculations can be compared to

the electronic gaps in the photoemission spectra. In a GS framework, the splittings

are V (ǫF ) = V/π ≈ 33 meV at Γ and 16 meV at the BZ boundaries. These values

agree with those obtained from the LDA+U+SOC calculation. The Kondo temper-

ature TK ∼ 30 K and full Yb3+ moment are in agreement with the results from

macroscopic experiments.

The band structure and FS of LuRh2Si2 and YbRh2Si2 are compared. The absence

of very flat bands in the Lu compound provides confirmation for the 4f nature of

these bands in the Yb compound. Both compounds show very similar Fermi-surface

features. There is no clear difference between the FS of both materials observed,

neither theoretically nor experimentally. This indicates that the spectral weight of

the 4f bands do not contribute significantly in forming the FS at 14 K.
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Chapter 4

Conventional Superconductors:

Yttrium and Calcium under

Pressure

4.1 Introduction to Superconductivity

Superconductivity is one of the most peculiar phenomena in nature. Its zero electrical

resistance and fully repulsion of magnetic field (known as Meissner effect[177]) have

great potential uses in practical applications. The first superconducting phenomenon

was discovered in 1911 by Heike Kamerlingh Onnes,[178] who found that the resis-

tance of solid mercury disappeared abruptly at 4.2 K. Since this discovery, scientists

have never been stopped seeking superconductors with higher temperatures. In 1913,

lead was found to superconduct at 7 K and in 1941 niobium nitride was found to

superconduct at 16 K.

Since the first discovery of superconductivity in mercury in 1911, the underly-
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ing mechanism has been a major challenge to condensed matter physics community.

In 1935, the brothers of F. and H. London[179] explained the Meissner effect as a

result of the minimization of the electromagnetic free energy carried by superconduct-

ing current. The famous London equations described the two basic electrodynamic

properties mentioned above very well. In 1950, Landau and Ginzburg[180] devel-

oped the phenomenological Ginzburg-Landau theory by introducing a complex pseu-

dowavefunction ψ as an order parameter within Landau’s general theory of second-

order phase transitions which led to a Schrödinger-like wave function equation. The

Ginzburg-Landau theory explained the macroscopic properties of superconductors

successfully. By applying the Ginzburg-Laudau theory, Abrikosov[181] showed that

superconductors could be grouped into Type I and Type II superconductors in 1957.

Also in 1950, Maxwell and Reybold et al.[182, 183] found the isotope effect which

showed that the critical temperature of a superconductor depends on the isotopic

mass of the constituent element. This important discovery pointed to the electron-

phonon interaction as the microscopic mechanism responsible for superconductivity.

The complete microscopic theory of superconductivity was finally proposed in 1957

by Bardeen, Cooper, and Schrieffer known as the BCS theory.[184] In the BCS theory,

they showed that pairs of electrons (known as Cooper pairs) could form through even

a weak attractive interaction between electrons, such as electron-phonon interaction.

The supercurrent is explained as a superfluid of Cooper pairs. The superconductivity

phenomenon was explained independently in 1958 by Nikolay Bogoliubov,[185] who

was able to use a canonical transformation of the electronic Hamiltonian to derive

the BCS wavefunction, which was obtained from a variational method in the original

work of Bardeen, Cooper, and Schrieffer. In 1959, Lev Gor’kov[186] shown that the

Ginzburg-Laudau theory was a limiting form of the BCS theory close to the critical
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temperature. BCS theory is the most successful theory to explained superconductiv-

ity in conventional superconductors.

Nevertheless, superconductivity in many superconductors remains unexplained,

including (but not limit to) the high temperature superconductors (HTS, namely,

the cuprates), the newly discovered iron-based superconductors, some organic super-

conductors and heavy fermion superconductors (eg: the 115 materials). The most

wellknown superconductors are the cuprates, which was first discovered by Bednorz

and Müller[188] in 1986 in a lanthanum-based cuprate perovskite material with Tc

of 35 K (Nobel Prize in Physics, 1987). It was shortly found by Wu et al.[189]

that replacing the lanthanum with yttrium , i.e. making YBCO, raised Tc to 92 K.

The highest Tc superconductor of this class (and among all superconductors) is the

HgBa2Ca2Cu3O8+x compound under pressure with Tc about 150 K. [190]

The other class is the iron-based superconductors, first discovered in February

2008 by Hosono et al.,[191] in a fluorine-doped tetragonal material LaFeAsO1−xFx

with Tc=26 K. Replacing the lanthanum in LaFeAsO1−xFx with other rare earth

elements such as cerium (Ce), [192] praseodymium (Pr), [193] neodymium (Nd), [194]

samarium (Sm), [195, 196], and gadolinium (Gd) [197] increases Tc up to 56 K.(the

highest Tc in this class up to now) More details of these iron-pnictide compounds are

presented in Chapter 5.

A few other (doped) materials were also found to superconduct at a relatively

high temperature in the range of 10-40 K. A partial list of these materials[187] is

doped C60 (Tc up to 40 K), Ba1−xKxBiO3 (Tc up to 35 K), doped HfNCl (25 K) and

ZrNCl (15 K), Y2C3 (18 K), Ba2Nb5Ox and BaNbO3−x (22 K), YPd2B2C (23 K),

PuCoGa5 (18 K). All of these material are structurally complex and are not phonon

mediated superconductors. The mechanism(s) responsible for their relatively high Tc
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superconductivity is (are) less known.

Due to the lack of mechanism(s) of the above superconductors, the topic of this

chapter is restricted to phonon-mediated superconductors with relatively high Tc,

whose Tc can be evaluated by using the well known McMillan equation, where the

electron-phonon coupling strength and averaged phonon frequency can be calculated

by performing linear response calculation.

The biggest surprise in conventional superconductors is the discovery of super-

conductivity in MgB2 with Tc = 40 K in 2001 by Akimitsu et al.[198] Following that

is the discovery that free-electron metal lithium superconducts at up to 20 K under

35 - 50 GPa pressure.[199, 200, 201] In early 2006, rare earth metal yttrium was also

found to have Tc up to 20 K under 115 GPa pressure by Schilling et al.. [202] The

highest Tc in elemental superconductors is calcium with Tc up to 25 K under 161 GPa

found by Yabuuchi et al. in Auguest 2006.[203] All of these material are confirmed

to be phonon-mediated superconductors but with their own characteristic properties.

A common feature, if there is any, is that only a few specific phonon modes localized

in a small part of the BZ contributing strongly to electron-phonon coupling strength

(and thus to enhance superconductivity).

In this chapter, the focus is on yttrium and calcium under high pressure, where

linear response calculations are applied and detailed results are presented. In addi-

tion, I also discuss possible structures of Ca under pressure, and manage to explain

the observed “simple cubic” structure at room temperature in the pressure range of

32-109 GPa, whereas at T=0 K, this simple cubic structure is badly unstable from

linear response calculations.
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4.2 Linear Response Study of Strong Electron-Phonon

Coupling in Yttrium under Pressure

This section was published as[204] “Linear response study of strong electron-phonon

coupling in yttrium under pressure”, Z. P. Yin, S. Y. Savrasov, and W. E. Pickett,

Phys. Rev. B 74, 094519 (2006).

4.2.1 Introduction

The remarkable discovery[198] in 2001 of MgB2 with superconducting critical tem-

perature Tc=40K, and the fact that the simple free-electron-like metal lithium[199,

200, 201] also has Tc in the 14-20K under 30-50 GPa pressure, has greatly increased

efforts in seeking higher Tc in elements and simple compounds. Of all the elements

(over 110), currently there are 29 elements known to be superconducting at ambient

pressure and 23 other elements superconduct only under pressure[205, 206]. Among

these superconducting elements there is a clear trend for those with small atomic

number Z to have higher values of Tc, although much variation exists. For exam-

ple, under pressure[207, 208] Li, B, P, S, and V all have Tc in the range 11-20 K.

Hydrogen[209, 210, 211], the lightest element, is predicted to superconduct at much

higher temperature at pressures where it becomes metallic.

While light elements tend to have higher Tc among elemental superconductors,

Hamlin et al.[202] recently reported that Y (Z=39) superconducts at Tc=17K under

89 GPa pressure and 19.5 K at 115 GPa, with the trend suggesting higher Tc at higher

pressure. This result illustrates that heavier elements should not be neglected; note

that La (Z=57) has Tc up to 13 K under pressure.[212, 213] The superconductivity

of La has been interpreted in terms of the rapidly increasing density of states of
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4f bands near Fermi level with increasing pressure, causing phonon softening and

resulting stronger coupling under pressure.[214, 215] Such a scenario would not apply

to Y, since there are no f bands on the horizon there. No full calculations of the

phonon spectrum and electron-phonon coupling have been carried out for either Y or

La to date.

La and Y are two of the few elemental transition metals to have Tc above[207, 208]

10 K, and the case of Y is unusually compelling, since its value of Tc is at least as high

that of Li, qualifying it as having the highest Tc of any elemental superconductor.

(And now it is surpassed by Ca of Tc = 25 K under 161 GPa pressure) Moreover, the

reduced volume v ≡ V/V0=0.42 corresponds to the value of Tc ≈ 20K in Y [202] (115

GPa) and also to the report of Tc ≈ 20K in (strained) Li [199] above 50 GPa.[216, 217]

For our study of Y reported here, it is first necessary to understand its phase diagram.

Under pressure, it follows a structure sequence[218, 219] through close-packed phases

that is typical of rare earth metals: hcp→Sm-type→dhcp→dfcc (dfcc is distorted fcc,

with trigonal symmetry). The transitions occur around 12 GPa, 25 GPa, and 30-35

GPa. Superconductivity was first found[220] in Y by Wittig in the 11-17 GPa range

(1.2-2.8 K), in what is now known to be the Sm-type structure. From 33 GPa to

90 GPa Tc increases smoothly (in fact Tc increases linearly with decrease in v over

the entire 35-90 GPa range[202]) suggesting that Y remains in the fcc phase, perhaps

with the distortion in the dfcc phase vanishing (the tendency is for the c/a ratio in

these structures to approach ideal at high pressure[218]). Calculations[221] predict

it adopts the bcc structure at extremely high pressure(>280 GPa), but this is far

beyond our interest here.

We have studied the electronic structure and electron-phonon coupling calcula-

tions of Y for reduced volumes in the range 0.6≤ v ≤ 1 (pressures up to 42 GPa).
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Our results indeed show strong electron-phonon coupling and phonon softening with

increasing pressure. A lattice instability (in the harmonic approximation used in lin-

ear response calculations) is encountered at v=0.6 and persists to higher pressures.

The instability arises from the vanishing of the restoring force for transverse displace-

ments for Q‖< 111 > near the zone boundary, corresponding to sliding of neighboring

close-packed layers of atoms. It is only the stacking sequence of these layers that dis-

tinguishes the various structures in the pressure sequence of structures (see above)

that is observed in rare earth metals. Near-vanishing of the restoring force for sliding

of these layers is consistent with several stacking sequences being quasi-degenerate,

as the structural changes under pressure suggest.

4.2.2 Structure and Calculation Details

Yttrium crystallizes in the hcp structure at ambient pressure with space group

P63/mmc (#194) and lattice constants a=3.647 Å and c=5.731 Å.[222]

Since the observed structures are all close packed (or small variations from) and

above 35 GPa Y is essentially fcc, we reduce the calculational task by using the fcc

structure throughout our calculations. The space group is Fm3m (#225), with the

equivalent ambient pressure lattice constant a=5.092 Å. We do note however that

results for electron-phonon strength can be sensitive to the crystal symmetry, both

through the density of states and through the nesting function.

We use the full potential local orbital (FPLO) code[47] to study the electronic

structure, and apply the full-potential linear-muffin-tin-orbital (LMTART) code[49]

to calculate the phonon frequencies and the electron-phonon coupling spectral func-

tion α2F . For FPLO, a k mesh of 363 and the Perdew-Wang (PW92)[20] exchange-

correlation potential are used. The basis set is 1s2s2p3s3p3d::(4s4p)/5s5p4d+. For
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Figure 4.2.1: Plot of the total DOS and projected 4d DOS per atom of fcc Y with
different volumes. Both the total and the 4d density of states at Fermi level decrease
with reduction in volume.

LMTART, a k mesh of 483 and GGA96 (PBE) approximation[23] for exchange-

correlation potential are used. For the electron-phonon coupling calculations we used

a phonon Q mesh of 163, which has 145 Q points in the irreducible Brillouin zone.

4.2.3 Electronic Structure under Pressure

Many studies suggest that the general character of an elemental rare earth metal

is influenced strongly by the occupation number of the d electrons, which changes

under pressure. Our calculations show that the 4d occupation number of trivalent

Y increases from 1.75 at ambient pressure, to a little above 2 at V=0.7V0 and then

finally close to 3 at V=0.3V0 (which is extreme pressure). Such an increase can be

seen from the projected density of states (PDOS) of 4d states (Fig. 4.2.1) at different
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Figure 4.2.2: Plot along high symmetry directions of the bands of Y at V/Vo=1.00
and at V/Vo=0.50. The “fattening” of the bands is proportional to the amount of
Y 4d character. Note that the 4d character goes substantially in the occupied bands
under pressure (the lighter shading), although there is relatively little change in the
Fermi surface band crossings.

volumes. From Fig. 4.2.1 broadening of the density of states with reduction in volume

can be seen, but is not a drastic effect. The main occupied 4d PDOS widens from

2 eV to 3 eV with reduction of the volume to v=0.5. The value of of the density of

states at the Fermi level (taken as the zero of energy) N(0) decreases irregularly with

volume reduction; the values are given in Table 4.1.

The pressure evolution of the band structure is indicated in Fig. 4.2.2, where the

4d character at v=1.00 (black) and v=0.50 (gray) is emphasized. First, the relative

positions of the Fermi level crossings change smoothly, indicating there is little change

in the Fermi surface topology. This slow change is also seen in Fermi surface plots,

of which we show one (below). Second, the overall band widths change moderately,

as was noted above in the discussion of the density of states. The change in position
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of 4d character is more substantial, however. 4d bands at X lying at -1 eV and -2

eV at ambient volume are lowered to -3 eV and -4 eV at v=0.50. Lowering of 4d

character bands at K and W is also substantial. Thus Y is showing the same trends as

seen in alkali metals. For Cs and related alkalies and alkaline earths under pressure,

6s character diminishes as 5d character grows strongly with pressure.[225] In Li, 2s

character at the Fermi surface evolves to strong 2p mixture[58] at the volume where

Tc goes above 10 K.

The Fermi surface of Y at ambient pressure (hcp) has been of interest for some

time, from the pioneering calculation of Loucks[223] to the recent measurements

and calculations of Crowe et al.[224] However, the unusual Fermi surface in the hcp

structure (having a single strong nesting feature) is nothing like that in the fcc phase

we are addressing, which is unusual in its own way. At v=1.00 the fcc Fermi surface

is a large ‘belly’ connected by wide necks along < 111 > directions as in Cu, but

in addition there are tubes (‘wormholes’) connecting a belly to a neighboring zone’s

belly through each of the 24 W points. The belly encloses holes rather than electrons

as in Cu; that is, the electrons are confined to a complex multiply-connected web

enclosing much of the surface of the Brillouin zone.

As the volume is reduced, the wormholes slowly grow in diameter until in the

range 0.5< v <0.6, they merge in certain places with the necks along the < 111 >

directions, and the change in topology leaves closed surfaces around the K points as

well as a different complex multiply-connected sheet. The point we make is that, at

all volumes, the Fermi surface is very complex geometrically. There is little hope of

identifying important “nesting” wavevectors short of an extensive calculation. Even

for the simple Fermi surface of fcc Li, unexpected nesting vectors were located[58]

in three high symmetry planes of the zone. The rest of the zone in Li still remains
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Figure 4.2.3: Surface plot of the Fermi surface of fcc Y at a volume corresponding to
ambient pressure. The surface is shaded according to the Fermi velocity. The surface
is isomorphic to that of Cu, except for the tubes through the W point vertices that
connect Fermi surfaces in neighboring Brillouin zones. The evolution with pressure
is described in the text.
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unexplored.

4.2.4 Results and Analysis

Behavior of Phonons

The calculated phonon branches are shown along the high symmetry lines, from

v=0.90 down to v=0.60, in Fig. 4.2.4. The longitudinal modes behave normally,

increasing monotonically in frequency by ∼ 30% in this range. The transverse modes

along < 100 > and < 110 > show little change; the doubly degenerate transverse

mode at X softens by 20%, reflecting some unusual coupling. Along < 110 >, T1 and

T2 denote modes polarized in the x− y plane, and along the z axis, respectively.

The interesting behavior occurs for the (doubly degenerate) transverse branch

along < 111 >. It is quite soft already at v=0.9 (7 meV, only 25% of the longitudinal

branch), softer than the corresponding mode in hcp Y at ambient pressure.[226]

With decreasing volume it softens monotonically, and becomes unstable between

v=0.65 and v=0.60. It should not be surprising that the transverse mode at the L

point is soft in a rare earth metal. The sequence of structural transitions noted in

the introduction (typically hcp→Sm-type→dhcp→dfcc→fcc for trivalent elements)

involves only different stacking of hexagonal layers of atoms along the cubic (111)

direction. So although these various periodic stackings may have similar energies, the

soft (becoming unstable) transverse mode at L indicates also that the barrier against

sliding of these planes of atoms is very small. At v=0.60 (see Fig. 4.2.4) the largest

instability is not at L itself but one-quarter of the distance back toward Γ. At v=0.65

there are surely already anharmonic corrections to the lattice dynamics and coupling

from the short wavelength transverse branches.
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Linewidths

The linewidths γQν , one indicator of the mode-specific contribution to Tc, are shown

in Fig. 4.2.5. To understand renormalization, one should recognize that in lattice

dynamical theory it is ω2, and not ω itself, that arises naturally. At v=0.90, ω2 for

the T modes is only 1/16 of the value for the longitudinal mode at the L point. A

given amount of coupling will affect the soft modes much more strongly than it does

the hard modes.

For the < 110 > direction, the strong peak in γQν for the T2 ẑ polarized) mode

at the zone boundary point K (5.7 meV) is reflected in the dip in this mode at K

that can be seen in Fig. 4.2.4. At v=0.60 the linewidth is 1/3 of the frequency. The

coupling to the T1 mode along this line is negligible. Note that it is the T1 mode

that is strongly coupled in Li and is the first phonon to become unstable. A peak

in the linewidth of the L modes correlates with a depression of the frequency along

this line. Along < 001 > the T modes again acquire large linewidths near the zone

boundary under pressure. This electron-phonon coupling is correlated with the dip

in the T frequency in the same region.

The coupling along the < 111 > direction is not so large, either for T or for L

branches (note, they have been multiplied by a factor of four in Fig. 4.2.5. The

coupling is strongest at the zone boundary, and coupled with the softness already at

v=0.90, the additional coupling causes an instability when the volume is reduced to

v=0.60 (P = 42 GPa). This seems to represent an example where a rather modest

amount of coupling has a potentially catastrophic result: instability of the crystal.

Evidently Y is stabilized in the fcc structure by anharmonic effects, coupled with the

fact that being already close-packed there may be no simple structural phase that is

lower in energy.
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Coupling Strength

It is intuitively clear that strong coupling to extremely low frequency modes is not

as productive in producing high Tc as coupling to higher frequency modes. This

relationship was clarified by Bergmann and Rainer,[227] who calculated the functional

derivative δTc/δα
2F (ω). They found that coupling at frequencies less than ω̄ = 2πTc

has little impact on Tc (although coupling is never harmful). Since we are thinking

in terms of Y’s maximum observed Tc ≈ 20 K, this means that coupling below ω̄ =

10 meV becomes ineffective.

The product λQνωQν ∝ γQν/ωQν gives a somewhat different indication of the rel-

ative coupling strength[228] than does either λQν or γQν . It is also, up to an overall

constant, just the nesting function defined earlier, with electron-phonon matrix el-

ements included within the sum. Since the nesting function is a reflection of the

phase space for scattering, it is independent of the polarization of the mode, hence

differences between the three branches are due solely to the matrix elements.

This product λQνωQν is shown in Fig. 4.2.6. The weight in the transverse modes

is concentrated near the zone boundary, with the region being broader around L than

at X or K and growing in width with pressure. The T1 branch along < 110 >, which

is polarized along [11̄0], shows essentially no coupling. The weight in this product for

the longitudinal modes is peaked inside the zone boundary along the < 001 > and

< 110 > directions with a mean value of 7-8 meV, and is weaker along the < 111 >

direction.

α2F (ω)

The results for α2F are displayed in Fig. 4.2.7. The longitudinal peak in the 20-

35 range hardens normally with little change in coupling strength. The 7-20 meV
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Table 4.1: For each volume v studied, the columns give the experimental pressure
(GPa), the Fermi level density of states N(0) (states/Ry spin), and calculated values
of the mean frequency ω1 =< ω > (meV), the logarithmic moment ωlog and second
moment ω2 =< ω2 >1/2 (all in meV), the value of λ, the product λω2

2 (meV2), and
Tc (K). Experimental pressures are taken from ref. [221]. For Tc the value of the
Coulomb pseudopotential was taken as µ∗=0.15.

v P N(0) ωlog ω1 ω2 λ λω2
2 Tc

0.90 6 9.7 12.5 13.6 14.7 0.75 162 4.0
0.80 14 11.3 11.6 13.2 14.5 1.30 273 11.9
0.70 26 9.1 10.1 12.0 13.8 1.53 291 13.0
0.65 32 8.4 7.6 10.2 12.6 2.15 341 14.4
0.60 42 7.9 6.9 9.5 12.1 2.80 410 (16.9)

range of transverse modes at v=0.90 increases in width to 2-24 meV at v=0.60,

and the strength increases monotonically and strongly. The strong peak in α2(ω) =

α2F (ω)/F (ω), shown in the bottom panel of Fig. 4.2.7, reflects the very soft modes

that have been driven into the 2-5 meV range, and the fact that they are very

relatively strongly coupled. The substantial increase in coupling, by a factor of ∼2.5,

in the range 7-25 meV is important for Tc, as noted in the next subsection.

Estimates of Tc

This background helps in understanding the trends displayed in Table 4.1, where Tc

from the Allen-Dynes equation[57] (choosing the standard value of µ∗=0.15) and the

contributing materials constants are displayed. The calculated values of λ increases

strongly, by a factor of 3.7 in the volume range we have studied. Between v=0.65 and

v=0.60 (the unstable modes are removed from consideration) λ increases 30% but Tc

increases by only 2.5 degrees. The cause becomes clear in looking at the frequency

moments. These moments are weighted by α2F (ω)/ω. α2(ω) itself become strongly

peaked at low frequency under pressure, and it is further weighted by ω−1. The

frequency moments set the scale for Tc (ωlog in particular) and they decrease strongly
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with decreasing volume. In particular, ωlog decreases by 45% over the volume range

we have studied, reflecting its strong sensitivity to soft modes.

The increase in Tc probably owes more to the increase in coupling in the 10-

25 meV range (see α2(ω) plot in Fig. 4.2.7; a factor of roughly 2.5) than to the

more spectacular looking peak at very low frequency. Put another way, the very low

frequency peak in α2F looks impressive and certainly contributes strongly to λ, but

is also very effective in lowering the temperature scale (ωlog). For α2(ω) shapes such

as we find for Y, the quantities λ and ωlog which go into the Allen-Dynes equation

for Tc do not provide a very physical picture of the change in Tc. For this reason

we provide also in Table 4.1 the product λω2
2 = N(0) < I2 > /M (< I2 > is the

conventional Fermi surface average of square of the electron-ion matrix element and

M is the atomic mass). For the volumes 0.60≤ v ≤0.80 in the table, the ratio

of λω2
2/Tc is nearly constant at 23±1.5 (in the units of the table), illustrating the

strong cancellation of the increase of λ with the decrease in frequency moments in

producing the resulting Tc.

4.2.5 Summary

In this section we have presented the evolution of elemental Y over a range of volumes

ranging from low pressure to 40+ GPa pressure (V/Vo = 0.60). Lattice instabilities

that emerge near this pressure (and persist to higher pressures) make calculations for

smaller volumes/higher pressures unrealistic. For simplicity in observing trends the

structure has been kept cubic (fcc); however, the observed phases are also close-packed

so it was expected that this restriction may still allow us to obtain the fundamental

behavior underlying the unexpectedly high Tc in Y. On the other hand, the Fermi

surface geometry varies strongly with crystal structure, and the nesting function
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ξ(Q) and perhaps also the matrix elements may have some sensitivity to the type of

long-range periodicity.

In addition to the band structure, Fermi surface, and electronic density of states,

we have also presented the phonon dispersion curves and linewidths along the high

symmetry directions, and also have presented α2F (ω) and the resulting value of Tc.

The results show indeed that Y under pressure becomes a strongly coupled electron-

phonon system, readily accounting for value of Tc in the range that is observed.

In spite of having used a relatively dense mesh of Q points for the phonons, it

seems clear that this Brillouin zone integral is still not well converged. Evaluation

of ξ(Q) on a very fine Q mesh in three planes for fcc Li, which has a very simple

Fermi surface, has shown[58] that this nesting factor contains (thickened) surfaces

of fine structure with high intensity. The convergence of this zone integral (and for

example the resulting α2F function) has rarely been tested carefully in full linear

response evaluations of phonons; such a test could be very computationally intensive.

Nevertheless, the general finding of strong coupling is clear.

Very recently it has been found that isovalent Sc is superconducting at 8.1 K under

74 GPa pressure.[229] Note that if the lattice were harmonic and the only difference

between Sc and Y were the masses (which differ by a factor of two), Tc = 20 K for

Y would translate to Tc = 28 K for Sc. (For an element with a harmonic lattice, λ

is independent of mass.) The corresponding argument for (again isovalent) La gives

Tc = 16 K. La has Tc = 13 K at 15 GPa, and has not been studied beyond[207] 45

GPa.

Another comparison may be instructive. Dynes and Rowell obtained and analyzed

tunneling data[233] on Pb-Bi alloys where λ is well into the strong coupling region,

becoming larger than two as is the case for Y under pressure in Table 4.1. The



Chapter 4.2. Yttrium under Pressure 119

Pb0.65Bi0.35 alloy has λ=2.13, < ω2 >=22.6 meV2. We can compare directly with

the v=0.65 case in Table 4.1, which has λ=2.15, < ω2 >=159 meV2. The product

M < ω2 > for Y is three times as large as for the heavy alloy. Since the λ’s are

equal, the value of N(0) < I2 > (equal to λM < ω2 >) is also three times as large

as in the alloy. The values of Tc are 14.4 K (Y) and 9 K (alloy) [somewhat different

values of µ∗ were used.] The values of ωlog differ by less than a factor of two, due to

the low-frequency coupling in α2(ω) in Y that brings that frequency down, and that

is why the values of Tc also differ by less than a factor of two.

While this study is in some sense a success, in that it has become clear that

strong electron-phonon coupling can account for the remarkable superconductivity

of Y under pressure, there remains a serious shortcoming, one that is beyond the

simple lack of numerical convergence that would pin down precisely λ, Tc, etc. What

is lacking is even a rudimentary physical picture for what distinguishes Y and Li

(Tc around 20 K under pressure) from other elemental metals which show low, or

vanishingly small, values of Tc.

The rigid muffin-tin approximation (RMTA) of Gaspari and Gyorffy,[230] which

approximates the phonon-induced change in potential and uses an isotropic ide-

alization for the band structure to derive a simple result, seemed fairly realistic

for the electronic contribution (the Hopfield η) for transition metal elements and

intermetallics.[231, 232] On top of these idealizations, there is an additional uncer-

tainty in < ω2 > that must be guessed to obtain λ and Tc. One would not ‘guess’

the values of the frequency moments that we have obtained for Y under pressure.

In addition, the RMTA expression does not distinguish between the very differ-

ent matrix elements for the various branches, giving only a polarization and Fermi

surface average. Nevertheless, it gave a very useful understanding of trends[231] in



Chapter 4.3. Calcium under Pressure 120

electron-phonon coupling in elemental transition metals and in some intermetallic

compounds. While the linear response evaluation of the phonon spectrum and the

resulting coupling seems to work well, this more detailed approach has not yet pro-

vided – even for elemental superconductors – the physical picture and simple trends

that would enable us to claim that we have a clear understanding of strong coupling

superconductivity.
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4.3.1 Introduction

One of the most unanticipated developments in superconducting critical tempera-

tures (Tc) in the past few years has been achievement of much higher values of Tc in
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elemental superconductors by the application of high pressure, and that these impres-

sive superconducting states evolve from simple metals (not transition metals) that

are non-superconducting at ambient pressure. The first breakthrough arose in Li,

with Tc approaching[199, 200, 201] 20 K, followed by yttrium[202, 235] at megabar

pressure also superconducting up to 20 K and showing no sign of leveling off. Both

of these metals have electron-phonon (EP) coupled pairing, according to several lin-

ear response calculations[236, 58, 204, 237] of the phonon spectrum, EPC strength,

and application of Eliashberg theory. These impressive superconductors have been

surpassed by Ca, with Tc as high as 25 K reported[203] near 160 GPa. Perhaps more

unusual is the report, from room temperature x-ray diffraction (XRD), of a simple

cubic (hence far from close-packed) structure over a volume reduction of 45→30%

(32-109 GPa). Whether these two unique phenomena are connected, and in what

way, raises fundamental new issues in an area long thought to be well understood.

At room temperature, Ca undergoes a series of structural transitions under pressure.[250]

It crystallizes in a four-atom fcc cell with lattice constant 5.588 Å at ambient pres-

sure. Under pressure, it first transforms to a body-centered cubic (bcc) space group

at about 20 GPa and then surprisingly it remains in a simple cubic (sc, Pm-3m,

#221) structure from 32 GPa to 109 GPa. Further compressing makes Ca transform

to some unknown structures which are denoted as Ca-IV and Ca-V structure.

A simple cubic (sc) structure for an element is rare, occurring at ambient pressure

only in polonium and under pressure only in a handful of elemental metals.[239, 240]

This identification of a sc structure for Ca is particularly problematic, since it has been

shown by linear response calculations of the phonon spectrum by a few groups[241,

242, 243] that (at least at zero temperature) sc Ca is highly unstable dynamically at

all volumes (pressures) in the region of interest. Since these calculations are reliable
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for such metals, there are basic questions about the “sc” structure itself.

4.3.2 Comparison to Related Metals

Strontium, which is isovalent with Ca, like Ca superconducts under pressure and

undergoes a series of structural transitions from close-packed structure to non-close-

packed structure at high pressure. Sr transforms from a fcc phase to a bcc phase at

3.5 GPa and then transforms to Sr-III at 24 GPa, to Sr-IV at 35 GPa and to Sr-V

at 46 GPa.[244] The Sr-III structure was first believed to be a distorted sc and later

found to be an orthorhombic structure.[245] However, later experiments have found

that there are two phases coexisting in the Sr-III phase, namely, a tetragonal phase

with a distorted β-tin structure and an unidentified additional phase.[245] The Sr-IV

structure is very complex and was showed recently to be a monoclinic structure with

the Ia space group and 12 atoms per unit cell.[246] The structure is more complex

in Sr-V, and was identified as an incommensurate structure similar to that of Ba-

IV.[247] Sr begins to superconduct at 20 GPa, its Tc is 8 K at 58 GPa, and is believed

to be higher beyond 58 GPa.[244]

Sc, with one more (3d) electron than Ca, undergoes phase transitions from hcp

to Sc-II at 20 GPa and to a Sc-III phase at 107 GPa.[248, 249] Although Sc is

conventionally grouped together with Y and the lanthanide metals as the rare-earth

metals, due to their similarities in their outer electron configurations, its structural

transition sequence is rather different from the common sequence of lanthanide metals

and Y from hcp→ Sm-type→ dhcp→ fcc→ distorted fcc. The Sc-II structure is very

complicated, and was recently found to be best fitted to a pseudo bcc structure with

24 atoms in the unit cell.[248] The structure of Sc-III is not identified to date. Sc

begins to superconduct at 20 GPa. Its Tc increases monotonically to 19.6 K with
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pressure to 107 GPa. Its Tc drops dramatically to 8 K at the phase transition from

Sc-II to Sc-III around 107 GPa.[249]

Considering the close relation of Sc and Sr to Ca in the periodic table and the

similar superconducting properties under pressure, it could be expected that Ca under

pressure should have more complex structures, as in Sc and Sr under pressure, rather

than the observed sc structure. In fact, Olijnyk and Holzapfel[238] observed that

their Ca sample transformed from sc to an unidentified complex structure at 42 GPa.

So far the higher pressure phases Ca-IV and Ca-V have attracted the most atten-

tion, and considerable progress has been made in identifying these phases through

a combination of experimental[203, 250, 251] and theoretical[252, 253, 254] work.

However, satisfactory agreement between experimental and theoretical work is still

lacking. Ca-IV is identified as a Pnma space group by Yao et al.[252] but P43212

symmetry by Ishikawa et al.[253] and Fujihisa et al.[251] Since the Pnma and P43212

structures are quite different from each other, the disagreement is substantial. Ca-V

seems clearly to have a Cmca space group[253, 251, 252], however, the calculated en-

thalpy in the Pnma structure is much lower than in other structures (including Cmca

structure) at pressures over 140 GPa. Also in the experimental work of Fujihisa et

al.[251], the fittings of their XRD patterns to the anticipated P43212 and Cmca space

groups were not satisfactory and other possibilities still exist. In the recent work

of Arapan, Mao, and Ahuja[254], an incommensurate structure similar to Sr-V and

Ba-IV structures was proposed for Ca-V phase. Therefore the nature of the Ca-IV

and Ca-V phases is still not fully settled.
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4.3.3 Objective of this Study

While understanding the structure of Ca-IV and Ca-V and its impressive supercon-

ducting Tc is one goal of the present work, our focus has been to understand the

enigmatic “sc” Ca-III phase that is present from 32-109 GPa, where relatively high

Tc emerges and increases with pressure, a phase that XRD at room temperature (TR)

identifies as primitive simple cubic. In this pressure range sc Ca becomes favored over

the more closely packed fcc and bcc structures, but the dynamical (in)stability was

not calculated by Ahuja et al.[255]

We report here first principles calculations of the enthalpy of five crystal struc-

tures (sc, I4̄3m, P43212, Cmca, and Pnma), and linear response calculations of EPC,

that helps to clarify both the structural and superconducting questions. Over most of

the 30-150 GPa range, we find at least three crystal phases whose enthalpies indicate

they will compete strongly at room temperature. The sc phase is badly unstable

dynamically (at T=0), but the observed “sc” diffraction pattern can be understood

as a locally noncrystalline, highly anharmonic phase derived from a spatially inho-

mogeneous and dynamically fluctuating combination of these structures, with most

of them being straightforward distortions from the sc structure. The picture that

arises is one of high pressure “crushing” high symmetry crystal structures of Ca into

a non-close-packed, highly locally distorted structure which nevertheless is an excel-

lent superconductor in which Tc increases strongly with pressure. This interpretation

impacts yet another precept of superconductivity: disorder normally decreases good

conductivity, and disorder per se is rarely favorable for superconductivity.

Disorder is typically thought to decrease the superconducting critical temperature

Tc, for example, by broadening peaks in the density of states N(E) thus leading to

lower values of N(EF ). However, disorder is sometimes observed to enhance super-
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conductivity. In the extensively studied A15 compounds, disorder does produce a

remarkable reduction in Tc for Nb3Ge, V3Si, and Nb3Al, but it enhances Tc from 1

to 5 K in Mo3Ge.[256]. Disorder is found to enhance the bulk Tc of Mo films and

Mo/Si multilayers.[257] The influence of disorder on the superconductivity transition

temperature of simple amorphous metals was studied theoretically by Krasny and

Kovalenko.[258] They argued that because the structure factor of amorphous met-

als doesn’t have a unique form due to the absence of long-range order, it may lead

to the softening of the phonon spectrum, and to the appearance of incoherent elec-

tron scattering which, in turn, may lead to an increase of the EP coupling strength

λ, compared to the corresponding metals in the crystalline state. As a result, Tc

may be higher in a disordered state than in the crystalline state though the Debye

temperature may be lowered.

4.3.4 Calculational Methods

We have used the full-potential local-orbital (FPLO) code,[47] the full-potential

linearized-augmented plane-wave (FPLAPW) + local orbitals (lo) method as imple-

mented in WIEN2K,[51] the Qbox code[259], and the PWscf code [43] (now named

Quantum ESSPRESSO) to do various structural optimizations and electronic struc-

ture calculations, and checking for consistency among the results. For the enthalpy

calculations we used the PWscf code.[43] We use a norm-conserving pseudopotential

of Ca in Qbox and a Vanderbilt ultrasoft pseudopotential[36] of Ca in Pwscf, while

both the FPLO and WIEN2K codes are all-electron and full potential codes. The

linear-response calculations of phonon spectra and electron-phonon spectral function

α2F (ω) were done using the all-electron, full potential LMTART code.[49]

The parameters used in PWscf for the structural optimizations and enthalpy cal-
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culations were: wavefunction planewave cutoff energy of 60 Ry, density planewave

cutoff energy of 360 Ry, k mesh samplings (respectively, number of irreducible k

points) 24*24*24 (455), 32*32*32 (897), 24*24*8 (455), 24*24*24 (3614), 24*32*32

(6562) for sc, I4̄3m, P43212, Cmca, and Pnma structure, respectively. Increasing the

number of k points lowers the enthalpy by only 1-2 meV/ Ca almost uniformly for

all structures, resulting in negligible change in volume, lattice constants, and internal

coordinates. In these calculations, we used a Vanderbilt ultrasoft pseudopotential[36]

with Perdew-Burke-Ernzerhof[23] (PBE) exchange correlation functional and nonlin-

ear core-correction, which included semicore 3s3p states as well as 4s3d states in

valence states.

Structure Optimization. The dynamic instability of the sc phase of Ca suggested

relaxation of the structure using molecular dynamics (MD) methods. Our MD cal-

culations with the Qbox code resulted in a four-atom bcc cell with space group I4̄3m

(#217) that is dynamically stable at least from 40 GPa to 110 GPa. In this structure,

Ca occupies the 8c Wyckoff position with atomic coordinate (x, x, x), with x ≈0.22.

Since x=0.25 will restore the sc structure, this I4̄3m structure is easily seen to be a

straightforward distortion from the simple cubic structure.

Ishikawa et al.[253] suggested that Ca forms an orthorhombic structure at 120

GPa. Our MD calculations confirmed the stability of this structure, which has space

group Cmca, which is a base-centered orthorhombic structure with Ca at Wyckoff

position 8f (0,y, z), where x∼ 0.34 and y∼ 0.19. Since x=0.25 and y=0.25 and

appropriate lattice constants will restore the simple cubic structure, this Cmca is also

a readily recognized as a distortion from the sc structure. Linear response calculations

also show that this structure is dynamically stable over a wide pressure range.
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Figure 4.3.1: Band structure and DOS of sc Ca at 36 GPa (a=2.70 Å, 0.451 V0) and
109 GPa (a=2.35 Å, 0.297 V0). The high symmetry points are Γ(0, 0, 0), X(1, 0, 0),
M(1, 1, 0) and R(1, 1, 1) in the units of (π/a, π/a, π/a).

4.3.5 Simple Cubic Calcium

Although sc Ca is unstable, the crystal structure and its electronic structure is still

a valuable reference from which to investigate the trend when pressure increases. It

is common that s electrons will transfer to d electrons in metals under pressure. At

about 36 GPa (0.451 V0), the occupation number of 3d states is 1.03. It increases to

1.47 at 109 GPa (0.297 V0). The valence states are mostly 3d character, with some

4s and 4p character. (see Fig. 4.3.1)

The bands are very dispersive already at 36 GPa and they are further broadened

with increasing pressure. For example, the bands along X-M direction spans from -2.4

eV to +1.6 eV at 36 GPa, and broadens to -4.5 eV to +4.5 eV at 109 GPa. These

are typical d−like bands. The broadening is also reflected in the total density of

states (DOS) and 3d projected DOS (PDOS) plot. As mentioned above, Ca doesn’t
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superconduct at 36 GPa but becomes a good superconductor (TC=23 K) at 109 GPa.

Then one question comes that why it undergoes such dramatic change. First of all,

the total DOS N(E) at EF increases by a factor of two from 0.3 states/eV at 36 GPa

to 0.7 states/eV at 109 GPa. The increase of N(EF ) can favor superconductivity.

The more important reason is the change of band structure around Fermi level due

to the increasing pressure, which leads to the broadening and shifting of bands. The

change of bands will change the size and topology of its Fermi surfaces. There are

three pieces of Fermi surfaces at 36 GPa, one small two-dimensional piece around

X and two small pieces around R. (See Fig. 4.3.2) With increasing pressure, all the

three pieces grow in size and two new pieces emerge around Γ (one cube like and

the other p orbital like). At 109 GPa, the piece surround X becomes a large cube

with side length of about 2π/3a. The surface of the cube is very flat, indicating large

nesting and potential huge electron-phonon couplings. Unfortunately, linear response

calculations get imaginary frequencies in a large part of the BZ (see Fig. 4.3.3),

suggesting instability of the sc structure. Nevertheless, since the average structure

is sc (room temperature XRD suggests sc structure), the possible low temperature

structures should be some small distortions of sc structure. As long as the distortion

is small, the above argument is still valid.

4.3.6 I4̄3m Ca

As mentioned before, several groups have calculated that Ca is dynamically unstable

over much of the Brillouin zone in the sc structure,[241, 242, 243] as shown in Fig.

4.3.3 The most unstable modes of sc Ca are transverse [001]-polarized zone boundary

modes along the (110) directions. A linear combination of the eigenvectors of this

mode at different zone boundary points leads to a body-centered four-atom cell in
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Figure 4.3.2: Fermi surface of sc Ca, I4̄3m Ca and the sc* Ca which takes the
symmetry of I4̄3m space group, i.e., 8 atoms in the unit cell with x=0.25, at 109
GPa (0.297 V0).
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Figure 4.3.4: Local coordination of the five structures of Ca, plotted as number of
neighbors versus the distance d relative to the cubic lattice constant asc with the
same density. The inset shows the unit cube of the I4̄3m structure (which contains
two primitive cells); this structure retains six near neighbors at equal distances but
three different second neighbor distances. The P43212 and Pnma structures can be
regarded to be seven-coordinated, albeit with one distance that is substantially larger
than the other six.

the space group I4̄3m, whose local coordination is shown in the cubic cell in the inset

of Fig 4.3.4, and has a clear interpretation as a buckled sc lattice. This structure,

when relaxed, becomes dynamically stable.

Since the I4̄3m structure is a straightforward distort from the sc structure. It

is necessary to compare it with the sc structure energetically, along with the close-

packed bcc structure, in the pressure range of 32-109 GPa. Fig. 4.3.5 shows the

volume dependence of the total energy and resulting pressure. Above 0.40 V0 (low

pressure), bcc has the lowest total energy, i.e., Ca prefers to stay in bcc structure,

which is consistent with experimental observations. Then just below 0.40 V0 (about

0.395 V0), I4̄3m structure has the same total energy as bcc structure. Below 0.39
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V0, I4̄3m structure becomes the most stable structure. As for the sc structure, it has

lower total energy than bcc structure at volumes below 0.36 V0, but its total energy

is always higher than I4̄3m structure across the whole volume range from 0.48 V0 to

0.28 V0. This suggests that Ca may never reside in the sc structure. Throughout

the volume range, sc and I4̄3m structure have about the same pressure, and bcc

always gets about 6 GPa higher. Because bcc has a higher pressure at the same

volume/Ca, the structure transition from bcc to I4̄3m will take place around 0.395

V0, and may accompany with volume collapse. The 3d occupation number is also a

little bit different: I4̄3m structure gets 0.03 less than sc structure and bcc get 0.10

less.

The variation of the band structure and DOS under pressure of I4̄3m structure

has the same trend as in sc structure (band broadening and shifting). Bands are still

quite dispersive, but less dispersive than in sc structure. DOS at EF also increases

as pressure increases with about 0.45 states/eV per Ca at 109 GPa, which is less

than 0.70 states/eV per Ca of sc Ca at 109 GPa. The difference of bands between

sc and I4̄3m Ca gives different Fermi surface. The variation of the Fermi surface of

I4̄3m Ca under pressure shares a similar trend to sc Ca: small pieces become bigger

and flat, new trivial pieces emerge. The growing and flatting of Fermi surfaces is a

clear indication of increasing nesting and possible electron-phonon coupling, which

is consistent with experiments and our linear response calculations. Comparing the

Fermi surface of I4̄3m and sc Ca at 109 GPa, the flat piece of Fermi surface of sc

Ca is bigger and flatter than I4̄3m Ca, which suggests that sc Ca, if stable, will

have stronger e-p coupling and higher TC . Shi et al. [260] used rigid muffin-tin

approximation (RMTA) and obtained unrealistically large e-p coupling constant λ,

η and thus TC . For example, at 0.270 V0, RMTA gives λ ∼ 5.5, η ∼ 21.45 eV/Å2,



Chapter 4.3. Calcium under Pressure 133

0.25 0.3 0.35 0.4 0.45 0.5
7

7.5

8

8.5

9

9.5

10

10.5

To
ta

l e
ne

rg
y 

(e
V

 p
er

 C
a)

BCC (E)
SC (E)
I-43m (E)

0.25 0.3 0.35 0.4 0.45 0.5
Volume  V/V

0

10

20

30

40

50

60

70

80

90

P
re

ss
ur

e 
(G

P
a)

BCC (P)
SC (P)
I-43m (P)

Figure 4.3.5: Plot of volume dependence total energy and pressure of bcc, sc and
I4̄3m Ca.

and TC ∼ 49 K if using µ∗=0.13. As a contrast, in the I4̄3m Ca, at 0.271 V0, linear

response calculations give λ ∼ 2.2, η ∼ 4.5 eV/Å2, and TC ∼ 13 K (µ∗=0.13), all of

them are much smaller than the results from RMTA calculations in the sc Ca. Note

that there are no unstable modes (no imaginary phonon frequencies) for the I 4̄3m

structure generally. However, when there are few (not many) unstable modes at few

(not many) q points (for example, at the highest pressure 109 GPa), the q points

with unstable modes are replaced by their nearby q points in calculating the e-p

coupling constant and Tc. The point here is that structure symmetry is important

in determining e-p coupling strength and resulting TC .

Fig. 4.3.7 shows the phonon spectra and phonon DOS of I4̄3m Ca at 71 GPa and

109 GPa. At 71 GPa, the acoustic phonon softening happens around H and N point.

The frequencies at H point are very low, leading to huge phonon softening. Then

under higher pressure, the acoustic phonon modes at H and N points further soften,

as showed for 109 GPa in Fig. 4.3.7. At 109 GPa, the softening of acoustic phonon
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modes at H and H points is very impressive, the frequencies at H and N points are

only half of the maximal frequencies in the same mode along the corresponding Γ-H

and Γ-N line. When the high frequency phonons are pushed up to higher frequency

with increasing pressure, the low frequency phonons further lower their frequencies,

suggesting enhanced phonon softening of low-frequency modes and large e-p coupling

in the low frequency range, which is clearly indicated in the α2 and α2F plot as shown

in Fig. 4.3.13. At 71 GPa, α2 remains an average value of 0.1 everywhere except a

0.3-peak below 1.5 THz. The α2F then is similar with the phonon DOS, with many

small peaks spreading over the entire frequency range. At a higher pressure 109 GPa,

α2 is about twice as large of that at 71 GPa almost everywhere, and large sharp peaks

below 1.5 THz and around 3.5 THz. The α2F at 109 GPa is also twice of that at 71

GPa everywhere, however, it is unexpectedly large from 1.0 THz to 4.0 THz, which

further confirms that strong e-p coupling mainly focuses on low frequencies. The

linewidth γ plot (not shown) suggests the largest contribution is from Γ-H line near

the middle point. With increasing pressure the contribution from Γ-H line increases

rapidly, while contributions from all other part change insignificantly. At 109 GPa,

the peak value (near the middle point of Γ-H) along Γ-H is ten times the peak value

at 71 GPa which suggests the strong e-p coupling comes mainly from phonons along

Γ-H, especially the middle part of Γ-H. Plot of nesting function (see Fig. 4.3.8)

confirms that the largest nesting happens in the area surrounding (0.6, 0, 0)2π/a

point, consistent with linear response calculation. The above results suggest strong

e-p coupling exists in I4̄3m Ca at high pressure, which comes mainly from the area

around (0.6, 0, 0)2π/a point.
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0.358 V0) and 109 GPa (a=4.70 Å, 0.297 V0). The high symmetry points are Γ(0, 0,
0), H(1, 0, 0), N(0.5, 0.5, 0) and P(0.5, 0.5, 0.5) in the units of (2π/a, 2π/a, 2π/a).

Figure 4.3.8: Nesting function ξ(Q) of I4̄3m Ca on the (100), (110) and (111) planes
at 83 GPa.
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Table 4.2: Detailed structural data of the I4̄3m, Pnma, Cmca and P43212 Ca.
space group No. Wyckoff position atomic coordinates x y z

I4̄3m 217 8c (x, x, x) ∼ 0.2
Pnma 62 4c (x, 1/4, z) ∼ 0.3 ∼ 0.6
Cmca 64 8f (0, y, z) ∼ 0.3 ∼ 0.2
P43212 96 8b (x, y, z) ∼ 0 ∼ 0.3 ∼ 0.3

4.3.7 Other Possible Structures

The I4̄3m structure is just one kind of distortion from the sc structure. There are

many kinds of other possible distortions. Actually several other structures includ-

ing Pnma, Cmca and P43212 were proposed for the high pressure Ca-IV and Ca-V

phases.[251, 252, 253, 254] Their structural details are listed in Table 4.2 and their

structures are pictured in Fig. 4.3.9. I4̄3m is a body-centered cubic structure, Pnma

and Cmca Ca are orthorhombic, and P43212 has a tetragonal symmetry. All are

closely related to sc structure. For example, I4̄3m turns to simple cubic if x=0.25,

and the Cmca structure becomes a sc structure if a = b = c and y = z = 0.25.

4.3.8 Enthalpy and Competing Phases

Since there are several possible structures with different symmetries, it is better to

compare their total enthalpies instead of total energy. We have calculated enthalpy

H(P) curves for each structure in the range 40-220 GPa based on density functional

methods using the PWscf code.[43] Several energy differences and relaxations were

checked with the Qbox,[259] FPLO,[47] and Wien2K[51] codes. In the 40-70 GPa

range, all five of the structures we have studied have enthalpies that differ by less

than 20 meV/Ca (230 K/Ca), as shown in Fig. 4.3.10. In the 80-100 GPa range, the

P43212 phase is marginally the more stable phase. Three phases are degenerate, again

within 20 meV/Ca, in the 100-130 GPa region and are almost exactly degenerate
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(a) I−43m

(b) Pnma

(c) Cmca (d) P4_32_12

Figure 4.3.9: Structures of the I4̄3m, Pnma, Cmca and P43212 Ca.

around 110-115 GPa. Thus at room temperature all five phases, including the sc one,

are thermodynamically accessible up to 80-90 GPa, above which the sc and I4̄3m

structures become inaccessible. The other three phases remain thermally accessible

to 130 GPa. Above 140 GPa, the Pnma phase becomes increasingly more stable than

the others.

Our results agrees well with the results reported recently by Yao et al..[252] and

Ishikawa et al.[253] in their corresponding pressure range. At low pressure, our result

is apparently different from the result by Arapan, Mao, and Ahuja.[254] In their re-

sults, sc Ca has the lowest enthalpy from 40 GPa to 77 GPa, lower than the P43212

and Cmca structures. A possible reason is that the authors might not have taken

into account the change in shape and internal coordinates of the Cmca structure in

the 70-80 GPa pressure range. In our calculation, b/a=1.0003 and internal coor-



Chapter 4.3. Calcium under Pressure 139

40 60 80 100 120 140 160 180 200 220
Pressure (GPa)

-400

-350

-300

-250

-200

-150

-100

-50

0

50

∆H
 (

en
th

al
py

 r
el

at
ed

 to
 s

c 
st

ru
ct

ur
e)

 (
m

eV
/a

to
m

)

40 50 60 70 80 90 100
Pressure (GPa)

-80

-60

-40

-20

0

20

40 60 80 100 120 140 160 180 200 220
Pressure (GPa)

-400

-350

-300

-250

-200

-150

-100

-50

0

50

∆H
 (

en
th

al
py

 r
el

at
ed

 to
 s

c 
st

ru
ct

ur
e)

 (
m

eV
/a

to
m

)

I-43m
P4

3
2

1
2

Cmca
Pnma

Figure 4.3.10: Plot of the enthalpy H(P) of the four distorted Ca structures relative
to that for Ca in the simple cubic structure. The inset gives an expanded picture of
the 40-100 GPa regime.

dinates y=0.254, z=0.225 at 70 GPa (and similarly below) change dramatically to

b/a=1.0594, y=0.349 and z=0.199 at 80 GPa (and similarly above).

Although equally dense, quasi-degenerate, and related to the sc structure, these

structures differ in important ways from the sc structure and each other. In Fig.

4.3.4 the distribution of (first and second) neighbor distances d, relative to the sc

lattice constant asc, are pictured. The collection of distances cluster around d/asc ∼

0.97 − 1.05 and, more broadly, around
√

2. In an ensemble of nanocrystallites of

these phases, the radial distribution function in the simplest picture should look like

a broadened version of the sc one. For Ca the actual microscopic configuration at

room temperature, where fluctuations (spacial and temporal) can occur among these

phases (whose enthalpies differ by less than kBTR per atom), will no doubt be much
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more complex. However, this simplistic radial distribution plot makes it plausible

that the resulting thermal and spatial distribution of Ca atoms will produce an XRD

pattern more like simple cubic than any other simple possibility. Teweldeberhan and

Bonev have noted the near degeneracy of some of these phases in the 40-80 GPa

region, and suggest that the T=0 structure is Pnma in the 45-90 GPa range[243],

which is consistent with our results if the P43212 structure is not included.

4.3.9 Volume Collapse and First-order Isostructural Collapse

Figure 4.3.11 shows the behavior of V(P) relative to the smooth behavior in the sc

phase. Around 75 GPa the Cmca structure suffers a rapid decrease in volume by

4-5%; whether actually discontinuous or not (see below) is probably not relevant to

Ca at room temperature. Around 100 GPa, the Pnma phase undergoes a somewhat

smaller but still very clear and rapid volume collapse (again, ∼5%). The P43212

system undergoes a somewhat milder (3%) collapse in the 80-100 GPa range. No

collapse occurs for I4̄3m until beyond 130 GPa, where the volume does decrease

relative to the sc volume. Interestingly, at the highest pressures all structures return

to within ∼ 1% of the volume of the sc phase.

At 80 GPa the Cmca phase undergoes a discontinuous change that is not evident

from the calculated V(P) results. However, by looking at all the structural parameters

presented in Fig. 4.3.12, it is clear that the lattice constants change discontinuously

at the volume collapse. This discontinuity signals some microscopic change in the

electronic state, perhaps of the type proposed for high pressure lithium.[261, 262]

The overall picture that arises from these results is that, in most or all of the

range 40-130 GPa, there are 3-5 crystal structures that are quasi-degenerate, and

which can be expected to be competing thermodynamically at room temperature in
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most of that range. While one might anticipate an instability of the simple cubic

phase to a higher packing fraction phase, that interpretation is not supported in

this system. For low symmetry phases “packing fraction” begins to loose its clarity,

and in fact these structures have essentially equal densities in the 60-70 GPa range.

The P43212 and Pnma phases can be viewed as 7-fold coordinated; one of the sc

second-neighbors moves inward to a distance d=1.17-1.25 asc. However, the volume

does change (rapidly or discontinuously) for three of the phases, which might be

interpreted as attaining a somewhat larger packing fraction within each structural

motif.

This collection of information elaborates on the initial, obvious observation that

the “sc” phase Ca III cannot be simple cubic. Ca-III must be (at room temperature)

a locally inhomogeneous and dynamically anharmonic structure for which a snapshot

of the local structure will reveal some combination of, or interpolation between, these

five crystal structures. Although Ca-III is not simple cubic and not even crystalline,

it has one similarity to sc, in that each of these phases and presumably the actual,

very complex, structure is not close-packed. Fujihisa et al.[251] have analyzed some

of these structures around 150 GPa, where the 7-fold coordination becomes clearer.

This case of high pressure “sc” Ca at room temperature may constitute yet another

facet of the “weird structures” that occur in alkali and alkaline-earth metals under

pressure.[263]

4.3.10 Stability and Lattice Dynamics

The structural stability of the (quasi-degenerate) structures we have studied pro-

vide insight into behavior of Ca under pressure. Linear response calculations were

performed using the LMTART code[49] to evaluate EPC.
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60-100 GPa. The I4̄3m and Pnma structures are mostly dynamically stable from

60-100 GPa according to our linear response calculations, but there are very soft

zone boundary modes that verge on instability (small imaginary frequencies) at some

pressures. The Cmca and P43212 structures are unstable over this entire pressure

range; note that their structures are close to the sc structure. However, they are

close to stable with very soft phonons at 100 GPa, where they deviate far enough

from the sc structure.

A rather common feature among these structures in this pressure range is softening

of modes at the zone boundary, with an associated maximum in the spectral function

α2(ω) that can be seen in Fig. 4.3.13 and Fig. 4.3.14. Such low frequency weight

contributes strongly to λ, though the contribution to Tc is better judged[204] by

< ω > λ or even < ω2 > λ. With increase of pressure, the peaks move towards

lower frequency, λ increases, and the structures approach instability. These results

are consistent with the changes of structure parameters we obtain in the process

of calculating the enthalpies, where all four structures evolve further from the sc

structure with increase of pressure.

Above 100 GPa. At the highest pressures studied (by us, and experimentally),

the crystal structures deviate more strongly from the sc structure. Of the structures

we have considered, the P43212 one becomes favored and also is structurally stable

around 110 GPa. This stability is consistent with the observed transition from the

sc structure to the Ca-IV structure at room temperature. The dramatic drop in the

electrical resistance at around 109 GPa is also consistent with a transition from a

locally disordered phase to a crystalline material.[203]

In the pressure range of 110-140 GPa, the P43212, Cmca, and Pnma structures

become quasi-degenerate again. Linear response calculations of the Pnma structure
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Figure 4.3.13: Plot of α2F(ω) (lower panel), α2(ω) (middle panel), and phonon DOS
(upper panel) of I4̄3m structure at about 61, 71, 83 and 97 GPa. This regime is
characterized by strong coupling α2(ω) at very low frequency.
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at 120 GPa and above, and of the Cmca structure at around 130 GPa indeed show

strong coupling with λ > 1.0 in all the cases. Unlike what was found below 100 GPa,

there are no longer very low frequency phonons (see Fig. 4.3.14 and Fig. 4.3.15). The

coupling strength is spread over frequency, peaking for mid-range frequency phonons.

Another interesting feature arises in the α2(ω) curves, which reveal that the cou-

pling matrix elements become relatively uniform across most of the frequency range

(except the uninteresting acoustic modes below 2 THz) at pressures over 120 GPa in

Pnma structure and at 130 GPa in Cmca structure; this behavior is evident in Fig.

4.3.14 and especially in Fig. 4.3.15 where the results for the Cmca structure at 130

GPa are pictured. This characteristic is fundamentally different from that below 100

GPa, discussed above.

At pressures over 140 GPa, the Pnma structure is clearly favored in our calcu-

lation, and linear response calculations indicate the structure is dynamically stable.

The overall results are evident in Fig. 4.3.14, which shows that the structures remain

stable (no imaginary frequencies) and the lattice stiffens smoothly with increasing

pressure, and in Fig. 4.3.16 that shows that strong electron-phonon coupling persists

and Tc remains high. In this high pressure range, the incommensurate structure pro-

posed by Arapan, Mao, and Ahuja[254] at pressure over 130 GPa is also a possibility.

4.3.11 Coupling Strength and Tc

Fig. 4.3.16 shows the calculated λ, η = MCa < ω2 > λ, and rms frequency < ω2 >1/2

versus pressure for a few structures and pressures. The calculated values of Tc are

shown in the lower panel, using two values of Coulomb pseudopotential µ∗=0.10

and 0.15 that bracket the commonly used values and therefore give an indication

of the uncertainty due to the lack of knowledge of the value of µ∗ and its pressure



Chapter 4.3. Calcium under Pressure 147

0 2 4 6 8 10 12 14 16 18
Frequency ω (THz)

0

1

2

3

4

5

6

Ph
on

on
 D

O
S 

(s
ta

te
s/

TH
z)

60 GPa

85 GPa

160 GPa

200 GPa

120 GPa

0 2 4 6 8 10 12 14 16 18
Frequency ω (THz)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

α2

60 GPa
85 GPa

160 GPa

200 GPa

120 GPa

0 2 4 6 8 10 12 14 16 18
Frequency ω (THz)

0

0.4

0.8

1.2

1.6

2

2.4

2.8

α2 F

60 GPa

85 GPa

160 GPa

200 GPa

120 GPa
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dependence. Results are provided for Ca in I4̄3m, Pnma and Cmca structures at a few

pressures up to 220 GPa. In elemental metals and in compounds where coupling is

dominated by one atom type, η has often been useful in characterizing contributions

to Tc.[265] η increases with pressure monotonically by a factor of more than 6 from

60 GPa to 220 GPa. The coupling constant λ increases modestly up to 120 GPa then

remains nearly constant at λ = 1.2-1.4. As pointed out elsewhere,[264] a dense zone

sampling is needed to calculate λ accurately, so any small variation is probably not

significant. Thus the increase in η beyond 120 GPa correlates well with the lattice

stiffening (increase in < ω2 >) in this pressure range.

The trend of the resulting Tc generally follows, but seems to overestimate some-

what, the experimental values[203]. For Cmca structure at about 130 GPa, the

calculated EPC strength is λ = 1.2 and Tc = 20-25K (for the two values of η). in

very satisfactory agreement with the observed values of Tc in this pressure range. For

Pnma structure, Tc increases rapidly in the 80-120 GPa region. At pressures above

120 GPa up to the maximum 220 GPa that we considered, the EPC constant λ is ∼

1.2-1.4 and the calculated Tc increases modestly from 25-30K at 120 GPa to 30-35K

at 220 GPa. Neither the structure dependence nor the pressure dependence seems

very important: the strong coupling and high Tc is more the rule than the exception.

Ca at high pressure may be an excellent superconductor regardless of its structure.

4.3.12 Conclusions

Linear response calculations suggest simple cubic Ca in the pressure range of 32-109

GPa is not stable at low temperature. A straightforward distortion along the most

unstable phonon modes leads sc to the I 4̄3m structure. A total energy comparison

of bcc, sc and I 4̄3m Ca at various volumes suggests sc Ca may never exist at low
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temperature, which is supported by the enthalpies of several sc-related structures at

various pressures as well. Under pressure, there is a general trend of broadening of

the bands around Fermi level, increasing of the DOS at EF and of occupation number

of Ca 3d electrons, of both sc and I 4̄3m Ca. The evolutions of the Fermi surfaces of

both sc and I 4̄3m Ca under pressure generally enhance strongly nestings of electrons

on the Fermi surfaces, which are contributed mainly by a flat piece of FS which grows

in size under pressure. The calculated nesting function ξQ on the (100), (110) and

(111) planes of I 4̄3m Ca at 83 GPa reveals a peak around Q = (0.6, 0, 0)2π/a point,

which is consistent with the topology of its Fermi surfaces and the mode λQ in linear

response calculations. These are indicative of strong electron-phonon coupling, which

is confirmed by linear response calculations.

Calculations of enthalpy versus pressure for five crystalline phases of Ca (simple

cubic and four distortions from it) indicate quasi-degeneracy, with enthalpy differ-

ences small enough that one might expect a locally disordered, highly anharmonic,

fluctuating structure at room temperature. Such a scenario seems to account qual-

itatively for the XRD observations of a “sc” structure, a rationale that is necessary

because calculations indicate the actual sc structure itself is badly unstable (at least

at T=0). At pressure below 100 GPa, the quasi-degenerate structures tend to have

soft branches or occasionally lattice instabilities, which are associated with strong

electron-phonon coupling. In the pressure range of 110 to 130 GPa three phases

(P43212, Cmca and Pnma) again become quasi-degenerate, and again it seems likely

there will be spacial and temporal fluctuations between the structures. Of course

other structures may come into play as well; Arapan, Mao, and Ahuja[254] have pro-

posed that the Pnma structure competes with an incommensurate structure at high

pressure.
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As our other main result, we find that linear response calculation of the EPC

strength and superconducting Tc accounts for its impressive superconductivity in the

high pressure regime and accounts in a broad sense for the strong increase of Tc in

the “sc” phase. At higher pressure beyond current experimental limit (i.e., 161 GPa),

Tc still lies in the 20-30 K range for some phases that we have studied. In fact strong

electron-phonon coupling seems to be present in several phases across a substantial

high pressure range, although we have no simple picture why such strong coupling

should arise. (The strong coupling in Li and Y likewise has no simply physical

explanation.[58, 204]) These results may resolve some of the perplexing questions on

the structure and record high Tc for an element, and should help in obtaining a more

complete understanding of the rich phenomena that arise in simple metals at high

pressure.

4.3.13 Acknowledgments

This work was supported by DOE through the Scientific Discovery through Advanced

Computing program (SciDAC grant DE-FC02-06ER25794), and by DOE grant DE-

FG02-04ER46111 with important interaction from the Computational Materials Sci-

ence Network.



153

Chapter 5

The Iron-based Superconductors

5.1 Introduction to the Iron-based Superconduc-

tors

Since the discovery of copper oxide (cuprate) high temperature superconductors

(HTS) in 1986,[188] there has been an extensive effort to find related superconduc-

tors in two-dimensional (2D) transition metal oxides (TMO), borides, nitrides, etc.

Promising developments in this area include LixNbO2,[266], Sr2RuO4,[267] NaxCoO2,[268],

and CuxTiSe2,[269] but all have superconducting critical temperature Tc of 5 K or

less. The most striking discovery was that of electron-doped hafnium nitride semi-

conductor (HfNCl) [270] with Tc = 25 K. The other distinctive breakthrough,[198]

MgB2 (Tc=40 K), has strong 2D features but contains only s, p elements. Recently,

design of possible TMO superconductors has been stimulated by a specific approach

outlined by Chaloupka and Khaluillin.[271]

The simmering state of superconductor discovery has been re-ignited by discovery

of a new class of layered transition metal pnictides ROT Pn, where R is a trivalent
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rare earth ion, T is a late transition metal ion, and Pn is a pnictogen atom. The

breakthrough of Tc=26 K (Tonset
c =32 K) was reported[191] for 0.04 ≤ x ≤ 0.12

electron doped LaO1−xFxFeAs, followed by the demonstration that hole-doping[272]

in La1−xSrxOFeAs, 0.09 ≤ x ≤ 0.20, leads to a similar value of Tc. These values of Tc

have now been superseded by the finding that replacement of La by Ce,[192] Pr,[193]

Nd,[194] Sm,[195, 196] and Gd[197] result in Tc = 41-55 K, substantially higher than

in any materials except for the cuprate HTS.

Very soon, a few other Fe based compounds were found to be superconducting

when doped or compressed. Currently, the parent compounds of Fe-based supercon-

ductors include ZrCuSiAs-type RFeAsO and M ′FeAsF (1111-type), ThCr2Si2-type

MFe2As2 (122-type), Cu2Sb-type AFeAs (111-type), α-PbO-type FeTe and FeSe (11-

type), and Fe2As2Sr4X2O6 (22426-type) (R=rare earth metal; M ′=Sr and Ca; M =

Ba, Sr, Ca and Eu; A=Li and Na; X= Sc, Cr). [191, 192, 193, 194, 197, 273, 274,

275, 276, 277, 278, 279, 280]

In the vicinity of room temperature, these compounds crystallize in tetragonal

symmetry with no magnetic order. The crystal structures of all the iron-pnictides

share a common two-dimensional FePn layer, where Fe atoms form a 2D square

sublattice with Pn atoms sit at the center of these square, but off the Fe plane (above

and below the plane alternately). The FePn layer is different from the CuO layer in

cuprates where the Cu and O atoms are in the same plane. The parent compounds

of these iron-pnictides are metallic, while the parent compounds of cuprates are Mott

insulators. At some lower temperature (which can be in the range of 100-210 K),

they undergo a first or second order structural transition at TS from tetragonal

to orthorhombic, and an magnetic transition at TN from non-magnetic to stripe-

antiferromagnetic.[281, 282, 283, 284] The structural transition and magnetic order



Chapter 5.1. Introduction to Iron-based Superconductors 155

transition can happen simultaneously or successively depending on the compound. It

was confirmed both experimentally and theoretically that the magnetic order of Fe

at low temperature is stripe-like antiferromagnetism often referred to as spin density

wave (SDW). [281, 283, 284, 285, 286] Upon doping or compressing, the magnetic

order goes away and the materials become superconducting. In the 1111-family

(both RFeAsO and M ′FeAsF, R=rare earth and M ′=Ca and Sr), TN is lower than

TS, which seems to suggest that the magnetic transition is induced by the structural

transition. In the MFe2As2 (M=Ba, Sr, Ca, and Eu) compounds, TN=TS, i.e., the

structural and magnetic transitions happen simultaneously (a first-order transition).

Whether the magnetic transition is induced by the structural transition or not and

what is the driving force of the structural transition are two important questions that

are crucial to understand the formation of the stripe antiferromagnetic order in the

parent compounds.

Many experiments have been done to measure various properties of these iron-

pnictide compounds. The ordered magnetic moment of iron is typically less than 1.0

µB, which is much smaller than the calculated value (∼ 2.0 µB) from first principle

calculations. The superconducting gap is best fitted to s± wave[287, 288] which is

different from the dx2−y2 symmetry in cuprate superconductors. The oxygen-isotope

effect is much smaller than the iron-isotope effect[289], which verifies the supercon-

ductivity comes from the FePn layer. Tc is maximum when the Fe-Pn-Fe angle is

about 109.4o, suggesting that the height of the Pn atom is very important to super-

conductivity. Superconductivity can be induced by different ways including electron

doping, hole doping, vacancy and applying pressure. The phase diagram of the iron-

based superconductors is similar to the cuprate superconductors.

Hundreds of theoretical papers have been published since the first report[191] in
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February, 2008. While much progress has been made on the understanding of these

compounds, there are still fundamental questions remain unanswered, such as:

1. Itinerant vs. localized: Are the iron 3d electrons itinerant or localized?

2. Driving force of phase transitions: What is the relation of the structural transition

and the magnetic transition? What is the underlying driving force?

3. Failure of L(S)DA and GGA: Since it has been confirmed from LDA+DMFT

calculations[290] that LaFeAsO is a moderately correlated system, L(S)DA should

work satisfactorily. Why L(S)DA fails to predict the correct position of As atom with

an unacceptable large error of more than 0.1 Å? Why LSDA and GGA overestimate

the ordered magnetic moment of iron in the stripe-AFM state by a huge amount?

4. Pairing mechanism: What is the pairing mechanism of superconductivity in these

compounds? Is it spin fluctuation, orbital fluctuation, electron-lattice interaction or

something else?

Although there are still many difficulties, it is believed that, with one more class

of high Tc superconductors to study with, there are more chances to unveil the

mechanism of high temperature superconductivity.

5.2 The Delicate Electronic and Magnetic Struc-

ture of LaFeAsO

This section contains work from two published papers[285, 291]: “Electron-Hole Sym-

metry and Magnetic Coupling in Antiferromagnetic LaFeAsO”, Z. P. Yin, S. Lebègue,

M. J. Han, B. P. Neal, S. Y. Savrasov, and W. E. Pickett, Phys. Rev. Lett. 101,

047001 (2008); and “The delicate electronic and magnetic structure of the LaFePnO

system (Pn=pnicogen)”, S. Lebègue, Z. P. Yin, and W. E. Pickett, New Journal of
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Physics 11, 025004 (2009).

5.2.1 Background

The parent compound LaFeAsO is non-magnetic at room temperature. The trans-

port, magnetic, and superconducting properties of LaFeAsO1−xFx depend strongly

on doping.[191, 272, 292] Most interestingly, a kink is observed[192] in the resistivity

of the stoichiometric (“undoped” but conducting) compound, which has been identi-

fied with the onset of antiferromagnetism (AFM). As a result, the original focus on

the nonmagnetic LaFeAsO compound switched to an AFM ground state, in which

the two Fe atoms in the primitive cell have oppositely oriented moments. Due to the

structure of the FeAs layer, shown in Fig. 5.2.1, that requires two Fe atoms in the

primitive cell, this ordering represents a Q=0 AFM state.

The basic electronic structure of this class of compounds was presented for LaFePO,

superconducting at 5 K [293], by Lebègue.[294] The electronic structure of param-

agnetic LaFeAsO is similar, and its (actual or incipient) magnetic instabilities have

been described by Singh and Du,[295] who found that the Fermi level (EF ) lies on

the edge of a peak in the density of states (DOS), making the electronic structure

strongly electron-hole asymmetric. The Fermi surfaces are dominated by zone center

and zone corner cylinders, which underlie several models of both magnetic[296] and

superconducting.[287, 297, 298, 299] properties. Cao et al.[300] and Ma and Lu[301]

demonstrated that a Q=0 AFM state (mentioned above) is energetically favored, but

coincidentally (because the electronic structure is substantially different) still leaves

EF on the edge of a DOS peak, i.e. strongly particle-hole asymmetric. In both para-

magnetic and Q = 0 AFM states a degenerate dxz, dyz pair of Fe orbitals remains

roughly half-filled, suggesting possible spontaneous symmetry breaking to eliminate
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Figure 5.2.1: The QM antiferromagnetic structure of LaFeAsO, with different shades
of Fe atoms (top and bottoms planes) denoting the opposing directions of spins in
the QM AFM phase. Fe atoms lie on a square sublattice coordinated tetrahedrally
by As atoms, separated by LaO layers (center of figure) of similar structure. The
dashed lines indicate the nonmagnetic primitive cell.
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the degeneracy.[296, 302] Such degeneracies have attracted attention in transition

metal oxides.[303]

Subsequently it was reported by Dong et al.[304] that a ~QM = (π, π, 0)
√

2 ×
√

2

AFM state lies substantially lower still in energy. The spin arrangement consists of

Fe chains of aligned spins along one direction (which we take to be the x-axis) of

the square Fe sublattice, with alternate chains having opposite spin direction. This

~QM ordering is what might be expected from the (approximate) nesting of Fermi

surfaces in the primitive cell, but the calculated moments are large (1.72 µB in the

Q=0 phase, 1.87 µB for QM) and thus is far removed from a ‘spin density wave’

description. Neutron scattering[281, 282] and x-ray scattering[282] have confirmed

this in-plane ordering, and reveal that alternating planes of Fe spins are antialigned,

i.e. the true ordering is (π, π, π).

5.2.2 Crystal Structure

RFeAsO crystallizes in the ZrCuSiAs type structure [305, 306] (space group P4/nmm,

Z = 2). LaFeAsO is made of alternating LaO and FeAs layers, as presented in Fig.

5.2.1. The Fe and O atoms lie in planes, while the As and La atoms are distributed on

each side of these planes following a chessboard pattern. The crystal structure is fully

described by the a and c lattice parameters, together with the internal coordinates of

La and As. Experimentally, a = 4.03533 Å and c = 8.74090 Å, while z(La) = 0.1415

and z(As) = 0.6512. However to describe correctly the antiferromagnetic structure,

a
√

2a×
√

2a× c cell must be used, with four Fe atoms per cell, as shown in full lines

in Fig. 5.2.1. We will refer to this antiferromagnetic order as the QM AFM order, or

equivalently as (π, π, 0), while the Q0 AFM order corresponds to an antiferromagnetic

order of the original cell (dashed lines in Fig. 5.2.1) with two Fe atoms. Also, FM will
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refer to a ferromagnetic arrangement of the spins, while NM means non-magnetic.

5.2.3 Calculation Method

To calculate the relevant quantities, we have used density functional theory (DFT)

[1, 3] , as implemented in two different electronic structure codes. The full potential

local orbital (FPLO) code[47] was mainly used, while we double checked some of the

calculations with Wien2k code [51]. For most of the FPLO and LAPW calculations,

the Perdew and Wang 1992 (PW92)[20] exchange-correlation (XC) functional was

used, but the effect of XC functional was checked using also LSDA(PZ)[18], the PBE

(Perdew et al. 1996)[23], and another GGA (Perdew et al. 1992)[22] XC functionals.

At each constant volume, the crystal structure was fully relaxed, i.e., c/a, z(La) and

z(Pn) were relaxed.The errors were estimated to be within 0.5% for c/a, and 1.0%

for z(La) and z(Pn). The relaxation was performed in the QM AFM structure, with

132 irreducible k points in the BZ. We double checked the total energy with a finer

mesh with 320 irreducible k points in the BZ, and the difference is very small. After

relaxation, all calculations were performed using dense meshes, with 320, 1027, and

637 irreducible k points in the BZ of the QM AFM, Q0 AFM and NM structure,

respectively. In the QM AFM structure, we used 464 irreducible k points in the BZ

to double check the result, without any noticeable difference in the DOS nor band

structure.

5.2.4 The QM AFM Ordering

To prepare for studying the superconducting state, it is necessary first to understand

the normal state from which it emerges. We find the QM phase to be energetically

favored over the Q=0 AFM phase by ∼75 meV/Fe, which itself lies 87 meV/Fe below
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Figure 5.2.3: Band structure of the ~QM AFM phase along high symmetry directions.
Note that two dispersive bands and one narrow band cross EF along Γ-Y, while only
the one flatter band crosses EF (very near k=0) along Γ-X.

the nonmagnetic phase. This energy difference is large enough that neither the Q=0

AFM, nor the nonmagnetic, phase will be thermally accessible at temperatures of

interest. We neglect the antialignment of spins on the well separated adjacent FeAs

layers, which will have little effect on the electronic and magnetic structure of a layer

due to the weak interlayer hopping.

5.2.5 Electronic Structure

In either AFM phase, the Fe majority states are completely filled, thus the moment

is determined by the occupation of the minority states. From the projected Fe 3d

density of states (DOS) shown in Fig. 5.2.2, the minority states are almost exactly

half-filled, giving 7.5 3d electrons and thus an Fe state that is no more than 0.5e from

neutral. While the center of gravity of As 4p weight lies below that of Fe 3p bands,
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there is strong mixing of these two characters on both sides of EF , and the As 4p

states are certainly unfilled.

Notably, the band structure and DOS is characterized by a pseudogap straddling

EF , closing only in a small region along the Γ-Y line near Γ. Since the moments,

and hence the exchange energies, of the two AFM phases are very similar, the energy

gain in the QM phase can be ascribed to the formation of the pseudogap. The system

could be considered as metallic rather than semimetallic, in the sense that there are

two dispersive bands crossing EF along Γ-Y. One is 1.3 eV wide, comprised of Fe

dxy + As pz character, the other of dyz character is 0.9 eV wide. A third narrower

(0.4 eV) band of 3dx2−y2 character crosses EF near Γ. The crossing of the dispersive

bands along Γ-Y are such as to leave only two small distinct 2D Fermi surfaces,

shown in Fig. 5.2.4: an elliptical hole cylinder at Γ containing ∼0.03 holes, and two

symmetrically placed near-circular electron tubes midway along the Γ-Y axis. In the

sense that the Fermi surfaces are small, the state is semimetallic. The bands near EF

have kz dispersion of no more than 25 meV.

The dxz, dyz degeneracy is broken by the chains of aligned Fe spins in the QM

phase. The rough characterization for the minority Fe orbitals is that dz2 and dx2−y2

states are partially filled, dxy and dxz states are empty, the dyz states are mostly

filled but giving rise to the hole Fermi surfaces. (Note that here the x− y coordinate

system is rotated by 45◦ from that usually used for the primitive cell, see Fig. 5.2.1)

A striking feature, crucial for accounting for observations, is that the DOS is

(roughly) particle-hole symmetric, as is the observed superconducting behavior. All

bands near EF are essentially 2D, resulting in only slightly smeared 2D-like DOS

discontinuities at the band edges with structure elsewhere due to band crossings and

non-parabolic regions of the bands. The DOS has roughly a constant value of 0.25



Chapter 5.2. LaFeAsO 164

states/(eV Fe spin) within 0.15-0.2 eV of EF , with much flatter bands beyond. The

hole and electron effective in-plane masses, obtained from N(E) = m∗/(π~
2) for each

pocket, are m∗
h = 0.33,m∗

e = 0.25. An analogous band structure occurs in electron-

doped HfNCl,[307] but there superconductivity appears before the heavy bands are

occupied.

There are somewhat conflicting indications of the possible importance of electron-

phonon coupling in this compound.[308, 309] Fig. 5.2.5 provides evidence of strong

magnetophonon coupling: increase of the As height which changes the Fe-As distance

affects the Fe moment at a rate of 6.8 µB/Å, indicating an unusually large sensitivity

to the Fe-As separation. Fig. 5.2.5 also reveals another important aspect: LDA is

almost 0.1 Å off in predicting the height of the As layer relative to Fe, a discrepancy

that is uncomfortable large. Neglecting the Fe magnetism increases the discrepancy.

“Doping” (change of charge in the FeAs layers) is observed to cause the Néel tem-

perature to decrease, and no magnetic order is apparent in superconducting samples.

The effect of (rigid band or virtual crystal) doping on the QM electronic structure,

either by electrons or holes, is to move EF into a region of heavier carriers, by roughly

a factor of 20 (m∗
h ∼ 6 ∼ m∗

e). About 0.1 carriers is sufficient to do this, which is just

the amount of doping that results in superconductivity. The Fermi surfaces evolve

accordingly as shown in Fig. 5.2.4: for electron doping the hole cylinder disappears,

the electron tubes enlarge and merge; for hole doping the electron tubes decrease in

size as the hole cylinder grows and distorts into a diamond-shaped cross section.
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Figure 5.2.4: Fermi surfaces of LaFeAsO in the QM AFM phase. (A) and (B): the
hole cylinders and electron tubes of the stoichiometric QM phase. (C) and (D): hole-
and electron-doped surfaces doped away from the QM AFM phase.
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Figure 5.2.5: The magnitude of the Fe magnetic moment, the change in energy, and
the Fe-As distance, as the As height zAs is varied.

5.2.6 Exchange Coupling

The spectrum of magnetic fluctuations is an important property of any AFM phase,

and may bear strongly on the emergence of superconductivity. We have calculated

from linear response theory the exchange couplings Jij(q) for all pairs {i,j} within

the unit cell, and by Fourier transform the real space exchange couplings Jij(R), for

the transverse spin-wave Hamiltonian[310, 311]

H = −
∑

<i,j>

Jij êi · êj; Jij(R) = − d2E[{θ}]
∂θi(0)∂θj(R)

, (5.2.1)

where θj(R) is the angle of the moment (with direction êj) of the j-th spin in the

unit cell at R. For the QM AFM phase and experimental structural parameters, the
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1st and 2nd neighbor couplings are (distinguishing parallel and perpendicular spins)

J⊥
1 = −550 K; J

‖
1 = +80 K; J⊥

2 = −260 K. (5.2.2)

For comparison, the nearest neighbor coupling[310, 311] in elemental FM Fe is J1 ≈

1850 K, i.e. 3-4 times as strong. The signs are all supportive of the actual order-

ing, there is no frustration. The factor-of-7 difference between the two 1st neighbor

couplings reflects the strong asymmetry between the x- and y-directions in the QM

phase, which is also clear from the bands. The sensitivity to the Fe-As distance is

strong: for z(As)=0.635, where the moment is decreased by 40% (Fig. 5.2.5), the

couplings change by roughly a factor of two: J⊥
1 = -200 K, J

‖
1 = +130 K, J⊥

2 = -140 K.

The interlayer exchange constants will be much smaller and, although important for

the (three dimensional) ordering, that coupling should leave the spin-wave spectrum

nearly two-dimensional.

We emphasize that these exchange couplings apply only to small rotations of the

moment (spin waves). The Q=0 phase couplings are different from those for the QM

phase; furthermore, when FM alignment is enforced the magnetism disappears en-

tirely. The magnetic coupling is phase-dependent, largely itinerant, and as mentioned

above, it is sensitive to the Fe-As distance.

5.2.7 Influence of XC Functionals and Codes on the Elec-

tronic Structure of LaFeAsO

First, we studied the electronic structure of LaFeAsO in the experimental (tetragonal)

crystal structure for different magnetic states (QM AFM, Q0 AFM, FM and NM)

using two different codes (FPLO7 and Wien2K) and different exchange-correlation
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functionals. This is necessary in view of the large number of theoretical papers[295,

287, 312, 313, 286] which appeared recently and often contain strong disagreements.

This was partly studied by Mazin et al..[314] Table 5.1 summarizes the results: the

magnetic moment on the Fe atom together with the total energy differences for each

magnetic state studied here. Independent of the code or the XC functional used,

the QM AFM state is always found to be the ground state, which confirms our

earlier report[285]. The magnetic moment for both AFM orders are considerably

larger than the ordered moment reported from neutron diffraction and muon spin

relaxation experiments(0.36 µB), while the one for the FM order is much smaller.

For this last case, FPLO7 gives zero which indicates no magnetism with both PZ and

PW92 XC functional; Wien2K gives about 0.36 µB with GGA and PBE and 0.13 µB

with PW92. It appears therefore that the magnetic moment of Fe for the same state

with different XC functionals varies by up to 0.5 µB, which is unexpectedly large,

although GGA is known to enhance magnetism.[314] The difference between FPLO7

and Wien2K in predicting the Fe magnetic moment for each state may explain the

total energy differences among them. Virtual doping (see next next subsection) by

0.1 e−/Fe enhances the Fe magnetic moment in the QM AFM state but reduces it in

the FM state for all the XC functionals used.

In the structural optimization (performed in the QM state), FPLO7 with PW92

(LDA) functional gives reasonable c/a and z(La) in good agreement with experiment,

but it predicted z(As) ∼ 0.139, which is 0.011 off the experimental value, about 0.1

Å in length. However, Wien2K with PBE(GGA) XC functional gives an optimized

z(As) ∼ 0.149, which agrees well with experimental z(As). Similar results are found in

the XFe2As2 family (X=Ba, Sr, Ca) too. It suggests that, GGA (PBE) XC functional

optimizes the FeAs-based system much better than LDA (PW92) XC functional.
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Table 5.1: Calculated magnetic moment of Fe, the amounts of total energy per Fe
lie below nonmagnetic state of FM, Q0 AFM and QM AFM states from FPLO7
and Wien2K with different XC functionals of LaFeAsO with experimental structure.
Positive ∆ EE means lower total energy than NM state.

code XC mag. mom. (µB) ∆ EE (meV/Fe)
QM Q0 FM QM Q0 FM

FPLO7 PW92 1.87 1.72 0.00 87.2 24.6 0
PZ 1.70 1.31 0.00 62.2 6.9 0

WIEN2k PW92 1.74 1.52 0.13 136.9 78.9 0
GGA 2.09 1.87 0.36 149.1 65.2 3.7
PBE 2.12 1.91 0.37 158.1 70.2 4.5

0.1 e− doped PW92 1.86 —- 0.08 125.2 —- -0.5
0.1 e− doped GGA 2.14 —- 0.26 139.7 —- -0.1
0.1 e− doped PBE 2.16 —- 0.27 149.6 —- 2.1

And GGA should have better performance in dealing with the structure (including

c/a, equilibrium volume and z(As)) under pressure of this FeAs family. This is

probably due to the layered structure of the FeAs family which results in large density

gradient between layers, thus GGA has better description of the potential. But in

the meantime, GGA (PBE) further overestimates the magnetic moment of Fe, which

is already overestimated by LDA (PW92).

5.2.8 Effect of z(As) on the Electronic Structure of LaFeAsO

Then we studied how the electronic structure of LaFeAsO depends on the value of

z(As).

Table 5.2 shows the difference between the experimental z(As)(∼ 0.150), the op-

timized z(As) (∼ 0.139) and a middle value of 0.145 when using FPLO7 with PW92

XC functional: decreasing z(As) (reducing the Fe-As distance) rapidly reduces the

differences in energy between the different magnetic orderings. At z(As) = 0.145, the

magnetic moments of the QM and Q0 states are reduced significantly in comparison
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Table 5.2: Calculated magnetic moment of Fe, total energy relative to the nonmag-
netic (ferromagnetic) states of NM/FM, Q0 AFM and QM AFM of LaFeAsO with
z(As)= 0.150 (experimental),0.145, and 0.139 (optimized) from FPLO7 with PW92
XC functional.

z(As) mag. mom. (µB) ∆ EE (meV/Fe) Fe 3d occ.#
QM Q0 FM FM-QM Q0-QM maj. min.

0.150 1.87 1.72 0.002 87.2 62.6 4.32 2.45
0.145 1.70 1.41 0.000 60.5 54.0 4.24 2.55
0.139 1.48 0.01 0.000 34.6 34.6 4.15 2.68

with z(As) = 0.150, and the difference in energy has changed by around 20%, indi-

cating important changes in the electronic structure upon moving the As atom. For

z(As) = 0.139, the Q0 AFM state has lost its moment (become the NM state), while

the magnetic moment of the QM state has decreased even more, with a changing rate

of 6.8 µB/Å , indicating strong magnetophonon coupling.[285] Therefore, using the

experimental or optimized value for the internal coordinate of As gives quite different

results and might explain several of the discrepancies seen in the previously published

works.

In Figures 5.2.6 and 5.2.7, we present the corresponding band structures, total

densities of states, and partial densities of states calculated for different values of

z(As). Surprisingly, the band structure near EF referred to the common Fermi level

barely changes when z(As) decreases. Somewhat away from EF , the bands below

the Fermi level are pushed up in energy when z(As) is decreased, while the effect

of the Fe-As distance on the bands above ǫF is less obvious, since they are pushed

up or down depending on the direction of the Brillouin zone. For instance, along

Γ − X and Γ − Z they are pushed down, so that a decrease of the pseudogap is

expected, as shown by Fig. 5.2.6. The peaks of the DOS just above Fermi level move

toward it when z(As) is reduced, while the DOS below the Fermi level is quite robust

with less changes. The important decrease of the magnetic moment of Fe when the
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Figure 5.2.6: The bandstructure and total DOS of QM LaFeAsO at ambient pressure
computed for z(As)=0.150, z(As)=0.145, z(As)=0.139.
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Fe-As distance changes is understood by looking at the Fe-3d PDOS (Fig. 5.2.7)

and the last column of table 5.2. Although the number of Fe-3d electrons remains

approximately constant, the number of spin up electron decreases, while the number

of spin down electrons is increased when z(As) is reduced, which overall leads to a

decrease of the magnetic moment.

5.2.9 Effect of Virtual Crystal Doping on the Electronic Struc-

ture of LaFeAsO

Since superconductivity happens only in doped LaFeAsO, it is necessary to know

how doping will affect the underlying electronic structure and the character of each

magnetic state. Using the experimental lattice parameters, we performed virtual

crystal doping calculations on LaFeAsO using Wien2K by changing the charge of O

(doping with F) and La (doping with Ba, but simulating doping with Sr as well),

and the corresponding number of valence electrons. The virtual crystal method is

superior to a rigid band treatment because the change in carrier density is calculated

self-consistently in the average potential of the alloy.

There is only a weak dependence of the calculated Fe magnetic moment on the

electron doping level: 0.1 e−/Fe doping enhances it from 2.12 µB to 2.16 µB (see

Table 5.1). However, electron doping reduces the total energy difference (compared

to NM) in both QM AFM and FM states. The main effect of virtual crystal doping

is to change the Fermi level position, in roughly a rigid band fashion (see the caption

of Fig. 5.2.8 for more details). The band structures of 0.1, and 0.2 e−/Fe doped

LaFeAsO in the QM AFM phase show only small differences; the charge goes into

states that are heavily Fe character and the small change in the Fe 3d site energy

with respect to that of As 4p states is minor.
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Notably, the virtual crystal approximation continues to give strong magnetic

states, whereas doping is observed to degrade and finally kill magnetism and promote

superconductivity. Thus the destruction of magnetism requires some large effect not

considered here, such as strong dynamical spin fluctuations.

5.2.10 Electric Field Gradients

We have calculated the electric field gradients (EFG) of each atom in LaFeAsO,

studying both the effects of doping and of magnetic order. The structure used for

these calculations is a=4.0355 Å, c=8.7393 Å, z(La)=0.142, z(As)=0.650, and the

PBE(GGA) XC functional was used in the Wien2K code. (PW92 (LDA) XC func-

tional gives similar results and thus the results are not presented here.) Since the
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EFG is a traceless symmetric 3×3 matrix, only two of Vxx, Vyy, Vzz are independent.

For cubic site symmetry, the EFG vanishes, hence the magnitude and sign of the

EFG reflects the amount and character of anisotropy of the charge density. For the

symmetries studied here, the off-diagonal components of the EFG tensor for all the

four atoms are zero. For the QM AFM state, the Vyz component calculated sepa-

rately for each spin for La and As is not zero, although the sum vanishes; the spin

decomposition gives information about the anisotropy of the spin density that is not

available from measurements of the EFG.

As shown in Table 5.3 and Table 5.4, the EFGs of both Fe and As in NM and

FM states are very similar and they are doping insensitive, except for Fe where the

EFG is comparatively small (in tetrahedral symmetry, the EFG is identically zero).

Due to the breaking of the x-y symmetry in the QM phase, Vxx is no longer equal

to Vyy. In this case, the EFGs are quite different from those in the NM and FM

states, which shows once more that the electronic structure in the QM AFM order

differs strongly from the ones of the NM and FM orders. Also, while hole doping

(on the La site) and electron doping (on the O site) significantly change the EFG

of Fe, the EFG of As is less affected. Using nuclear quadrupolar resonance (NQR)

measurement, Grafe et al.[315] reported a quadrupole frequency νQ=10.9 MHz and

an asymmetry parameter η=0.1 of the As EFG in LaFeAsO0.9F0.1. This observation

gives Vzz ∼ 3.00 × 1021 V/m2, which agrees reasonably well with our result of 2.6

× 1021 V/m2 as shown in Table 5.4 in the NM state. Upon 0.1 electron or 0.1 hole

doping, the EFGs are modified in a similar way for As but differently for Fe.
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Table 5.3: The EFG of Fe in LaFeAsO with NM, FM and QM AFM states at different
doping levels from Wien2K with PBE(GGA) XC functional. The unit is 1021 V/m2.

Fe Vxx Vyy

doping up dn total up dn total
NM undoped 0.11 0.11 0.22 0.11 0.11 0.22

0.1h (La) 0.21 0.21 0.42 0.21 0.21 0.42
0.1e (La) 0.01 0.01 0.02 0.01 0.01 0.02
0.1e (O) 0.09 0.09 0.18 0.09 0.09 0.18

FM undoped 0.51 -0.30 0.21 0.51 -0.30 0.21
0.1h (La) 0.05 0.39 0.44 0.05 0.39 0.44
0.1e (La) 0.31 -0.21 0.10 0.31 -0.21 0.10
0.1e (O) 0.31 -0.20 0.11 0.31 -0.20 0.11

QM undoped 0.22 0.03 0.25 -1.11 0.54 -0.57
0.1h (La) 0.60 -1.13 -0.43 -1.15 1.04 -0.11
0.1e (La) -0.55 1.00 0.45 -1.05 0.24 -0.81
0.1e (O) -0.54 1.01 0.47 -1.07 0.32 -0.75
0.2e (O) -0.82 1.17 0.35 -1.02 0.52 -0.50

Table 5.4: The EFG of As in LaFeAsO with NM, FM and QM AFM states at different
doping levels from Wien2K with PBE(GGA) XC functional. The unit is 1021 V/m2.

As Vxx Vyy

doping up dn total up dn total
NM undoped 0.69 0.69 1.38 0.69 0.69 1.38

0.1h (La) 0.70 0.70 1.40 0.70 0.70 1.40
0.1e (La) 0.65 0.65 1.31 0.65 0.65 1.31
0.1e (O) 0.66 0.66 1.32 0.66 0.66 1.32

FM undoped 0.55 0.81 1.36 0.55 0.81 1.36
0.1h (La) 0.58 0.68 1.26 0.58 0.68 1.26
0.1e (La) 0.56 0.74 1.30 0.56 0.74 1.30
0.1e (O) 0.58 0.75 1.23 0.58 0.75 1.23

QM undoped -0.40 -0.40 -0.80 0.77 0.77 1.54
0.1h (La) -0.42 -0.42 -0.84 0.68 0.68 1.36
0.1e (La) -0.41 -0.41 -0.82 0.89 0.89 1.78
0.1e (O) -0.40 -0.40 -0.80 0.91 0.91 1.82
0.2e (O) -0.29 -0.29 -0.58 1.03 1.03 2.06
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5.2.11 Effect of Pressure on the Electronic Structure of LaFeAsO

Applying pressure is often used as a way to probe how the resulting effect on the elec-

tronic structure impacts the superconducting critical temperature and other proper-

ties. A strong pressure effect was shown experimentally for the members of the

LaFeAsO family[316, 317, 318], since for example Tc = 43 K could be reached under

pressure for LaFeAsO1−xFx, in case of optimal doping[316]. To begin to understand

such observations, it is necessary to determine how the electronic structure of the

parent compound LaFeAsO is changed by pressure.

In Fig. 5.2.9, the magnetic moment of Fe in the QM AFM phase versus Fe-As

distance is presented. Two different behaviours of the magnetic moment are observed.

When z(As) is varied at constant volume (zero pressure),the decrease of the magnetic

moment of Fe is parabolic. When pressure is applied and all internal positions are

optimized (hence z(As) changes) the change is linear until the magnetic moment

drops to zero. This linear behavior is followed also when the As height z(As) is

shifted by 0.011 to compensate for the PW92 (LDA) error mentioned above.

Fig. 5.2.10 collects a number of results: the effect of pressure on the c/a ratio,

the Fe-As distance, the total energy, the difference in energy between NM and QM

states, and the magnetic moment on Fe. Under pressure, the c/a ratio, the Fe-As

distance, and the magnetic moment of the QM AFM state drop linearly when volume

is reduced. The PW92(LDA) predicts an equilibrium volume of 0.925 V0; and the

total energy differences between NM and QM AFM state gradually drops to zero at

0.78 V0.

The effect of pressure on the band structure is shown in Fig. 5.2.11. While the

bands change positions under pressure, in the corresponding DOS (right panel of

Fig. 5.2.11), the first peak above EF is moved towards the Fermi level when pressure
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is applied, but the DOS from -0.1 eV to EF is left almost unchanged by pressure.

Therefore pressure should induces important changes in the superconducting proper-

ties of electron-doped LaFeAsO, while they should be less important for hole-doped

LaFeAsO.

The Fermi surface of QM LaFeAsO computed for different values of the volume is

presented in Fig. 5.2.12. The first sheet is an almost perfect cylinder along the Γ−Z

line, while the second sheet is made of two ellipsoidal cylinders with some kz bending.

They appear to be very similar to the FS computed at ambient pressure[285]. The

pressure has almost no effect on the first sheet, but it enhances the distortion of the

second sheet.
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Figure 5.2.12: The Fermi surface of QM LaFeAsO computed for 0.975V0, 0.925 V0

and 0.875 V0. z(As) has been shifted.

5.2.12 Summary

The electronic and magnetic structure, and the strength of magnetic coupling, in the

reference state of the new iron arsenide superconductors has been presented here, and

the origin of the electron-hole symmetry of superconductivity has been clarified. The

dependence of the Fe moment on the environment, and an unusually strong magne-

tophonon coupling, raises the possibility that magnetic fluctuations are involved in

pairing, but that it is longitudinal fluctuations that are important here.

We have also studied the effects of XC functional, of the Fe-As distance, of dop-

ing, and of pressure, on the electronic structure of LaFeAsO. Calculations of the

EFGs for all atoms in LaFeAsO have been reported, and compared with available

experimental data with satisfactory agreements. It was found that (approximate)

electron-hole symmetry versus doping, and strong magnetophonon coupling are pri-

mary characteristics of the LaFeAsO system, and are two of the ingredients that need
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to be understood to proceed toward the discovery the mechanism of superconducting

pairing.
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5.3 The Effect of Pn and Rare Earth Atoms

This section contains work from “The delicate electronic and magnetic structure of

the LaFePnO system (Pn=pnicogen)”, S. Lebègue, Z. P. Yin, and W. E. Pickett,

New Journal of Physics 11, 025004 (2009).

5.3.1 Background and Motivation

The layered conductors LaFePO and LaFeAsO, though isostructural and isovalent,

display surprisingly different properties. The first is nonmagnetic and was initially re-

ported as superconducting with critical temperature Tc = 2-7 K, [319, 320, 321, 322]

while more recently there are indications[323, 324] that stoichiometric LaFePO may

not be superconducting without the presence of oxygen vacancies. The second be-

comes antiferromagnetically ordered at TN ≈ 140 K[281, 325]with no report of su-

perconductivity in the stoichiometric compound. The discovery of superconductivity

at 26 K in carrier-doped LaFeAsO[191], followed by rapid improvement now up to

Tc=55 K[274] in this class, is strikingly different from what is reported in LaFePO

and these high values of Tc make these superconductors second only to the cuprates
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in critical temperature. Several dozen preprints appeared within the two months

after the original publication, and many hundred since, making this the most active

field of new materials study in recent years (since the discovery in MgB2, at least).

A host of models and ideas about the “new physics” that must be operating

in this class of compounds is appearing, pointing out the need to establish a clear

underpinning of the basic electronic (and magnetic) structure of the system. The

materials are strongly layered, quasi-two-dimensional in their electronic structure, by

consensus. The electronic structure of LaFePO was described by Lebègue,[294] with

the electronic structure and its neighboring magnetic instabilities of LaFeAsO being

provided by Singh and Du[295]. Several illuminating papers have appeared since,

outlining various aspects of the electronic and magnetic structure of LaFeAsO.

The extant electronic structure work has provided a great deal of necessary in-

formation, but still leaves many questions unanswered, and indeed some important

questions are unaddressed so far. In this section we address some of these questions

more specifically. Stoichiometric LaFeAsO is AFM; then ∼0.05 carriers/Fe doping of

either sign destroys magnetic order and impressive superconductivity arises.

The question we address here can be typified by the question: with the nonmag-

netic electronic structure of LaFePO and LaFeAsO being so similar, why are their

magnetic and superconducting behavior so different? Surely this difference must be

understood and built into bare-bones models, or else such models risk explaining

nothing, or explaining anything. There are increases in Tc due to replacement of La

with other rare earth ions, and the variation in size of the rare earth is often a dom-

inant factor in the observed trends in their compounds. Very important also is the

magnetism in these materials, as magnetism is a central feature in the cuprate super-

conductors and in correlated electron superconductors. Another important question
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is: what can be expected if other pnictide atoms can be incorporated into this system:

Sb (or even Bi) on the large atom side, or N on the small atom end. We address

these questions in this section.

5.3.2 Overall Results

Results presented here have used the same calculation method as above section.

LaFeAsO and LaFePO are isostructural and isovalent, but they have quite differ-

ent properties. A deeper understanding of the differences of the electronic structure

of these two compounds can provide insight into the competition between magnetic

ordering and superconductivity. For similar reasons, the related compounds LaFeNO

and LaFeSbO (although not studied experimentally yet) are potentially of high in-

terest, so we also provide predictions for their electronic structure.

Table 5.5 displays the experimental structure parameters for LaFePO[319] and

LaFeAsO[191] as well as the predicted structure for LaFeNO and LaFeSbO after

optimization (see below for calculation details). As a result of the increasing size of

the pnictogen atom, the Fe-Pn length changes. In particular, the Fe-Pn distance is

consistent with the sum of the covalent radii of Fe and Pn, which reflects the covalent

bonding nature between Fe and Pn atoms in this family. The slight increase of the

La-O distance through the series is just a size effect related to the expansion of the

volume .

The values of the Fe magnetic moment for LaFePnO with FM/NM, Q0 AFM,

QM AFM states, and their total energy differences are presented in Table 5.6. Apart

from LaFePO, all the members of the LaFePnO family studied here have a large

Fe magnetic moment in the QM AFM state, the corresponding total energy being

significantly lower than the ones corresponding to FM/NM state.
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Pn a (Å) c (Å) c/a z(La) z(Pn) La-O Fe-Pn Sum Fe-Pn-Fe angles
N 3.7433 8.1120 2.167 0.169 0.102 2.320 2.046 2.00 132.4, 80.6
P 3.9636 8.5122 2.148 0.149 0.134 2.352 2.286 2.31 120.2, 75.6
As 4.0355 8.7393 2.166 0.142 0.151 2.369 2.411 2.44 113.6, 72.6
Sb 4.1960 9.2960 2.215 0.128 0.168 2.411 2.615 2.62 106.7, 69.1

Table 5.5: Structural parameters of LaFePnO (Pn = N, P, As, or Sb), as obtained ex-
perimentally for LaFePO[319] and LaFeAsO[191] or from our calculations for LaFeNO
and LaFeSbO. Length units are in Å, z(La) and z(Pn) are the internal coordinate of
the lanthanum atom and the pnictide atom, and “Sum” means the sum of Fe covalent
radius and the Pn covalent radius, which is quite close to the calculated value in all
cases.

Pn mag. mom. (µB) ∆ EE (meV/Fe)
QM Q0 FM FM-QM Q0-QM

N 1.85 0.88 0.027 73.5 70.7
P 0.56 —- 0.087 2.1 —-
As 1.87 1.72 0.002 87.2 62.6
Sb 2.45 2.39 0.000 276.5 80.8

Table 5.6: Calculated magnetic moment of Fe, total energy relative to the nonmag-
netic (ferromagnetic) states of Q0 AFM, and QM AFM states of LaFePnO from
FPLO7 with PW92 XC functional.

5.3.3 LaFePO

LaFePO was the first member of the iron-oxypnictide family to be reported to be

superconducting[319]. The corresponding electronic structure was studied by Lebègue

using ab-initio calculations[294], but considering only a non-magnetic ground-state.

Since then LaFePO has been studied using various experimental tools: by using

photoemission[326, 327, 328], it was shown that the Fe 3d electrons are itinerant, and

that there is no pseudogap in LaFePO. Also, magnetic measurements revealed[329,

323] that LaFePO is a paramagnet, while electron-loss spectroscopy[330] implied

a significant La-P hybridization. The absence of long-range order in LaFePO was

confirmed by Mössbauer spectroscopy [321] and it was proposed that LaFePO and

doped LaFeAsO could have different mechanisms to drive the superconductivity in
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these compounds. Also, further theoretical studies were performed[329, 330, 328] but

without studying all the possible magnetic states.

In our calculations, we find that for FM order Fe has a weak magnetic moment of

about 0.09 µB, with a total energy very close to the NM one; this result is much like

what is found in LaFeAsO. A remarkable difference is that the Q0 AFM state cannot

be obtained. However, we found the QM AFM state to be the lowest in energy,

but only by about 2.1 meV/Fe, which is about two orders of magnitude less than in

LaFeAsO. LaFePO, therefore, presents the situation where all of the three possible

magnetic states are all very close in energy to the nonmagnetic state, in contrast with

LaFeAsO for which the QM AFM order was clearly the ground state. Thus LaFePO

is surely near magnetic quantum criticality.

The band structure of QM AFM LaFePO is displayed in Fig. 5.3.1 together with

total DOS for both QM AFM and NM states. The band structure of QM AFM

LaFePO is quite different from that of LaFeAsO with the same QM order, with the

most significant differences along Γ-X, Γ-Y and Γ-Z lines. The difference is because

the breaking of the x−y symmetry is much smaller in the QM AFM LaFePO compared

to LaFeAsO, because the calculated Fe moment is only 0.56 µB in LaFePO (it is 1.87

µB in LaFeAsO with the same calculational method). The corresponding DOS is also

different from that of LaFeAsO: there is structure within the pseudogap around Fermi

level in LaFePO (See Fig. 5.3.1). The difference in total DOS at EF is significant:

it is only 0.2 states/eV/spin per Fe for LaFeAsO, but it is 0.6 states/eV/spin per Fe

for LaFePO. In the NM state of LaFePO, it is even larger with 1.6 states/eV/spin

per Fe. The DOS of QM AFM LaFePO is fairly flat from the Fermi level (set to 0.0

eV) to 0.6 eV, so that electron doping of LaFePO will increase the Fermi level, but

will hardly change N(EF ) (in a rigid band picture).
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Figure 5.3.1: Plot of LaFePO band structure in QM AFM state and total DOS in both
QM AFM and NM states at ambient conditions with experimental lattice parameters.

An important consequence is that there will be no expected enhancement of TC

coming from N(EF ) upon electron doping. In order to see a significant increase of

N(EF ) in QM AFM LaFePO, an electron doping level of at least 1.2 e−/Fe is required,

which seems unrealistically large based on the current experimental information. This

conclusion remains valid in the case of NM LaFePO, since apart from a peak around

Fermi level, the DOS is about the same as for the QM AFM state. Again, the behavior

is quite different from the one of QM AFM LaFeAsO: 0.1 e−/Fe doping will increase

its N(EF ) by a factor of 6: from 0.2 states/eV/spin per Fe to 1.2 states/eV/spin per

Fe.

The Fermi surface of QM AFM LaFePO is shown in Fig. 5.3.2. Compared to

the Fermi surface of QM AFM LaFeAsO presented earlier by Yin et al.[285], the

piece enclosing the Γ-Z line (containing holes) increases in size and its x − y cross

section becomes more circular rather than elliptic. There is another piece (absent
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Figure 5.3.2: Fermi surface of QM AFM LaFePO, showing the very strong differences
compared to LaFeAsO.
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in LaFeAsO) also enclosing the Γ-Z line with the same shape but larger in size and

containing electrons instead of holes. The two symmetric electron-type pieces of

Fermi surface lying along Γ-Y direction in LaFeAsO reduces a lot in size in LaFePO

but it has two additional similar pieces lying along Γ-X direction. In LaFePO, it has

one more hole-type piece of Fermi surface surround Z point, which is a small cylinder.

It is, understandably, quite different from the Fermi surface of NM LaFePO presented

earlier[294].

Therefore, while they are isostructural and significantly covalent, LaFePO and

LaFeAsO present quite important differences in their respective electronic structures.

These differences must form the underpinning of any explanation of why LaFePO is

superconducting with a Tc which is almost electron-doping independent, while pure

LaFeAsO is not superconducting and becomes so only upon doping.

5.3.4 LaFeSbO

Since the experimental crystal structure of LaFeSbO is not reported yet, we con-

ducted calculations to obtain the structure. The procedure we used is the following:

starting from the experimental volume V0 of LaFeAsO (but with As replaced by

Sb), we first optimized c/a, z(La) and z(Sb). Then we chose a higher volume and

again optimized the parameters, finally finding the volume that has the lowest total

energy. Using this scheme, the optimized volume is 1.046 V0 while for LaFeAsO

the equilibrium volume is about 0.919 V0. Assuming that PW92 overbinds equally

for LaFeSbO as for LaFeAsO, the experimental equilibrium volume for LaFeSbO

should be 1.046/0.919=1.138 V0. Therefore, we performed calculations for a range

of volume from V = V0 to V = 1.150 V0, the corresponding structural parameters

being presented in Table 5.7. A later calculation in the QM AFM phase using PBE
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V/V0 a (Å) c (Å) c/a z(La) z(Sb)
1.000 4.092 8.500 2.077 0.137 0.165
1.050 4.118 8.812 2.140 0.133 0.163
1.100 4.141 9.131 2.205 0.129 0.161
1.125 4.155 9.274 2.232 0.128 0.160
1.138 4.163 9.347 2.245 0.127 0.160
1.150 4.169 9.418 2.259 0.126 0.159

Table 5.7: Optimized structure parameters for LaFeSbO at several volumes. The
accuracy for c/a is within 0.3%, and within 0.8% for z(La) and z(Sb). A later
calculation in the QM AFM phase using PBE XC functional gives a= 4.196 Å, c=
9.296 Å, z(La)=0.128, z(Sb)=0.168 at ambient pressure. (V=1.150 V0.)

XC functional gives a= 4.196 Å, c= 9.296 Å, z(La)=0.128, z(Sb)=0.168 at ambient

pressure. (V=1.150 V0.)

Since for LaFeAsO in the QM AFM phase PW92 underestimated z(As) by 0.011

at its experimental volume, we corrected z(Sb) by adding 0.011 to the optimized

z(Sb) (we refer to this position at the “shifted z(Sb)”). The shifted z (Sb) at 1.150

V0 is 0.170, close to z(Sb) =0.168 obtained from PBE result, which is confirmed to

predict fairly accurate structural parameters including lattice constants and atomic

coordinates. Both for the NM and QM AFM case, there are very small differences

near EF between the optimized z(As) and shifted z(As) in the band structure and

DOS, as seen in Fig 5.3.3. However, shifting z(Sb) induces important changes in the

energy differences between NM and QM AFM states, as shown in Table 5.8. Also,

the magnetic moment of Fe, and the energy differences among NM/FM, Q0 AFM

and QM AFM are strongly dependent on the volume. With decreasing volume, the

difference in energy between the different magnetic states decreases quickly.

At 1.138 V0 (or 1.150 V0 from PBE result), the inferred equilibrium volume of

LaFeSbO, the properties of NM/FM, Q0 AFM, and QM AFM are very similar to the

ones of LaFeAsO at its experimental volume. Thus from these results we expect that
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Figure 5.3.3: Plot of QM AFM LaFeSbO band structure and total DOS at 1.138 V0

with both optimized and shifted z(Sb).

V/V0 mag. mom. (µB) ∆ EE (meV/Fe)
QM Q0 FM FM-QM Q0-QM

1.000 1.58 1.12 0.36 60.1 60.1
1.050 1.87 1.74 0.44 95.6 68.0
1.100 2.09 2.00 0.00 147.6 70.7
1.125 2.17 2.10 0.00 172.6 71.8
1.138 2.23 2.16 0.00 190.6 72.5
1.150 2.26 2.19 0.00 199.0 72.0
1.050 2.17 2.08 0.72 158.1 78.0
1.100 2,35 2.00 0.00 223.8 80.8
1.125 2.42 2.37 0.00 271.6 81.8
1.138 2.47 2.42 0.00 293.8 82.4
1.150 2.49 2.45 0.00 287.6 82.1

Table 5.8: Calculated magnetic moment of Fe, total energy relative to the nonmag-
netic (ferromagnetic) states of Q0 AFM and QM AFM with the optimized structure
of LaFeSbO at several volumes from FPLO7 with PW92 XC functional. Upper part:
z(Sb) is optimized. Lower part: z(Sb) is optimized and shifted.
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doped LaFeSbO should have similar properties (viz, value of Tc) as LaFeAsO.

5.3.5 LaFeNO

The structure of LaFeNO is also not reported experimentally. In order to obtain it,

the same procedure as for LaFeSbO was used. The lowest total energy is at 0.762 V′
0

(here V′
0 is the experimental volume of LaFePO.). Again assuming PW92 makes a

similar error as it makes in LaFeAsO, we estimate its equilibrium volume to be close

to 0.825 V′
0. At 0.825 V′

0 and for larger volume, the total energy of the QM AFM

state is well below that of the FM/NM state (see Table 5.9). Therefore, LaFeNO, if it

exists, should be in the QM AFM ordered state at low temperature, which is similar

to LaFeAsO and LaFeSbO. A later calculation in the QM AFM phase using PBE

XC functional gives a= 3.743 Å, c= 8.112 Å, z(La)=0.169, z(Sb)=0.102 at ambient

pressure, corresponding to a equilibrium volume of 0.85 V′
0, which is very close to

(with in 3% of) 0.825 V′
0 estimated from PW92 result.

Compared to the other LaFePnO compounds, LaFeNO is even closer to being a

semimetal when the volume is equal to 0.825 V′
0, and it becomes a small gap insulator

at 0.850 V′
0 and a higher carrier density metal at 0.800 V′

0 (see Fig. 5.3.4). The DOS

for 0.825 V′
0 shows a pseudogap around EF , but the DOS is somewhat less flat than

it is for LaFeAsO.

When LaFeNO is calculated to be insulating (for volumes larger than 0.825 V′
0),

the gap can be taken to define a distinction between bonding (occupied) and anti-

bonding (unoccupied) states. The appearance of this gap in LaFeNO is quite surpris-

ing: although there is clear separation of valence and conduction bands over most

of the zones for LaFeAsO, there is no way to ascribe the small FSs to simple over-

lapping valence and conduction bands: in LaFeAsO and LaFeSbO, the bonding and
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V/V′
0 mag. mom. (µB) ∆ EE (meV/Fe)

QM Q0 NM/FM NM/FM-QM Q0-QM

0.900 2.21 1.69 1.64 209.8 135.9
0.875 2.06 1.51 0.03 114.9 99.2
0.850 1.88 1.14 0.03 74.3 68.1
0.825 1.63 0.80 0.03 41.0 40.0
0.800 1.26 — 0.00 18.4 —
0.787 1.08 — 0.00 11.3 —
0.775 0.90 — 0.00 7.0 —
0.762 0.00 — 0.00 1.3 —
0.750 0.00 — 0.00 1.4 —
0.725 0.00 — 0.00 1.2 —
0.700 0.00 — 0.00 0.9 —

Table 5.9: Calculated magnetic moment of Fe in LaFeNO, total energy relative to the
nonmagnetic (ferromagnetic) states of Q0 AFM and QM AFM with the optimized
structure at several volumes, but shifted z(N) up by 0.011, as a compensation PW92
does to LaFeAsO, where PW92 underestimates z(As) by 0.011.

Figure 5.3.4: Plot of LaFeNO QM AFM band structure and total DOS at 0.850V′
0,

0.825 V′
0 and 0.800 V′

0 with shifted z(N).
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antibonding bands are never completely separated from each other. In LaFeNO this

separation finally becomes apparent, as an actual bandgap does appear.

5.3.6 Role of the Rare Earth Atom in RFeAsO

After LaFeAsO was discovered, after appropriate variation of the carrier concentra-

tion, to be superconducting at 26 K, much substitution on the rare earth (R) site

has been done, with impressive increases in the critical temperature. Since all are

evidently trivalent and donate three valence electrons to the FeAs layer, it becomes

important to uncover the influence of the R atom: is it some aspect of the chemistry,

which does differ among the rare earths? is it an effect of size? or can there be some

other subtle effect?

Table 5.10 is a collection of the lattice constants a and c, volume V of the prim-

itive cell, Tc onset of RFeAsO reported from experiment.[196, 273, 331, 332] Both

lattice constants, hence the volume, decrease monotonically as the atomic number

increases, but Tc increases only from La to Gd, whereupon drops for heavier rare

earths. Since we have found that small details affect the electronic and magnetic

structure – especially z(As) – it is reasonable to assess the size effect. We have per-

formed calculations on Ce, Nd and Gd, using LSDA+U with U=7.0 eV and J=1 eV

applied to the R atom to occupy the 4f shell appropriately and keep the 4f states

away from the Fermi level. Our results indicate that all have very similar DOS and

band structure with LaFeAsO. To investigate further, we checked GdFeAsO using

the crystal structure of LaFeAsO. The resulting band structure and DOS are almost

identical to the original results for Gd, thus there seems to be no appreciable effect

of the differing chemistries of Gd and La. This negative result supports the idea that

the size difference may be dominant, though seemingly small. The difference in size
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Table 5.10: Collection of the lattice constants a (Å) and c(Å), volume V (Å3 of the
primitive cell, Tc onset s (onset, middle, and zero, in K) of RFeAsO reported from
experiments.

element Z a(Å) c(Å) V(Å3) TC,onset (K)
La 57 4.033 8.739 142.14 31.2
Ce 58 3.998 8.652 138.29 46.5
Pr 59 3.985 8.595 136.49 51.3
Nd 60 3.965 8.572 134.76 53.5
Sm 62 3.933 8.495 131.40 55.0
Gd 64 3.915 8.447 129.47 56.3
Tb 65 3.899 8.403 127.74 52
Dy 66 3.843 8.284 122.30 45.3

(hence a, c, and the internal coordinates) influences not only the band structure and

DOS, but also the magnetic properties. Fixed spin moment calculations in the FM

state gives the lowest total energy at 0.2 µB/Fe in LaFeAsO, and 0.5 µB/Fe in both

GdFeAsO and La-replaced GdFeAsO.

5.3.7 Summary

We have investigated in some detail the electronic structure and magnetic proper-

ties of the LaFePnO class of novel superconductors using ab-initio methods. The

related materials LaFePO, LaFeSbO, and LaFeNO were investigated and their prop-

erties were compared to those of LaFeAsO. From these comparisons, it appears that

LaFePO is significantly different from the other materials studied here; this difference

might explain why, at stoichiometry, LaFePO is superconducting while LaFeAsO is

antiferromagnetic. Also, in view of their similarities with LaFeAsO, either pure or

doped LaFeSbO and LaFeNO are potential candidates as superconductors.
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5.4 Antiphase Magnetic Boundaries

This section contains work[333] from “Antiphase magnetic boundaries in iron-based

superconductors: A first-principle density-functional theory study”, Z. P. Yin and W.

E. Pickett, Phys. Rev. B 80, 144522 (2009).

5.4.1 Motivation

Much theoretical work has been reported since the first discovery [191] of LaFeAsO1−xFx,

with many aspects of these compounds having been addressed,[285, 286, 295, 291,

287, 313, 314, 334] but with many questions unresolved. A central question is what

occurs at the SDW-to-SC (superconducting) phase transition, and what drives this

change, and more fundamentally what microscopic pictures is most useful in this

enterprise. In the RFeAsO compounds, doping with carriers of either sign leads to

this transition, even though there seems little that is special about the band-filling in

the stoichiometric compounds. In the MFe2As2 system, the SDW-to-SC transition

can be driven with pressure (relatively modest, by research standards) without any

doping whatever, apparently confirming that doping level is not an essential control

parameter. Some delicate characteristic seems to be involved, and one way of ad-

dressing the loss of magnetic order is to consider alternative types of magnetic order,

and their energies.
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Many results, experimental and theoretical, indicate itinerant magnetism in this

system, and LSDA calculations without strong interaction effects included correctly

predict the type of antiferromagnetism observed. There is however the general feature

that the calculated ordered moment of Fe is larger than the observed value. For exam-

ple, neutron scattering experiment[281] obtained the ordered Fe magnetic moment of

0.36 µB in LaFeAsO, while calculations[285, 291, 314] result in the much larger values

1.8-2.1 µB. Neutron diffraction and neutron scattering experiments [335, 336, 337]

estimated the Fe magnetic moment in the SDW state of MFe2As2 (M=Ba, Sr, Ca)

to be in the range of 0.8 µB to 1.0 µB but our calculations (this work) give 1.6-1.9 µB.

This kind of (large) discrepancy of the ordered magnetic moment is unusual in Fe-

based magnets, and there are efforts underway to understand the discrepancy as well

as the mechanism underlying magnetic interactions.[338] In addition, 57Fe Mössbauer

experiments [282, 339, 340, 341, 342, 343, 344, 345] and 75As NMR measurements

[283, 284, 315] further confirm the disagreement in magnetic moments and electric

field gradients between experiments and ab initio calculations in the SDW state.

To explain these significant disagreements, it is likely that spin fluctuations in

some guise play a role in these compounds. The SDW instability is a common in-

terpretation of the magnetic order in these compounds, [192, 281, 346, 347] which

implicates the influence of spin fluctuation in the magnetically disordered state. An

inelastic neutron scattering study on a single-crystal sample of BaFe2As2 by Matan

et al. [348] showed anisotropic scattering around the antiferromagnetic wave vectors,

suggestive of two dimensional spin fluctuation in BaFe2As2. Such possibilities must

be reconciled with the existence of high energy spin excitations in the SDW state of

BaFe2As2 as observed by Ewings et al. [349].

One of the simplest spin excitations is that arising from antiphase boundaries
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Figure 5.4.1: The structure of FeAs layer in the Q-SDW state showing the antiphase
boundary in the center of the figure. Fe spin 1 (filled circle) and spin 2 (empty circle)
have two different sites A (‘bulklike’) and B (‘boundary-like’). As above Fe plane
(filled square) and below Fe plane (empty square) have three sites 1, 2, 3 whose local
environments differ.

in the SDW phase. Mazin and Johannes have introduced such “antiphasons” and

their dynamic fluctuations as being central for understanding the various phenomena

observed in this class of materials.[350] The structural transition followed by the anti-

ferromagnetic transition, the change of slope and a peak in the differential resistivity

dρ(T )/dT at the phase transitions, and the invariance of the resistivity anisotropy

over the entire temperature range can be qualitatively understood in their scenario

by considering dynamic antiphase boundaries (twinning of magnetic domains).[350]

In this section, we consider a class of magnetic arrangements derived from the

stripe-like AFM phase: static periodic magnetic arrangements (SDWs) representing

antiphase boundaries that require doubled, quadrupled, and octupled supercells. We

denote these orders as D-SDW, Q-SDW and O-SDW, respectively. Figure 5.4.1 shows
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the magnetic arrangements of Fe in the Q-SDW phase. Its unit cell is a 4×1×1 su-

percell of the SDW unit cell. Antiphase boundaries occur at the edge and the center

of its unit cell along a-axis (antiparallel/alternating Fe spins), the same as in the

D-SDW and O-SDW states, the unit cells of which are 2×1×1 and 8×1×1 super-

cells of the SDW unit cell, respectively. The D-SDW phase can also be viewed as

a double stripe SDW phase. Based on the results of these states, we consider the

effect of antiphase boundary spin fluctuations in explaining various experimental re-

sults, which was discussed to some extent by Mazin and Johannes.[350] The antiphase

magnetic boundaries we consider here are the simplest possible and yet explain semi-

quantitatively many experimental results by assuming that the dynamic average over

antiphase magnetic boundaries can be modeled by averaging over several model an-

tiphase boundaries. Our picture presumes that the antiphase boundary within the

magnetically ordered state is in some sense a representative spin excitation in the

FeAs-based compounds.

The calculations are done using the full-potential linearized-augmented plane-

wave (FPLAPW) + local orbital (lo) method as implemented in the WIEN2K code

[51], with both PW91[20] and PBE[23] exchange-correlaton (XC) functionals. Sev-

eral results have been double checked using the full-potential local-orbital (FPLO)

code[47] with PW91 XC potential.

5.4.2 LDA VS. GGA

Whereas the local density approximation (LDA) for the exchange-correlation (XC)

potential usually obtains internal coordinates accurately, it has been found[291, 314]

that LDA makes unusually large errors when predicting the As height z(As) in these

compounds in either NM or SDW states. The generalized gradient approximation
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Figure 5.4.2: The calculated errors of z(As) compared to experimental values in the
NM and SDW states when using LDA (PW92) and GGA (PBE) XC functionals in
CaFe2As2, SrFe2As2, BaFe2As2, and LaFeAsO.

(GGA) makes similar errors in the NM state, however, GGA predicts very good values

of z(As) in the SDW phase, as shown in Fig. 5.4.2. Further calculations indicate that

GGA done in the SDW phase also predict very good equilibrium lattice constants

a, b and c compared to experimental values. (Figure not shown) One drawback of

GGA is that it enhances magnetism[314, 291] in these compounds over the LDA

prediction, which is already too large compared to its observed value. For example,

using experimental structural parameters, GGA (PBE) gives a Fe spin magnetic

moment larger than LDA (PW91) by 0.3 µB in the SDW state, and more than 0.6

µB in the D-SDW state. The magnetic moment changes the charge density, roughly

in proportion to the moment. For this reason, we have used Wien2K with PW91

(LDA) XC functional with its more reasonable moments to calculate the EFG and

hyperfine field using experimental structural parameters. We note that PBE and

PW91 produce about the same EFG in the NM state.
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5.4.3 The Magnetic Moment and Hyperfine Field of Iron

In the various antiphase boundary SDW states, the Fe atoms can assume two different

characters: high-spin A site away from the antiphase boundaries and low-spin B site

at the antiphase boundaries, as shown in Fig. 5.4.1. The Fe atoms with the same site

(A or B) in these states have about the same magnetic moment and hyperfine field.

For example, in BaFe2As2 in the static Q-SDW state, the spin magnetic moment and

hyperfine field for Fe at A site are 1.59 µB and 12.6 T, and for Fe at B site are 0.83

µB and 6.2 T. In the O-SDW state, the spin magnetic moments and hyperfine fields

for the three (slightly different) A sites are 1.59, 1.60, 1.67 µB and 12.6, 13.5, 1.37 T,

respectively, and are 0.83 µB and 6.1 T for Fe at B site.

As mentioned above, there are significant differences of the ordered magnetic

moment of Fe in the SDW state between calculated values and values observed in

neutron scattering (diffraction) experiments and/or Mössbauer experiments. Table

5.11 shows Fe spin magnetic moment and hyperfine field in the SDW and static

D-SDW state calculated by FPLO7 and Wien2K using PW91 XC functional.

5.4.4 The Energy Differences

Since Fe atoms in all these antiphase boundary SDW states have basically two spin

states (high-spin state at A sites and low-spin state at B sites), in a local moment

picture one might expect that energy differences could be related to just the two

corresponding energies. From our comparison of energies we have found that this

picture gives a useful account of the energetic differences.

The SDW and the D-SDW state are the simple cells in this regard. The former

doesn’t have any low spin Fe and the latter doesn’t have any high spin Fe, so these

two define the high spin (low energy) and low spin (high energy) “states” of the Fe



Chapter 5.4. Antiphase Magnetic Boundary 200

Table 5.11: The experimental magnetic moment of Fe mFe (in unit of µB) and the
hyperfine field Bhf (in unit of Tesla) for Fe, and values calculated in the SDW and D-
SDW ordered phases, using Wien2K with PW91 for the MFe2As2 (M=Ba, Sr, Ca),
LaFeAsO and SrFeAsF compounds. The experimental values are in all cases much
closer to the D-SDW values (with its maximally dense antiphase boundaries) than to
the SDW values. [281, 340, 337, 335, 336, 343, 344, 345] For the Fe magnetic moment,
results from both FPLO (denoted as FP) and Wien2k(denoted as WK) are given.
Because these methods (and other methods) differ somewhat in their assignment of
the moment to an Fe atom, the difference gives some indication of how strictly a
value should be presumed.

exp SDW D-SDW
compound mFe Bhf mFe Bhf mFe Bhf

FP WK WK FP WK WK
BaFe2As2 0.8 5.5 1.78 1.65 13.6 0.90 0.80 5.4
SrFe2As2 0.94 8.9 1.80 1.68 13.9 0.98 0.91 6.1
CaFe2As2 0.8 – 1.63 1.53 12.4 0.77 0.71 4.7
LaFeAsO 0.36 – 1.87 1.77 14.9 0.50 0.48 3.6
SrFeAsF — 4.8 – 1.66 14.5 — 0.32 2.3

atom. Table 5.12 shows the total energies per Fe (in meV) of the magnetic phases

compared to the non-magnetic stater, for BaFe2As2, SrFe2As2, CaFe2As2, LaFeAsO

and SrFeAsF. The high spin and low spin energies vary from system to system. The

energy of the Q-SDW state has also been calculated, and it can be compared with

the average of high spin and low spin moment energies (last column in Table 5.12).

The reasonable agreement indicates that corrections beyond this simple picture are

minor.

The energy cost to create an antiphase boundary is (roughly) simply the cost

of two extra low spin Fe atoms versus the high spin that would result without the

antiphase boundary. This difference is found to vary by over a factor of two, in the

range of 40-90 meV per Fe for this set of five compounds. The reason for the variation

is not apparent; for example, it is not directly proportional to the Fe moment (or its

square).
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Table 5.12: Calculated total energies (meV/Fe) compared to NM state of the various
SDW states (SDW, D-SDW, Q-SDW) in the MFe2As2 (M=Ba, Sr, Ca), LaFeAsO
and SrFeAsF compounds. The energy tabulated in the last column, labeled Q′, is the
average of the high spin (SDW) and low spin (D-SDW) energies. illustrating that
the energy of the Q-SDW ordered phase follows this average reasonably well. The
level of agreement indicates to what degree ‘high spin’ and ‘low spin’ is a reasonable
picture of the energetics at an antiphase boundary.

compound SDW D Q Q′

BaFe2As2 -73 -6 -36 -39
SrFe2As2 -91 -11 -46 -51
CaFe2As2 -66 -8 -33 -37
LaFeAsO -143 -61 -94 -102
SrFeAsF -73 0 -40 -37

Analogous calculations were also carried out for the large O-SDW cell for BaFe2As2.

As for the other compounds and antiphase supercells, the Fe moments could be char-

acterized by a low spin atom at the boundary and high spin Fe elsewhere. The energy

could also be accounted for similarly, analogously to Table 5.12.

5.4.5 The Electric Field Gradient

The EFG at the nucleus of an atom is sensitive to the anisotropy of the electron charge

distribution around the atom. A magnitude and/or symmetry change of the EFG im-

plies the local environment around the atom changes, which can be caused by changes

in bonding, structure, or magnetic ordering. In BaFe2As2 during the simultaneously

structure transition from tetragonal to orthorhombic and magnetic order transition

from non-magnetic to SDW order at about 135 K, the EFG component Vc along the

crystal c-axis drops rapidly by 10% and the asymmetry parameter η = |Va−Vb|
|Vc|

jumps

from zero to larger than one, indicating the principle axis for the largest component

Vzz is changed from along c-axis to in the ab plane.[283] The abrupt EFG change

reflects a large change in the electron charge distribution around As sites and highly
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anisotropic charge distribution in the ab plane. A similar thing happens in CaFe2As2

except that the Vc component of CaFe2As2 in the non-magnetic state is five times

that in BaFe2As2, and doubles its value at the structural and magnetic transition

at 167 K when it goes to the SDW phase.[284] The different behaviour of the EFG

change across the phase transition in BaFe2As2 and CaFe2As2 may be due to the out-

of-plane alkaline-earth atom (Ba and Ca in this case), which influences the charge

distribution around As atoms. It also indicates that three dimensionality is more

important in MFe2As2 than in RFeAsO, which is evident in the layer distance of

the FeAs layers reflected in the c lattice constant of these compounds. The c lattice

constant of CaFe2As2 is significantly smaller than BaFe2As2, so that the interlayer

interaction of the FeAs layers is stronger in CaFe2As2, therefore the charge distri-

bution in CaFe2As2 is more three dimensional like than in BaFe2As2, which can be

clearly seen in their Fermi surfaces (not shown).

EFG of As Atoms

The EFG of As can be obtained from the quadrupole frequency in nuclear quadrupolar

resonance (NQR) measurement in nuclear magnetic resonance (NMR) experiment.

The NQR frequency can be written as

νQ =
3eQVzz(1 + η2/3)1/2

2I(2I − 1)h
, (5.4.1)

where Q (∼ 0.3b, b=10−24 cm2) is the 75As quadrupolar moment, Vzz is the zz

component of As EFG,

η =
|Vxx − Vyy|

|Vzz|
(5.4.2)
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is the asymmetry parameter of the EFG, I=3/2 is the 75As nuclear spin, h is the

Planck constant. In LaO0.9F0.1FeAs, Grafe et al.[315] reported νQ=10.9 MHz, and

η=0.1, which gives Vzz ∼ 3.00 × 1021 V/m2. (Note: for the value of EFG, the unit

1021 V/m2 is commonly used, and we will adopt this unit for all EFG values below)

The experimental value 3.0 agrees satisfactorily with our result[291] of 2.7 calculated

by Wien2K code.

In BaFe2As2 and CaFe2As2, NMR experiments suggest the Vc component of

the EFGs of As are 0.83 and 3.39 respectively at high temperature in the NM

states,[283, 284] while our calculated values are 1.02 and 2.35, respectively. The

difference is in the right direction and right order of magnitude though not quan-

titatively accurate. However, the EFGs calculated in the SDW state don’t match

experimental observations at all. In BaFe2As2 from 135 K down to very low temper-

ature, Vc remains around 0.62 and η = |Va−Vb|
|Vc|

changes from 0.9 to 1.2. Our calculated

results in the SDW state gives Va=1.34, Vb=-1.47, and Vc=-0.13, which gives η ≈

20. The calculated results substantially underestimate Vc and overemphasize the

anisotropy in the ab plane.

We now consider whether these discrepancies can be clarified if antiphase bound-

ary is considered. In the static D-SDW, Q-SDW and O-SDW states, the surrounding

environment of As sites change. Depending on the magnitudes (high spin or low spin)

and directions (parallel or antiparallel) of the spins of their nearest and next nearest

neighboring Fe atoms, As atoms generally have three different sites (1, 2, and 3) as

shown in Fig. 5.4.1. In the static D-SDW state, As atoms have similar site 1′ and

3′. As shown in Table 5.13, the calculated quantities for these states cannot directly

explain the experimental observed values neither.

However, they may be understandable if the antiphase boundary is dynamic, i.e.,
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Table 5.13: The calculated EFG component Va, Vb, Vc (in unit of 1021 V/m2) , the
asymmetry parameter η, spin magnetic moment of As (µB), hyperfine field at the
As nuclei (Tesla) of BaFe2As2 in the SDW, D-SDW, Q-SDW and O-SDW states.
Experimentally, Vc is around 0.62, η is in the range of 0.9 to 1.2, and the internal
field at As site parallel to c axis is about 1.4 T.[283] See text for notation.

state site Va Vb Vc η Bhf

SDW 1 1.21 -1.32 0.11 23.0 0
D-SDW 1′ 0.63 0.07 -0.70 0.8 0

3′ 0.66 0.37 -1.03 0.28 2.1
Q-SDW 1 1.17 -1.38 0.21 12.1 0

2 0.99 -0.72 -0.27 6.33 1.0
3 0.90 0.51 -1.41 0.28 2.1

O-SDW 1 1.25 -1.44 0.19 14.2 0
2 0.98 -0.71 -0.27 6.26 1.1
3 0.87 0.50 -1.37 0.27 2.3

any As atom in a given measurement can change from site 1 to site 2 and/or site

3, when its nearby Fe atoms flip their spin directions. These time fluctuations have

be represented by an average over configurations, and we consider briefly what arises

from a configuration average over our SDW phase and three short-period ordered

cells (having different densities of anti-phase boundaries). In the O-SDW state, for

example, if an As samples 25%, 25% and 50% “time” as As sites 1, 2 and 3, re-

spectively during the experimental measurement, then the expectation values are

Va=0.99, Vb=-0.29, Vc=-0.71, η=1.80, Bhf=1.43 T. This simple consideration al-

ready match much better with experimental[283] observed Vc ∼ 0.62, Hin=1.4 T,

except η which is around 1.2. The actual situation could be much more complicated,

being an average over all the sites in all the static D-SDW, Q-SDW and O-SDW

states, and other more complicated states. Considering the relatively small differ-

ences of the EFGs at the same site for Q-SDW and O-SDW order, As sites in other

static antiphase boundary SDW states should be able to be classified to site 1, 2 and

3 as in the Q-SDW and O-SDW states.
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EFG of Fe Atoms

The EFG of Fe can be obtained from the electric quadrupole splitting parameter

derived from Mössbauer measurements. The electric quadrupole splitting parameter

can be written as

∆ =
3eQVzz(1 + η2/3)1/2

2I(2I − 1)
, (5.4.3)

which equals Eγ∆EQ/c, where Q ∼ 0.16b is the 57Fe quadrupolar moment, Eγ is the

energy of the γ ray emitted by the 57Co/Rh source, ∆EQ is the electric quadrupole

splitting parameter from Mössbauer data given in the unit of speed, and c is the

speed of light in vacuum. By fitting the Mössbauer spectra, one also obtains the

isomer shift δ and average hyperfine field Bhf .

We consider whether the dynamic antiphase boundary spin fluctuation picture

can also clarify the comparison between calculated and observed EFG of Fe. We take

SrFe2As2 as an example. As shown in Table 5.14, in the NM state, the calculated

value VQ=0.98 agrees well with the VQ ≈ 0.83 at room temperature. VQ calculated

in the SDW state (0.68) agrees rather well with experimental value about 0.58 at

4.2 K. VQ calculated in the D-SDW state (0.80) is somewhat larger than that in the

SDW state. Regarding EFG, the biggest difference between SDW and D-SDW is the

asymmetry parameter–it is 0.61 in the SDW and only 0.11 in the latter. Further

experiments are required to clarify this difference.

5.4.6 Summary

Experiments generally indicate that an itinerant magnetic moment, magnetic (SDW)

instability, and spin fluctuations are common features of the Fe-based superconduc-

tors. In this section, we have studied the energetics, charge density distribution
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Table 5.14: The calculated EFG component Va, Vb, Vc (in unit of 1021 V/m2)
, the asymmetry parameter η=|Vxx-Vyy|/|Vzz| (here |Vzz| > |Vxx| and |Vyy|),
VQ=|Vzz|/(1+η2/3)1/2 of Fe in SrFe2As2 in the NM, SDW, D-SDW, Q-SDW and
O-SDW states. Experimentally, VQ is around 0.83 at room temperature in the non-
magnetic state, and it is about 0.58 at 4.2 K.[344]

state site Va Vb Vc η VQ

NM 0 -0.49 -0.49 0.98 0 0.98
SDW A -0.58 -0.14 0.72 0.61 0.68

D-SDW B -0.30 -0.51 0.81 0.26 0.80
Q-SDW A -0.63 -0.06 0.69 0.83 0.62

B -0.56 -0.49 1.05 0.07 1.05

(through calculation of the electric field gradients, hyperfine fields and magnetic

moments) for ordered supercells with varying densities of antiphase magnetic bound-

aries, namely the SDW, D-SDW, Q-SDW and (for very limited cases) O-SDW phases.

Supposing dynamic magnetic antiphase boundaries are present, and that the spec-

troscopic experiments average over them, we can begin to clarify several seemingly

contradictory experimental and computational results.

Our calculations tend to support the idea that antiphase boundary magnetic

configurations can be important in understanding data. The fact that the decrease

in moment is confined to the antiphase boundary Fe atom does not mean that a local

moment picture is appropriate; in fact, exactly this same type of local spin density

calculations provide a description of magnetic interaction that is at odds with a local

moment picture.[338] The calculated energy cost to create an antiphase boundary is

however rather high for the cases we have considered, and this value would seem to

restrict formation of antiphase boundaries at temperatures of interest. Calculations

that treat actual disorder, and dynamics as well, would be very helpful in furthering

understanding in this area.
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5.5 Wannier Functions of Fe 3d Orbitals

We have constructed real-space Wannier functions of Fe 3d orbitals in both NM

and QM AFM phases of these iron pnictide compounds using the FPLO8 code[47]

with LDA XC functional[20] (PW92) and the same experimental lattice constants

and internal atomic coordinates for the compounds LaFeAsO, LaFePO, CaFeAsF,

SrFeAsF, BaFe2As2, SrFe2As2, and CaFe2As2, as used in the previous Section 5.2, 5.3,

and 5.4. For the other two hypothetical compounds LaFeNO and LaFeSbO, the lattice

constants and internal atomic coordinates are taken from the optimized equilibrium

values of first principle calculations presented in Section 5.3, which were done in

the QM AFM phase using GGA (PBE) XC functional[23], since such calculations

were proven to predict reasonably good equilibrium lattice constants and internal

atomic coordinates in the real iron pnictide compounds compared to experimental

values. (see Section 5.3 and 5.4.) The Wannier functions used here are maximally

localized atomic orbitals (distinct from the maximally localized Wannier functions

proposed by Vanderbilt et al.[60, 61]), and preserve the angular momentum symmetry

of the corresponding orbital as well as the point group symmetry of the corresponding

atomic site.

Since the FeAs layers are the same (differ only by the lattice constants and height

of As) in these compounds, we pick LaFeAsO as an example to show the Wannier
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functions of Fe 3d orbitals and the resulting tight binding bands, which try to fit

to the corresponding DFT-LSDA Fe-derived bands, in both NM and stripe AFM

phases. The Wannier functions for Fe 3d orbitals are constructed in both NM and

stripe AFM phases, with the same input parameters. The energy window used is

from -1.5 eV and 1.5 eV, with a smearing energy ∆E=0.5 eV. Only the Fe 3d orbitals

are included in the process, leaving out As 4p orbitals. The resulting tight-binding

bands fit generally very well with the corresponding DFT-LSDA Fe-derived bands in

both NM and stripe AFM phases, except at the top of the Fe 3d bands (at about 2

eV), where the Fe 3d bands mix more strongly with other bands, as shown in Fig.

5.5.1.

The Wannier functions for each Fe 3d orbital are shown in Fig. 5.5.2. In the NM

phase, all five Wannier functions are well localized at the Fe site. In the QM AFM

phase, the Wannier functions for 3dyz, 3dx2−y2 and 3dz2 orbitals are very similar to the

corresponding Wannier functions in the NM phase. However, the Wannier functions

for 3dxz and 3dxy orbitals, especially for the dxz orbital, are more delocalized in the QM

AFM phase, with significant density at its nearest-neighbor As sites. Therefore, the

3dxz and 3dxy orbitals mix much more strongly with nearest-neighbor As 4p orbitals in

the QM phase than in the NM phase, and give rise to different hopping parameters to

the Fe 3d orbitals of its neighboring Fe atoms. The change of Wannier functions from

NM to QM AFM state suggests the Fe 3dxz and 3dxy orbitals participate actively in

bonding with its nearest-neighbor As atoms in the QM AFM phase, and may explain

the fact that the lattice constants a < b (a is along the aligned spin direction) in the

QM AFM phase.The resulting hopping parameters with similarities and differences

between the NM and QM AFM phases and the indications are presented and discussed

in the next section.
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Figure 5.5.1: LaFeAsO band structure in the NM (top panel) and QM AFM (bottom
panel) phases. Dash (red) lines are the Fe 3d tight-binding bands fitting to the
DFT-LSDA Fe-derived bands (solid black), which generally have very good overall
agreements.
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5.6 Origin of the NM to Stripe-AFM Transition:

a Tight Binding Analysis

5.6.1 Background and Motivation

Despite a great deal of work, there are still basic questions remain unresolved. One

of them is: what causes the structural transition from tetragonal to orthorhombic

in the parent compounds of iron-based superconductors? It is especially challenging

in the 1111-compounds (e.g. LaFeAsO), where the structural transition is observed

(when lowering the temperature) to occur before the magnetic transition (from non-

magnetic to stripe antiferromagnetic, we denote it as QM AFM). It is natural to

think that the stripe antiferromagnetic ordering of Fe provides the driving “force” of

the structural transition because it induces anisotropy. The question then is: why is

the structural transition observed first in LaFeAsO experimentally? (See Table III in

reference[351] for a summary of the structural transition temperature TS and stripe

antiferromagnetic transition temperature TN of several iron pnictide compounds.)

Noting that the structural transition and magnetic transition occurs simultane-

ously in the 122-compounds (e.g. BaFe2As2), a possible argument is that the mag-

netism is there at the structural transition but is greatly suppressed by strong fluc-

tuation so that long range magnetic ordering is difficult to detect experimentally

(for example, NMR and neutron scattering experiments whose time resolutions are

slow). With a time resolution of 10−15 s, photoemission experiments by Bondino et

al.[352] inferred a dynamic magnetic moment of Fe with magnitude of 1 µB in the

nonmagnetic phase of CeFeAsO0.89F0.11, which is comparable to the static magnetic

moment of Fe in the undoped antiferromagnetic CeFeAsO compound. The fluctuation

strength should be much stronger in 1111-compounds than 122-compounds based on
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Figure 5.5.2: LaFeAsO Wannier functions of Fe 3d orbitals in the NM (top panel)
and QM AFM (bottom panel) phases: showing (a) 3dyz, (b) 3dxz, (c) 3dxy, (d) 3dz2

and (e) 3dx2−y2 . In the NM phase, these Wannier functions are well localized at the
Fe site, however, in the QM AFM phase, the Wannier functions for 3dxy and 3dxz

orbitals are more delocalized, especially for the dxz orbital, with significant density at
the nearest-neighbor As sites. The isosurface is at the same value (density) in each
panel.
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the fact that the measured Fe ordered magnetic moment in 1111-compounds (∼ 0.4

µB) is much less than in 122-compounds (∼ 0.9 µB) and they are much smaller than

DFT predicted value (∼ 2 µB).[351, 285] One possible reason is that the interlayer in-

teraction of the FeAs layers is much stronger in 122-compounds than 1111-compounds

because the interlayer distance in 122-compounds (∼ 5.9-6.5 Å) is significantly smaller

than 1111-compounds (∼ 8.2-9.0 Å).[351] The interlayer interaction may help to sta-

bilize the ordered Fe magnetic moment by reducing fluctuations.

5.6.2 The Fe 3dyz and 3dxz Bands in LaFeAsO and LaFePO

Regarding the electronic structures (such as band structures, density of states, total

energy, magnetic moment, etc.) in these compounds, a very important issue is the role

of pnictide atom. Since the calculated Fe magnetic moment is much larger than its

experimentally measured value in these parent compounds, the electronic structure

in the QM AFM phase cannot be taken too seriously. Some have tried to produce the

experimental magnetic moment in their calculations, usually by applying a negative

Coulomb interaction U parameter in LDA+U method.[353, 354] In this section, we

compare also a parallel system of LaFeAsO, namely LaFePO. The total energy of

LaFePO in the QM AFM phase is slightly lower than the nonmagnetic phase by 2

meV/Fe.[291] The calculated Fe magnetic moment in the QM AFM phase is 0.52 µB,

which is relatively close to the measured magnetic moment 0.36 µB in the QM AFM

phase of LaFeAsO.[291, 281] The band structures of LaFeAsO and LaFePO in the

nonmagnetic and QM AFM phase are shown in Fig. 5.6.1 and 5.6.2, with highlighted

Fe 3dyz and 3dxz characters. (We choose x direction along the stripe direction with

aligned Fe spins, as shown in Fig. 5.6.3, then y direction is parallel to the anti-

aligned Fe spins.) The nonmagnetic band structures of the two compounds are very
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Figure 5.6.1: LaFeAsO band structure with highlighted Fe 3dyz and 3dxz fatband
characters in the NM (top panel) and QM AFM (bottom panel) phases. Compared
to the NM phase, the Fe 3dxz bands near Fermi level in the QM AFM phase, especially
along Γ −X and Γ − Y directions, change dramatically due to the formation of the
stripe antiferromagnetism with large ordered Fe magnetic moment of 1.9 µB.
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Figure 5.6.2: LaFePO band structure with highlighted Fe 3dyz and 3dxz fatband
characters in the NM (top panel) and QM AFM (bottom panel) phase. Compared
to LaFeAsO, the Fe 3dxz bands near Fermi level in the QM AFM phase change less
significantly from the NM phase, due to the relatively small ordered Fe magnetic
moment of 0.5 µB.
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similar, differing only in some fine details. However, the band structures in the QM

AFM phase of the two compounds differ substantially, which can only be due to the

difference in the Fe magnetic moment (1.9 vs. 0.5 µB).[285, 291] The similarities and

differences indirectly provide a way to study the effect of magnetic fluctuation on

these compounds.

Figure 5.6.2 shows the influence of a weak stripe antiferromagnetism (0.5 µB) on

the nonmagnetic band structure. The overall band structure remains the same except

for some bands near the Fermi energy, where the main change is the separating of the

Fe 3dxz bands away from the Fermi level, which causes disappearance and change of

topology of certain pieces of the Fermi surface of the Fe 3dxz bands. Note that the Fe

3dyz bands change insignificantly. This difference indicates that even a weak stripe

antiferromagnetism has a very strong symmetry breaking effect on the 3dxz and 3dyz

bands, which are equivalent in the nonmagnetic state. As a result, even a weak stripe

antiferromagnetism induces a large anisotropy, let alone the much stronger (calcu-

lated) antiferromagnetism in FeAs-based compounds. (The much bigger anisotropy

in the stripe AFM phase in LaFeAsO is evident by comparing Fig. 5.6.1 and 5.6.2.)

5.6.3 Possible Microscopic Orbital Ordering of the Fe 3dxz

and 3dyz Orbitals

Due to the strong influence of stripe antiferromagnetism on the band structure, the

orbital ordering of the Fe 3dxz and 3dyz electrons bears further consideration. Figure

5.6.3 shows two possible orbital orderings, both of which give rise to the QM AFM

structure. txy denotes the hopping parameter of the dxz − dxz hopping in the y
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Fe2
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spin up
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Figure 5.6.3: Possible orbital orderings of iron in iron-pnictides. Left panel: Both
(a) and (b) form the QM AFM ordering. However, (a) is favored because it gains
more kinetic energy from nearest-neighbor hoppings according to second-order per-
turbation theory (see text). Right panel (from top to bottom) shows the simplified
symbols for Fe 3dyz and 3dxz orbitals, the chosen x and y directions, up arrows for
spin up electrons and down arrows for spin down electrons, where black arrows for
3dyz orbital and red arrows for 3dxz orbital.
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direction, and tyx the dyz − dyz hopping in the x direction. In the nonmagnetic case,

txy = tyx = t (5.6.1)

and they differ by a small amount in the QM AFM state. txx denotes the dxz − dxz

hopping in the x direction, and tyy the dyz − dyz hopping in the y direction (see Fig.

5.6.3).

Let U and U ′ denote the intra-orbital and inter-orbital Coulomb repulsion, and JH

the inter-orbital Hund’s exchange. According to second-order perturbation theory,

the kinetic energy gain from the dyz − dyz hopping in the x direction (Fig. 5.6.3a) is

∆Eyx = −t2yx/(U
′ − JH). (5.6.2)

A similar kinetic gain of

∆Exy = −t2xy/(U
′ − JH) (5.6.3)

comes from the dxz − dxz hopping in the y direction (Fig. 5.6.3a). txx and tyy are

much smaller and can be neglected (see Table 5.15). Therefore, the total energy gain

from NN hopping of Fig. 5.6.3a is

∆E(a) = ∆Exy + ∆Eyx = −2t2/(U ′ − JH), (5.6.4)

while it is

∆E(b) = −2t2/U (5.6.5)

for Fig. 5.6.3b. Because U is larger than U ′ − JH , the orbital ordering in Fig. 5.6.3a

is favored over Fig. 5.6.3b, by kinetic fluctuations. This result is in contrast to that
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of Lee et al.[355] who didn’t consider the effect of tyx.

Table 5.15: The hopping parameters (in eV) of LaFeAsO in the nonmagnetic and
QM AFM state. The onsite energies (in eV) of the dz2 , dx2−y2 , dyz, dxz, and dxy in
the NM and QM AFM (both spin up and spin down) are (-0.11, -0.27, 0.02, 0.02,
0.18), (-0.95, -1.14, -0.67, -0.70, -0.50), (0.18, 0.07, 0.23, 0.21, 0.40), respectively.

Fe1 yz xz
NM QM up QM dn NM QM up QM dn

Fe2 z2 -0.12 -0.16 -0.08 0 0 0
x2 − y2 0.34 0.42 0.28 0 0 0
yz -0.33 -0.42 -0.29 0 0 0
xz 0 0 0 -0.06 -0.29 0.09
xy 0 0 0 -0.22 -0.21 -0.20

Fe4 z2 0 0 0 -0.12 -0.11 -0.15
x2 − y2 0 0 0 -0.34 -0.39 -0.34
yz -0.06 -0.09 -0.09 0 0 0
xz 0 0 0 -0.33 -0.35 -0.35
xy -0.22 -0.20 -0.27 0 0 0

Fe3 z2 -0.10 -0.10 -0.11 -0.10 -0.12 -0.10
x2 − y2 0.10 0.09 -0.10 -0.10 -0.09 -0.09
yz 0.22 0.23 0.24 0.08 0.12 0.08
xz 0.08 0.08 0.12 0.22 0.24 0.24
xy 0.01 0 -0.01 0.01 -0.03 0.02

5.6.4 Tight Binding Hopping Parameters and Discussions

Using these Wannier functions as the basis of the local orbitals in the tight binding

method as discussed in Section 5.5, the hopping parameters are then obtained from

matrix elements of the Wannier Hamiltonian from the FPLO8 code. The correspond-

ing band structures of LaFeAsO and LaFePO are already shown in Fig. 5.6.1 and

Fig. 5.6.2 and the resulting tight binding bands (not shown) fit very well the corre-

sponding DFT-LSDA Fe-derived bands in both NM and stripe AFM phases. Table

5.15 shows the hopping parameters of the Fe1 3dyz and 3dxz orbitals to all the 3d

orbitals of its nearest neighbor Fe2 and Fe4 atoms and next nearest neighbor Fe3
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atom in LaFeAsO compound. (See Fig. 5.6.3 for the definition of each Fe atom.)

The hopping parameters reported here are very similar to the corresponding hopping

parameters reported by Lee et al.[355] and Haule et al.[356], but are not directly

comparable to those reported by Cao et al.[300] who mainly considered the hoppings

from As 4p orbitals to Fe 3d orbitals and to its nearest neighbor As 4p orbitals. As

shown in Table 5.15, in the NM phase, txy = tyx >> txx = tyy, which suggests that

the hopping (through As atoms) of dxz − dxz (dyz − dyz) in the y (x) direction of the

electrons in Fe 3dxz (3dyz) orbital is favored over the x (y) direction. The hopping

process for Fe 3dxz (3dyz) electrons is anisotropic. Global tetragonal symmetry is

retained because the Fe 3dxz and 3dyz electrons hop in different directions, which

enforces the equivalence of the x and y directions.

In the QM AFM phase, the corresponding hopping parameters (both spin up and

spin down) are either the same or very close to the NM value, except for one case.

The special one is the dxz−dxz hopping in the x direction of a majority-spin electron,

whose absolute value increases significantly from the NM case (from -0.06 to -0.29,

see the highlighted numbers in Table 5.15). This opens an extra hopping channel

in addition to the original dxz − dxz hopping in the y direction. In the NM state,

the electrons in the dxz or dyz orbitals can only hop in one direction (in the sense

that the hopping parameters in other directions are relatively small). The dramatic

change of the 3dxz bands near Fermi level from NM to QM AFM can be traced to

this difference.

The transition to the QM AFM state is understandable because it provides an

extra kinetic energy gain of

∆Exx = −t2xx/(U
′ − JH) (5.6.6)
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Table 5.16: The hopping parameters (in eV) of LaFePO in the nonmagnetic and QM

AFM state. The onsite energies (in eV) of the dz2 , dx2−y2 , dyz, dxz, and dxy in the
NM and QM AFM (both spin up and spin down) are (-0.17, -0.27, -0.04, -0.04, 0.23),
(-0.35, -0.44, -0.19, -0.21, 0.13), (-0.04, -0.14, 0.07, 0.07, 0.30), respectively.

Fe1 yz xz
NM QM up QM dn NM QM up QM dn

Fe2 z2 -0.06 -0.07 -0.05 0 0 0
x2 − y2 0.42 0.44 0.41 0 0 0
yz -0.37 -0.37 -0.34 0 0 0
xz 0 0 0 -0.09 -0.15 -0.03
xy 0 0 0 -0.23 -0.23 -0.23

Fe4 z2 0 0 0 -0.06 -0.06 -0.06
x2 − y2 0 0 0 -0.42 -0.43 -0.42
yz -0.09 -0.09 -0.09 0 0 0
xz 0 0 0 -0.36 -0.36 -0.36
xy -0.23 -0.22 -0.24 0 0 0

Fe3 z2 -0.09 -0.08 -0.08 -0.09 -0.09 -0.08
x2 − y2 -0.13 0.13 -0.13 -0.13 -0.12 -0.13
yz 0.25 0.25 0.25 0.09 0.10 0.09
xz 0.09 0.08 0.10 0.25 0.25 0.25
xy -0.04 -0.05 -0.04 -0.04 -0.05 -0.04

from the hopping process of dxz −dxz hopping in the x direction, which is comparable

with ∆Exy. (Note that ∆Exx is negligible in the NM state.) The anisotropy arises

because the majority-spin electron in the 3dxz orbital can hop in both directions,

while others can only hop in one direction. The anisotropy would favor the structural

transition such that the lattice constant along the aligned-spin direction (x direction

in this section) becomes shorter than the other direction (y direction in this section,

thus a < b), due to this additional hopping channel.

The strength of this additional hopping channel reflects the ordered Fe magnetic

moment in the QM AFM state, which is evident by comparing the case of LaFeAsO

and LaFePO (see Table 5.15 and 5.16). The iron atom in the QM AFM state in the

former compound has a large ordered magnetic moment of 1.9 µB while in the latter
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compound it is very weak, only 0.5 µB, in DFT-LSDA calculations. The difference in

the ordered Fe magnetic moment is consistent with the change of hopping parameter

of dxz − dxz in the x direction of the spin up electron from the NM to the QM AFM

state, as shown in Table 5.15 and Table 5.16. In LaFeAsO, it changes from -0.06 to

-0.29 while in LaFePO, it changes only from -0.09 to -0.15. Note that, as pictured

in Fig. 5.6.3a, the 3dxz spin up electron of Fe1 atom cannot hop in the x direction

due to the Pauli principle. In order to take advantage of this extra kinetic energy

gain of ∆Exx, the spin up occupation number of 3dxz orbital should not be one but

instead must fluctuate, which results in a reduced magnetic moment and is possibly

one mechanism of orbital fluctuation.

Table 5.17: The hopping parameters txy, tyx, txx and tyy in the NM and QM AFM
phases of a few iron-pnictides.

yz xz
compound NM QM NM QM

(mag. mom.) up dn up dn
LaFeAsO tyx/txy -0.33 -0.42 -0.29 -0.33 -0.35 -0.35
(1.90 µB) tyy/txx -0.06 -0.09 -0.09 -0.06 -0.29 0.09
LaFePO tyx/txy -0.37 -0.37 -0.34 -0.36 -0.36 -0.36
(0.52 µB) tyy/txx -0.09 -0.09 -0.09 -0.09 -0.15 -0.03
LaFeNO tyx/txy -0.30 -0.33 -0.27 -0.30 -0.31 -0.31
(1.86 µB) tyy/txx -0.03 -0.05 -0.05 -0.03 -0.14 0.06
LaFeSbO tyx/txy -0.26 -0.39 -0.21 -0.26 -0.28 -0.27
(2.45 µB) tyy/txx -0.07 -0.11 -0.11 -0.07 -0.38 0.16
CaFeAsF tyx/txy -0.36 -0.43 -0.34 -0.36 -0.37 -0.37
(1.75 µB) tyy/txx -0.06 -0.08 -0.08 -0.06 -0.27 0.08
SrFeAsF tyx/txy -0.35 -0.43 -0.31 -0.35 -0.37 -0.37
(1.96 µB) tyy/txx -0.08 -0.10 -0.10 -0.08 -0.31 0.08
BaFe2As2 tyx/txy -0.32 -0.40 -0.29 -0.32 -0.34 -0.34
(1.88 µB) tyy/txx -0.08 -0.10 -0.10 -0.08 -0.28 0.07
SrFe2As2 tyx/txy -0.33 -0.40 -0.31 -0.33 -0.34 -0.35
(1.78 µB) tyy/txx -0.08 -0.10 -0.10 -0.08 -0.28 0.06
CaFe2As2 tyx/txy -0.33 -0.38 -0.32 -0.33 -0.35 -0.35
(1.67 µB) tyy/txx -0.08 -0.10 -0.10 -0.08 -0.28 0.06
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Further Observations

Similar hopping parameters compared to LaFeAsO have been obtained for the CaFeAsF,

SrFeAsF, and MFe2As2 (M=Ba, Sr, Ca) compounds, (which have similar FeAs lay-

ers), as shown in Table 5.17. However, replacing As in LaFeAsO with other pnictides

(N, P and Sb) results in similar txy, tyx and tyy but different txx. Compared to

LaFeAsO, the txx for the majority spin electron in the QM AFM phase is reduced for

LaOFeN and LaOFeP, but enhanced in LaFeSbO. The importance of the pnictide for

the formation of the QM AFM phase is evident.

Another important factor is the interlayer hoppings. The interlayer distance of

FeAs layers in 1111-compounds is in the range of 8.2 -9.0 Å and it is much smaller

in 122-compounds, ranging from 5.9 Å to 6.5 Å. The interlayer hopping parameters

of Fe 3d electrons in the z direction are negligible in 1111-compounds but become

substantial for certain hoppings in 122-compounds, especially in CaFe2As2, whose

interlayer distance of FeAs layers is only 5.9 Å. For example, certain interlayer

hopping parameters are as large as 0.15 eV for dxy and dz2 orbitals, and 0.07 eV

for dyz, dxz and dx2−y2 orbitals, calculated in the QM AFM phase for CaFe2As2.

The large interlayer hopping parameters in the Fe 3dxy orbital couple to the fact

that the 3dxy orbital are distorted from its symmetric atomic shape to its nearest

neighbor As atoms above and below the Fe plane, as shown in Fig. 5.5.2. This

distort in the z direction can favor interlayer hoppings, especially when the interlayer

distance is small, as in the case of CaFe2As2. For comparison, the interlayer hopping

parameters (if not zero) are less than 0.01 eV in LaFeAsO. The increasing hopping

of Fe 3d electrons in the z direction increases the interlayer coupling and may inhibit

fluctuations and thereby help to stabilize the ordered Fe magnetic moment in the QM

AFM phase. The kz dispersion correlates with the experimental observations that



Chapter 5.6. Tight Binding Analysis 223

the measured Fe magnetic moments in the QM AFM phase are significantly larger in

122-compounds (∼ 0.9 µB) than 1111-compounds (∼ 0.4 µB).

5.6.5 Summary

In summary, we compare the band structure of LaFeAsO and LaFePO in the NM and

QM AFM phase and find that the stripe antiferromagnetism affects very differently

the Fe 3dxz and 3dyz bands, even when the stripe antiferromagnetism is weak. We

construct a tight-binding representation for Fe 3d electrons and calculate the hopping

parameters by using Wannier functions. The resulting hopping parameters indicate

the electrons in Fe 3dxz and 3dyz orbitals are anisotropic in the x and y direction in

the hopping process to nearest neighbor Fe. The equivalence of the x and y directions

is broken when only the majority-spin electron in Fe 3dxz (or 3dyz) orbital can hop in

both x and y directions, which forms the stripe antiferromagnetism, and may drive

the structural transition to orthorhombic symmetry. The anisotropy in hopping also

favors orbital fluctuation which can gain extra kinetic energy from the enhanced

hopping process, and in the meantime, reduces the ordered Fe magnetic moment in

the QM phase. By comparing the hopping parameters of several 1111-compounds

and 122-compounds, we find that the pnictide atom is influential in the formation of

QM AFM phase. Interlayer hoppings of the Fe 3d electrons in the z direction may

also help to stabilize the Fe magnetic moment in the QM AFM phase.
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[142] W. Schäfer, G. Will, and K. H. J. Buschow, J. Magnetism and Magnetic Ma-

terials 3, 61 (1976).

[143] R. Watanuki, G. Sato, K. Suzuki, M. Ishihara, T. Yanagisawa, Y. Nemoto, and

T. Goto, J. Phys. Soc. Japan 74, 2169 (2005).
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