
DRAFT

Electronic Structure Properties and High Pressure Experimentation
of

Superconducting or Possibly Superconducting Systems

By

Hahnbidt Rhee
B.S. (Iowa State University) 2004

Dissertation

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Warren E. Pickett, Chair

Richard T. Scalettar

William J. Evans

Committee in Charge

2012

-i-



Copyright c⃝ 2012 by

Hahnbidt Rhee

All rights reserved.



DRAFT Dedication

To my mother and father, Hyorim and Joo Yull,

and Casey

-ii-



DRAFT Contents

Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction 1

2 Superconductivity 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 History of Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 BCS Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 BCS theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Superconductivity of MgB2 and electron-phonon coupling . . . . 9

2.4 Heavy Fermion Superconductivity . . . . . . . . . . . . . . . . . . . . . 12

2.5 Superconductivity At High Pressure . . . . . . . . . . . . . . . . . . . . 14

3 Density Functional Theory 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . . . . . 19

3.3 Hohenberg-Kohn Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 The Self-Consistent Kohn-Sham Equations . . . . . . . . . . . . . . . . 22

3.5 The Exchange-Correlation Energy Functional . . . . . . . . . . . . . . . 24

3.5.1 Local (spin) density approximation . . . . . . . . . . . . . . . . . 25

3.5.2 Generalized gradient approximation . . . . . . . . . . . . . . . . 26

3.5.3 The LDA+U method . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.4 Basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 High Pressure Physics Experimentation 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Diamond Anvil Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Complex components of the DAC . . . . . . . . . . . . . . . . . . 39

-iii-



DRAFT Contents

4.3 X-ray Diffraction at High Pressure . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 The APS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 NaAlSi: A Self-Doped Semimetallic Superconductor 53

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Electronic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 Discussion of the band structure . . . . . . . . . . . . . . . . . . 56

5.3.2 Density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.3 Unusual Fermi surfaces . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.4 Wannier functions . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Response to changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Electron-ion coupling . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.2 Magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.3 Comparison to NaAlGe . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Determining the Structure of Superconducting CaLi2 72

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 PuPt2In7: A Computational and Experimental Investigation 78

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.4 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

-iv-



DRAFT List of Figures

List of Figures

2.1 a) Crystal structure of MgB2 (space group P 6/mmm, no. 191), where

yellow (blue) atoms correspond to Mg (B). b) Constant charge density

contour of σ (tan) and π (green) bonds. c) Fermi surface of MgB2, where

the 2D hole tubes are centered at Γ. Figures courtesy of Ref. 1 . . . . . 10

2.2 Temperature-pressure phase diagram of CePd2Si2 [2]. The AFM transi-

tion line meets with the superconducting dome at the maximum super-

conducting transition temperature. . . . . . . . . . . . . . . . . . . . . . 13

2.3 Temperature-pressure phase diagram of CeCu2Si2 and CeCu2Ge2, as well

as Ge-doped CeCu2Si2 [3]. The superconducting region separates into two

domes (in red) for the doped case; the two phases overlap for the two pure

compounds (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Period table, with information related to superconductivity, of elements [4].

Elements which superconduct at ambient pressure are filled in yellow, and

those that superconduct at higher pressures have a bold frame. . . . . . 15

2.5 Tc-pressure phase diagram of Li under hydrostatic pressure [5]. . . . . . 16

3.1 Generic sketch [6] of total energy as a function of number of electrons

from an LDA calculation, and the exact version. LDA+U attempts to

correct the difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 The rich phase diagram of CO2 courtesy of Ref. 7. CO2 has multiple

phases at different temperatures and pressures, ranging from a simple

molecular gas to a fully covalent solid. . . . . . . . . . . . . . . . . . . . 36

4.2 The diamond anvil cell (image taken from Ref. 8). The ruby in the sample

chamber is used as a pressure sensor (see text). The diamond seats with

a hole in the center for optical transmission are colored in black. The

arrows indicate the direction of force applied by the cell. . . . . . . . . . 37

4.3 Schematic, taken from Ref. 9, of the split-diamond bomb, the first high

pressure tool to utilize diamond. . . . . . . . . . . . . . . . . . . . . . . 38

-v-



DRAFT List of Figures

4.4 a) Mechanical drawing of two different cross-sections of the membrane

DAC developed at LLNL. Numbers are in units of inches. b) Picture

of the same membrane DAC, dissassembled. From left to right are the

cylinder, piston, the pressure membrane, and the lid which screws onto

the cylinder to keep the membrane in place. The piston pictured shows

also the WC seat which is adjusted and set in place by set screws, and

sitting on the seat is a diamond. A similar setup is attached to the

cylinder but hidden in this view. . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Top view of a beveled diamond. . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Cryogenic gas loader. The DAC is placed inside the airtight loader, and

gas can flow from one end to the other or gain pressure by closing the vent

valve. The sample may be exposed to the gas by opening its chamber

with the two feed-through allen wrenches. The loader is immersed in

liquid cryogen to liquefy the gas. Temperature in the loader is monitored

by a type-K thermocouple. . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 30,000 psi high pressure gas loader. Gas is loaded from the cylinder

(closed in this image) into the loader, and the pressure within is increased

little by little, by turning the pressure intensifier ([mechanical name for

the PI]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8 Three pairs of R1 (bigger, right) and R2 (smaller, left) ruby fluorescence

lines for a sample of Li2O at different pressures. Figure courtesy of Ref. 10. 45

4.9 Bragg reflection from lattice planes separated by a distance d. Rays are

incident and reflected. The path difference is 2d sinΘ. . . . . . . . . . . 46

4.10 Schematic of a DAC XRD experiment. The x-ray from the beamline

is fed through a focusing mirror, a monochromator, a slit, and the first

diamond. The beam is then scattered by the sample, and the diffraction

pattern is recorded on an image plate. . . . . . . . . . . . . . . . . . . . 46

4.11 Powder XRD diffraction rings and corresponding integrated two-dimensional

spectrum. Taken from Ref. 10. . . . . . . . . . . . . . . . . . . . . . . . 47

4.12 View of the Advanced Photon Source. Image courtsey of Ref. 11. . . . . 47

4.13 APS Sector 16 insertion device beamline optical train. . . . . . . . . . . 50

-vi-



DRAFT List of Figures

4.14 (Left) inner components and (right) outer shell of the CRYO Industries

continuous He gas-flow cryostat at 16 ID-B. The shell’s circular “window”

is made out of sapphire. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.15 [NEED TO ALTER THIS] The cryostat mounted at the beam of 16 ID-B.

The x-ray beam shoots out from the right, through the sapphire windows

and DAC, and to the image plate, hidden behind the black covers in this

picture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Crystal structure obtained using VESTA [12] of NaAlSi. Four Si atoms

tetrahedrally surround an Al atom, and these Al-Si networks sandwich

the Na atoms. The unit cell is outlined in black. . . . . . . . . . . . . . 55

5.2 Band structure, with projected fatbands, of NaAlSi. Top panel: the Al

3s character of bands is indicated by broadening. A doubly degenerate

pair of broad bands is evident along the Γ-M direction. Middle panel: Al

3p character is weak below 2–3 eV. Bottom panel: Si 3s (black) bands

below −8 eV, and Si 3p in the valence bands and lower conduction bands. 57

5.3 Total and partial (atom- and orbital-projected) DOSs of NaAlSi. Top

panel: Total and atom-projected DOS in a 20 eV-wide region, showing

the pseudogap centered at the Fermi level (the zero of energy) punctuated

by the curiously narrow and sharp peak at the Fermi level. Middle panel:

expanded view of the peak, and the variation of the DOS near the Fermi

level, separated into Si s and p contributions. Lower panel: the Al s and

p character; the s character “turns on” just below the Fermi level. . . . 59

5.4 Bands along two lines in the kz = 0.6π/c plane, near the Fermi level,

showing a flat band (one of the two Si-derived valence bands) lying at the

energy of the DOS peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Views from the xy-plane (left) and top (right) of the FSs of NaAlSi,

centered at Γ. The blue (dark) surfaces enclose holes and the yellow

(light) surfaces enclose electrons. . . . . . . . . . . . . . . . . . . . . . . 62

-vii-



DRAFT List of Figures

5.6 Isosurface of the WFs for (a) Si 3px and (b) Si 3pz. Na atoms are large and

yellow (light) colored, Si atoms are small and blue (dark) colored. The

two colors of the isosurface represent different signs. (c) The tight-binding

fatbands band structure described in the text for the WFs, compared to

the DFT band structure (black lines). . . . . . . . . . . . . . . . . . . . 64

5.7 Comparison of band structures near εF for different zSi values. . . . . . 66

5.8 Blowup of the band structures of NaAlSi and NaAlGe near εF . . . . . . 68

6.1 XRD pattern of CaLi2 at 298 K and 4.3 GPa. Unmarked peaks are from

unknown impurities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Lattice parameters c and a vs. pressure of CaLi2. Our data is overlayed

with Debessai’s (‡Ref. [13]). [Note: This figure will be replaced!] . . . . 75

6.3 XRD patterns for CaLi2 at 10 K and various pressures. Black dots indi-

cate Au peaks below. Gray bars cover peaks diffracted by the Be window

of the cryostat. The bottom three plots fit the HCP structure nicely; the

top-most pattern is distorted from HCP. . . . . . . . . . . . . . . . . . . 76

6.4 The structural phases of CaLi2 (†Ref. [14]. ‡Ref. [13]. [Note: This figure

will be replaced!] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1 Crystal structures obtained using VESTA [12] of some Pu-based com-

pounds. The Pu atoms are colored red, Pt/Co atoms dark blue, and

In/Ga atoms light green. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Fast Fourier Transformed r-space data (open symbol) and the fit (solid

line) for a) Pu LIII-edge and b) Pt LIII-edge. Both EXAFS data were

measured at T = 30 K, with the FT k range of 3.5–13.5 Å−1 and the
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Abstract of the Dissertation

Electronic Structure Properties and High Pressure Experimentation

of

Superconducting or Possibly Superconducting Systems

The following compounds were studied primarily for their superconducting properties or

their potential to exhibit superconductivity.

The layered ternary sp conductor NaAlSi, possessing the iron-pnictide “111” crystal

structure, superconducts at 7 K. Using density functional methods, it is shown that this

compound is an intrinsic (self-doped) low-carrier-density semimetal with a number of

unusual features. Covalent Al-Si valence bands provide the holes, and free-electron-like

Al 3s bands, which propagate in the channel between the neighboring Si layers, dip just

below the Fermi level to create the electron carriers. The Fermi level lies in a narrow

and sharp peak within a pseudogap in the density of states. The small peak arises from

valence bands which are nearly of pure Si, quasi-two-dimensional, flat, and coupled to

Al conduction bands. The possibility of a non-phononic pairing mechanism is discussed.

The hexagonal Laves phase of CaLi2, nonsuperconducting at ambient pressure, is

a strong candidate for superconductivity at higher pressures. Zero resistance has been

observed in CaLi2 at pressures above 11 GPa and temperatures as high as 13 K. However,

it hasn’t been ruled out that superconducting elemental Li instead may be the source

of the superconductivity. The crystallographic structure of CaLi2 has been studied via

powder x-ray diffraction at high pressures and low temperatures in a diamond anvil cell,

in an attempt to create the structural phase diagram in the superconducting regime.

PuPt2In7 does not superconduct down to 2 K, despite its electronic and structural

similarities with superconductor PuCoGa5 and other Pu-based superconductors. Results

of generalized gradient approximation (GGA)+U calculations on PuPt2In7 and on hy-

pothetical PuPt2Ga7 are discussed. The strength of the c-f hybridization of PuPt2In7

is similar to that of PuCoIn5, while PuPt2Ga7 is less localized and more like PuCoGa5.

The bare and f -weighted susceptibility within the constant matrix element approxima-

tion is calculated, showing a maximum at qx = qy = 0.5. A similar and slightly stronger

-xii-



DRAFT Abstract

maximum is also found in PuCoGa5 and PuCoIn5. The absence of superconductivity in

PuPt2In7 is examined based on the results of the calculations.

-xiii-
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Chapter 1

Introduction

It is now well known that superconductivity is more prevalent, and comes in more fla-

vors, than ever thought. In spite (and as a consequence) of this, it has become more

challenging to devise a methodical approach to predicting new superconductors with

higher Tc’s; accidental discoveries, such as that of the iron-arsenide superconductors as

late as 2008, still play a major part in influencing the field. The common goal of the

bodies of work comprised in this thesis is to gain more insight into the underpinnings of

superconductivity in different systems, and to ultimately get us closer to systemetizing

the theoretical models of superconductors.

While the fortuitous findings of superconductors have been pivotal, the success and

importance of calculated predictions should not be understated, as electronic structure

tools such as density functional theory have been essential in directing us in the right

directions. All of the theoretical work in this dissertation is based on density functional

methods, which will be reviewed in Chapter 3. The preceding chapter will go over

key concepts of superconductivity. A nonsuperconductor can suddenly become super-

conducting merely by changing the distance between its atoms via, e.g., application of

pressure. High pressure experiments were conducted on one of the materials (CaLi2)

covered in this thesis; the methods are presented in Chapter 4.

The chapters thereafter detail the research performed on three compounds: NaAlSi,

CaLi2, and PuPt2In7. NaAlSi crystallizes into a tetragonal structure that is, aside from

the iron-pnictide 111s, a a rare find within superconductors. In Chapter 5, we present

results of our density functional-based calculations of 7 K superconductor NaAlSi. The

band structure reveals NaAlSi to be an intrinsically doped semimetal, in which the Al
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atoms offer nearly free electron carriers and the covalent Al-Si system provides the holes.

Isostructural NaAlGe, which is not superconducting above 1.6 K, is shown to have a

nearly-identical band structure near the Fermi level, save for a missing piece of Fermi

surface. Certain deformation potentials induced by Si and Na displacements along the

c-axis are calculated and discussed. It may be that the mechanism of pairing is related to

that of several other lightly doped two-dimensional nonmagnetic semiconductors (TiNCl,

ZrNCl, HfNCl), which is not well understood but apparently not of phonon origin.

In Chapter 6, CaLi2 is examined experimentally. It has been reported that CaLi2

becomes superconducting above 10 GPa, but theoretical works of past disagree as to

whether or not the compound breaks down at such pressures into its elemental con-

stituents, so that Li may superconduct. X-ray diffraction measurements at low tempera-

ture and high pressure were carried out in order to obtain the structural phase diagram

in the superconducting region and beyond.

It is as important to understand how materials superconduct, as it is to learn why

other related materials don’t. PuPt2In7, interesting for its structural and electronic

relation to 18 K superconductor PuCoGa5, is a mass-enhanced paramagnet and does not

superconduct above 2 K. The absence of superconductivity is explored via the generalized

gradient approximation in the density functional scheme, with the addition of orbital

dependence. Hypothetical PuPt2Ga7 is calculated and discussed correspondingly.
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Chapter 2

Superconductivity

2.1 Introduction

It has been 100 years since the discovery of superconductivity, and the field has grown

to massive breadths. Many questions regarding superconductivity have since been an-

swered, but the continual string of new discoveries has elicited new questions to tackle.

Once thought to be an uncommon phenomenon, it has come to the realization of the sci-

entific community that superconductivity is ubiquitous—exhibited in metals, magnets,

ceramics, and organic materials. Fifty-two elements in the periodic table superconduct

at ambient and/or higher pressure [4], and more are suspected to be superconducting,

provided the ultra-low temperatures and/or ultra-high pressures. We now know there

are different classes of superconductivity with different types of mechanisms, and the

technicalities are still being debated highly. The picture is growing in complexity and

much has yet to be understood.

Physicists and engineers have been trying to exploit the fact that superconductors

pass high electrical currents with no energy loss. One prospect is using superconducting

pipelines in electrical smart grids to greatly increase efficiency. The applicability is very

much limited at the moment however, and one reason is that the energy to keep the su-

perconducting material below the superconducting transition temperature outweighs the

energy saved due to the lack of resistance. In search of higher-temperature superconduc-

tivity, a multitude of superconductors have been discovered. Some of these discoveries

had been predicted, but oftentimes they were by chance. In order to improve on smart

discoveries, rather than serendipitous ones, the physics of the mechanisms needs to be
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better understood.

2.2 History of Superconductivity

Superconductivity was first discovered in 1911, when Onnes found that, below a certain

temperature, the electrical resistance of mercury dropped to zero [16]. Mercury has a

superconducting transition temperature of Tc = 4.2 K. Three years prior, Onnes conve-

niently had liquefied helium for the first time [17]. By dipping mercury in liquid helium,

Onnes was able to bring its temperature down low enough to observe the phenonmenon

of superconductivity.

In 1933, Meissner and Oschenfeld demonstrated with tin and lead that, in a weakly

applied magnetic field, superconductors expel nearly all magnetic flux from their inte-

rior [18]. This is called the Meissner effect. The external field induces electric currents

on (and near) the surface of the superconductor, creating a magnetic field within the

bulk that opposes the externally applied field. Hence, the bulk superconductor acts like

a perfect diamagnetic atom [19]. The Meissner effect and zero-resistivity characteristic

explained in the paragraph above are very much related, as it is imperative to have a

resistanceless current in order to maintain flux exclusion.

Phenomenological theories subsequently emerged. The first was the London brothers’

theory [20, 21], based on electromagnetism, which was able to explain the Meissner effect

and quantify the depth of penetration of an external field into a superconductor (the

penetration depth). Another is the Ginzburg-Landau theory [22], an extension of the

London theory based on Landau’s theory of second-order transitions, and it introduced

a characteristic length called the coherence length, which is the minimum length over

which the superconducting order parameter (see next section) varies considerably.

While these theories describe well the macroscopic properties, the information of mi-

croscopic effects is absent in them. But in 1957, Bardeen, Cooper, and Schrieffer [23]

proposed the first complete microscopic understanding of superconductivity, now known

as the BCS theory. BCS theory explains that in superconductors, the energy of the

system is lowered by the existence of pairs of electrons, coined Cooper pairs, which

are indirectly attracted to each other via lattice vibrations. Hence it is also known as

phonon-mediated superconductivity. (Phonon-mediated superconductivity later became
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known as conventional superconductivity, after theories for other types of supercon-

ductivity came to light.) BCS theory achieved excellent agreement with experimental

observations such as the Meissner effect and the isotope effect [24, 25], which was first

observed in 1950. Bogoliubov and Valatin independently and simultaneously also ex-

plained superconductivity that was consistent with the BCS description. But instead

of the variational approach taken by Bardeen et al., Bogliubov [26] and Valatin [27]

adopted the canonical method; required is the Bogliubov-Valatin transformation of the

creation and destruction operators in order to diagonalize the hamiltonian. This is better

suited for studying excited states, as the gap equation is defined for temperatures above

absolute zero.

A major turning point in the history of superconductivity was the discovery of the 30

K superconductor La-Ba-Cu-O by Bednorz and Müeller [28] in 1986. La-Ba-Cu-O was

the first ceramic material and first of many copper-oxide perovskites to superconduct,

had the highest observed Tc at the time, and did not conform to the conventional theory

of BCS. Many more cuprate superconductors subsequently have come to light, and they

have the highest Tc’s yet known (e.g., Y-Ba-Cu-O with a Tc of 93 K, and Bi-Sr-Ca-

Cu-O , whose Tc is 105 K). Thus a new class of superconductivity was born, called

high-temperature superconductivity.

La-Ba-Cu-O was not the first unconventional (high Tc) superconductor to have been

found. It was CeCu2Si2, which Steglich et al. discovered in 1979 [29]. They observed

superconductivity below 1 K. Steglich and others demonstrated that magnetic corre-

lations, not phonons, were responsible for superconductivity. Indeed, many materials

exhibiting type-II superconductivity—characterized by the creation of vortices, through

which magnetism penetrates—are also antiferromagnetic (AFM). CeCu2Si2 is also the

first heavy fermion superconductor discovered. Superconductivity persists in numerous

heavy fermion materials, despite the presence of strong local moments on the f electrons.

Within the BCS framework this would prevent superconductivity. But in these systems,

the moments fluctuate when interacting with the itinerant conduction electrons to form

Cooper pairs [30].

Another breakthrough took place in 2001 when Nagamatsu et al. [31] found MgB2

to have a Tc of 39 K, the highest transition temperature of all non-copper-oxides to date
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(with the exception of some of the new iron-based superconductors). MgB2 is a common

material that can be synthesized in wire form, which makes it a promising candidate for

applications. It is a phonon-mediated superconductor, but also type II. This and other

intriguing properties of MgB2, especially the existence of two superconducting gaps,

generated a surge of interest in the material and had physicists revisiting fundamental

questions.

Most recently, the iron-based superconductors have been garnering much attention.

In 2008, superconductivity in doped LaOFeAs below 26 K was discovered [32], which

led to a whole class of iron-based, layered superconductors, with a mechanism that is

not phononic nor like that of the cuprates. There is strong experimental and theoretical

evidence that spin fluctuations give rise to superconductivity in the iron pnictides, as

they do in the cuprates and heavy fermion superconductors. But iron pnictides are

not Mott insulators, nor do they possess strong local moments. On the contrary, the

electrons are more delocalized in these iron-based systems. Many assert, supported by

phase diagrams, that the superconducting state competes with a spin-density wave due

to a Fermi surface instability.

The discoveries throughout history have provided us with indispensible knowledge of

the physics underlying superconductivity, and in turn the knowledge is being used to un-

earth novel superconductors. More classes of materials and different kinds of mechanism

are expected to be discovered, thereby contributing to the enrichment of the science of

superconductivity.

2.3 BCS Superconductivity

2.3.1 BCS theory

The microscopic theory of Bardeen, Cooper, and Schrieffer [23] correctly predicts the

macroscopic properties of superconductors (e.g., the gap equation as a function of Tc,

the isotope effect, the discontinuity in the specific heat, etc.). Here we present the BCS

pairing theory (variational method) as outlined by Schrieffer [33].

We start with the reduced hamiltonian of the interacting electron system in second-
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quantized form,

Ĥ =
∑
kσ

εknkσ +
∑
kk′

Vk′kb
†
k′bk, (2.1)

where the matrix element Vkk′ of the attractive pairing potential is

Vk′k = V (k′ − k) = ⟨k′,−k′|V |k,−k⟩, (2.2)

and the operators nkσ, b
†
k, and bk can be written in terms of the single-particle creation

and destruction operators c†kσ and ckσ:

nkσ = c†kσckσ, (2.3)

b†k = c†k↑c
†
−k↓, (2.4)

bk = c−k↓ck↑, (2.5)

where σ is the spin index that is either ↑ or ↓. Note that this reduced hamiltonian

takes into account only zero-momentum (q = k′ − k = 0) pairs of opposite spin. The

hamiltonian is rewritten as

Ĥ = 2
∑
k

εkb
†
kbk +

∑
kk′

Vk′kb
†
k′bk. (2.6)

The form of the BCS ground-state wavefunction was influenced by the work of Lee,

Low, and Pines [34] (who related a simple wavefunction for the polaron):

|ψ0⟩ ∝
∏
k

egkb
†
k |0⟩ ≃

∏
k

(
1 + gkb

†
k

)
|0⟩ , (2.7)

where gk is a variational parameter and |0⟩ is the vacuum state. With the proper

normalization,

|ψ0⟩ =
∏
k

1 + gkb
†
k√

1 + g2k

|0⟩ . (2.8)

gk can be chosen such that the mean number of particles is constrained:

⟨ψ0|
∑
kσ

nkσ|ψ0⟩ = N0. (2.9)

The Lagrange multiplier method is used to minimize the Lagrange function:

0 = δ⟨ψ0|Ĥ − µ
∑
kσ

nkσ|ψ0⟩ (2.10)

= δ

[∑
k

2(εk − µ)v2k +
∑
kk′

Vk′kukvkuk′vk′

]
, (2.11)
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where µ is the chemical potential and uk and vk are defined as

uk ≡ 1√
1 + g2k

(2.12)

and

vk ≡ gk√
1 + g2k

, (2.13)

such that u2k + v2k = 1. Upon minimization, we get

u2k =
1

2

(
1 +

εk − µ

Ek

)
, (2.14)

v2k =
1

2

(
1− εk − µ

Ek

)
, (2.15)

and

ukvk =
∆k

2Ek
, (2.16)

where ∆k and Ek, the order parameter (energy gap) and quasi-particle excitation energy,

respectively, are defined by

∆k ≡ −
∑
k′

Vk′kuk′vk′ , (2.17)

Ek ≡
√

(εk − µ)2 +∆2
k. (2.18)

Substituting Eq. (2.16) into Eq. (2.17) gives the self-consistent condition

∆k = −
∑
k′

Vk′k
∆k′

2Ek
. (2.19)

A simple solution is achieved when the potential is approximated. An attractive

potential of s-wave symmetry and with an energy cutoff of ωc,

Vk′k =


−V0 < 0 for |εk − µ| < ωc

0 otherwise,

(2.20)

is used in the original BCS theory. In this case, the energy gap is just

∆k =


∆0 for |εk − µ| < ωc

0 otherwise,

(2.21)
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where ∆0 is a constant. To solve for ∆0, we substitute −V0 and ∆0 in for their k-

dependent counterparts in Eq. (2.19),

∆0 =
∑
k

V0
∆0

2Ek
. (2.22)

and divide both sides of the equation by ∆0 and transform the summation into an integral

(with the variable ξ ≡ εk − µ):

1 =
V0
2

∑
k

1√
(εk − µ)2 +∆2

0

(2.23)

−→ N(0)V0
2

∫ ωc

−ωc

dξ√
ξ2 +∆2

0

(2.24)

= N(0)V0 sinh
−1 ωc

∆0
, (2.25)

where N(0) is the density of states (DOS) at the Fermi energy. In the weak-coupling

limit N(0)V0 << 1,

∆0 =
ωc

sinh [N(0)V0]
−1 ≈ 2ωce

−1/N(0)V0 . (2.26)

The energy gap, which can be measured via tunneling spectroscopy, is the forbidden

energy range between the ground-state and quasi-particle energies. The value of the gap

is the critical energy below which Cooper pairs cannot be broken into two quasiparticles.

When the analysis is generalized to finite temperatures, Tc can be determined by letting

the gap go to zero, and we get

kBTc = 1.13ωce
−1/N(0)V0 . (2.27)

The relation ∆(0) = 1.76kBTc, which follows from (2.26) and (2.27), has been tested

experimentally and turns out to be quite reasonable. N(0)V0 ≡ λ is referred to as the

electron-phonon coupling (EPC) constant.

2.3.2 Superconductivity of MgB2 and electron-phonon coupling

The discovery of Tc = 39 K in magnesium diboride [31] garnered instant and massive

attention, and thanks to the tremendous amount of theoretical [35, 36] and experimen-

tal [37–39] work it attracted, the understanding of the mechanism behind the supercon-

ductivity in this binary intermetallic compound is now well established. MgB2 is a prime

example of a good phonon-driven superconductor, but some of its physical and electronic



DRAFT Chapter 2. Superconductivity 10

Figure 2.1. a) Crystal structure of MgB2 (space group P 6/mmm, no. 191), where
yellow (blue) atoms correspond to Mg (B). b) Constant charge density contour of σ
(tan) and π (green) bonds. c) Fermi surface of MgB2, where the 2D hole tubes are
centered at Γ. Figures courtesy of Ref. 1

properties were quite different when compared to other BCS superconductors that had

come before it. MgB2 broke the once conventional theory that crystal systems of cubic

symmetry are most favorable for BCS superconductivity. As shown in Fig. 2.1, MgB2

instead possesses a two-dimensional hexagonal lattice, with layers of Mg sandwiched be-

tween layers of B. Yet it has the highest superconducting transition temperature of all

BCS superconductors.

Its two-dimensionality is one reason why superconductivity in MgB2 wasn’t discov-

ered sooner, despite its being a common laboratory substance since the 1950s. Another

reason for the late revelation is its low DOS at the Fermi level, due to the lack of a tran-

sition metal (although the lighter atom and very strong bonding yield a higher Debye

frequency). A larger DOS provides more carriers for pairing and thus better supercon-

ductivity, as is evident in Eq. (2.27).

It turns out that the layeredness of MgB2’s electronic structure allows for selective

coupling between certain electronic states and phonons to thrive, resulting in a large V0

in Eq. (2.27). Density functional theory calculations [35] show that the attractiveness of

the Mg plane, due to the ionic nature between it and the B plane, pulls the pz (π) bands

down closer to the Fermi energy and leads to a σ → π transfer of electrons. Therefore,

two-dimensional, covalently bonded σ (sp2) states of B are self-doped with holes, which

are enclosed in the cylindrical Fermi surfaces shown in c) of Fig. 2.1.

EPC in superconducting metals of weak to intermediate coupling strength, like MgB2,

can be obtained from Migdal-Eliashberg (ME) theory [40, 41]. In ME theory, the

electron-phonon matrix element gik,jk+q;ν represents the scattering of an electron in
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Bloch state |ik⟩ to |jk+ q⟩ due to absorbing or emitting a phonon of reduced mass M ,

wave vector q, and frequency ωνq, and is written as [42]

gik,jk+q;ν =
1√

2Mωνq

⟨ik| ∂V
∂uνq

|jk+ q⟩, (2.28)

where ν is the phonon branch index (each atom has three, corresponding to the three

spatial directions), V is the crystal potential, and uνq is the displacement of the phonon

mode ν. The EPC constant λ can be decomposed into contributions λνq of each phonon

mode and each phonon wave vector [42],

λνq =
2

Nσ(0)ωνq

∑
ijk

|gik,jk+q;ν |2δ(εik)δ(εjk+q − εik − ωνq), (2.29)

where Nσ(0) is the electronic DOS per spin at the Fermi energy. The form comes from

its relation to the phonon linewidth γνq, by

λνq =
1

πNσ(0)

γνq
ω2
νq

. (2.30)

The Eliashberg spectral function α2F (ω) is the spectral distribution of the total EPC:

α2F (ω) =
1

2

∑
νq

ωνqλνqδ(ω − ωνq). (2.31)

The total coupling λ is related to α2F (ω) by

λ = 2

∫
dω

ω
α2F (ω). (2.32)

Several groups applied ME theory to the electronic structure of MgB2 derived from

density functional theory calculations [43–46]. While the variation in their techniques

gave rise to a range of EPC values (λ = 0.73–0.87), they all agreed that the large EPC

in MgB2 is attributed to the extremely strong coupling between the B σ state and the

in-plane B-B stretch (E2g) mode, and the coupling of the π state is considerably weaker.

The anisotropy in the EPC explains the existence of, interestingly, two superconducting

gaps in MgB2, which explains the shoulder observed in the electronic specific heat curve

below 10 K [47], and as evidenced by tunneling experiments [48].

Naturally, scientists began searching for novel MgB2-type superconductors—i.e., sp,

layered, metallic materials that are similar in structure and chemistry. Kuroiwa et al.

discovered isostructural CaAlSi with a Tc of 8 K [49]. First principles calculations done
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by Rosner et al.

showed that hole-doped LiBC, another compound with the MgB2 structure, would have

an even higher EPC than MgB2 [50] (but synthesis has been unsuccessful). Boeri et al.́s

calculations on hole-doped diamond revealed it is also an MgB2 type superconductor,

albeit three-dimensional and with a lower Tc (4 K), with hole-doped σ bands coupling

to zone-center, bond-stretching phonons [51].

2.4 Heavy Fermion Superconductivity

Superconductivity in heavy fermion materials is very different from conventional super-

conductivity. Heavy fermion metals are materials which contain atoms with a partially

filled f shell, namely the lanthanides and actinides. At room temperature, in heavy

fermion metals, the local moments of the f electrons weakly interact with the conduc-

tion electrons, and they can be described as a fermi gas. However, heavy fermion metals

typically refer to those at lower temperatures, at which there is strong coupling between

the f electron and conduction cloud (the so-called Kondo effect [52]); this is better rep-

resented by Landau’s fermi liquid picture. Such interaction entails consequences to the

magnetic, electronic, and thermodynamic properties of the material—e.g., AFM (often)

or ferromagnetic (rarely) correlations, massive f -electron quasiparticles (that can be up

to 1000 times heavier than a free electron), and a large specific heat.

When CeCu2Si2 was found to be superconducting in 1979 [29], the discovery was

initially met with skepticism. The common notion at the time was that superconduc-

tivity and magnetism could not mutually exist, and cases of superconductivity being

destroyed upon incorporation of magnetic impurities reaffirmed this. This is indeed true

in BCS superconductors, as the spin moments would obstruct the formation of the attrac-

tive singlet pairs. As more heavy-fermion superconductors were discovered (UBe13 [53],

UPt3 [54], URu2Si2 [55], etc.), it became evident that magnetism doesn’t play just an idle

role in superconductivity. Oftentimes the superconducting transition lies at or close to

a magnetic instability, implying that superconductivity in these systems are very much

affected by the behavior of local moments.

Due to their small energy scale, heavy-fermion superconductors tend to have a lower

Tc than their cuprate counterparts and conventional superconductors. It however makes
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Figure 2.2. Temperature-pressure phase diagram of CePd2Si2 [2]. The AFM transition
line meets with the superconducting dome at the maximum superconducting transition
temperature.

tuning of their properties (by means of pressurization, chemical doping, or other) rela-

tively easy. Looking at Fig. 2.2, the entire temperature-pressure phase diagram phase

diagram of CePd2Si2 fits within 3 GPa and 10 K. In the figure, it can be seen that a

magnetic quantum critical point (QCP) would lie at 2.9 GPa, if it weren’t for super-

conductivity. The explanation is that a delicate balance between spin fluctuations and

itinerant magnetism is required for superconductivity to take place. Some compounds,

such as Ge-doped CeCu2Si2, exhibit two separate superconducting transitions, as shown

in Fig. 2.3. The left-hand-side transition is at an AFM instability, not unlike that in

Fig. 2.2. The other lies on the border of a volume collapse transition.

Although a microscopic theory for magnetically mediated superconductivity has not

been fully established, it is now widely accepted that local-moment fluctuations are

to heavy-fermion superconductivity as lattice vibrations are to BCS superconductivity.

Monthoux et al.

[3] have recently presented a phenomenological understanding that explains the spin-spin

pairing in (both anti- and ferro-) magnetic or nearly magnetic superconductors mediated

by magnetic fluctuations, as well as the secondary superconducting transition mediated
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Figure 2.3. Temperature-pressure phase diagram of CeCu2Si2 and CeCu2Ge2, as well
as Ge-doped CeCu2Si2 [3]. The superconducting region separates into two domes (in
red) for the doped case; the two phases overlap for the two pure compounds (blue).

by density fluctuations.

The effort to find more heavy fermion superconductors has been accelerated shortly

after the turn of the century, on account of the unearthing of superconductivity in

PuCoGa5 [56]. This revelation was notable not only in that its superconducting tran-

sition temperature (Tc = 18.5 K) is at least an order of a magnitude higher than any

of the heavy fermion materials that have come before (and after) it, but it is the first

Pu-compound superconductor to have been discovered. Our investigation into PuPt2In7

was elicited in part due to this exciting finding.

2.5 Superconductivity At High Pressure

Applying pressure on elements and compounds is a powerful way to better understand

their intrinsic properties and to explore new territories. Pressure possesses the widest

range of variation of all thermodynamic variables—from 10−35 Pa in outer space to

1035 Pa in the center of neutron stars—so studying the effects of pressure on a material

helps to understand the material on a very broad level (so long as the pressures are

attainable!), incomparable to what, e.g., temperature can achieve. Doping a material to

reduce or increase the unit-cell size gives a similar effect; but by replacing an atom with
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Figure 2.4. Period table, with information related to superconductivity, of elements [4].
Elements which superconduct at ambient pressure are filled in yellow, and those that
superconduct at higher pressures have a bold frame.

a different one (or a void) the chemical composition is changed, thereby leaving much

room for ambiguity when it comes to interpreting the results. Pressurization can be a

more systematic method of research, as less variables need be taken into account.

High pressure physics is a growing field that brings to light interesting and peculiar

phenomena. When enough pressure is applied to a material, the electronic structure may

change drastically so that a new phase appears. For example, Yoo et al. [57] studied MnO

at extreme pressures and observed a rich phase diagram: a paramagnetic (PM)-AFM

transition, accompanied by a structural distortion, at 30 GPa; a magnetic transition

back to PM, along with a structural transition, at 90 GPa; and a Mott insulator-to-

metal transition, as well as a volume collapse, at 100 GPa.

Superconductivity is another phase of great interest that may arise upon compres-

sion of a material. The first pressure experiment performed on superconductors was in
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Figure 2.5. Tc-pressure phase diagram of Li under hydrostatic pressure [5].

1925 by Sizoo and Onnes [58], who took Sn and In to 0.03 GPa and observed in both

materials a decrease in the superconducting transition temperature. As seen in Fig. 2.4,

superconductivity actually turns out to be quite common amongst the elemental materi-

als (there are 23), especially when superconductivity under pressure is included (a total

of 52!). Sometimes the superconducting transition temperature goes down when pres-

sure is applied (as is the case for Sn and In, and in accordance with fundamental BCS

theory), but sometimes it goes up, which leaves scientists with a desire to understand

why and has them searching for materials and pressures that could push Tc even higher.

Li has a distinctive superconducting phase diagram under pressure, shown in Fig. 2.5.

Li has a superconducting transition temperature of 4 mK at ambient pressure [59], but

it jumps to 5.5 K at 20 GPa. After a steep rise to Tc = 14 K at 30 GPa, it descends

and again goes up, after which superconductivity disappears at 62 GPa. The pressures

at which dTc/dP changes sign coincide with structural changes, supporting the idea

that superconductivity in Li competes with the symmetry breaking due to structural

transitions.

Light elements, such as Li and Ca (another superconductor at extreme pressures [60,

61]), and materials consisting of light elements are easier to squeeze than their heav-

ier counterparts, and therefore have the potential to exhibit very different and exotic

physical properties at extreme pressures. After the prediction by Feng et al. [62] of a

superconducting phase for CaLi2 at high pressure, followed by experimental evidence
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of bulk superconductivity in the sample [14], we were motivated to look at the com-

pound theoretically and experimentally. Conflicting views as of late, on whether the

observed superconducting phase is due to the compound CaLi2 or the dissociated ele-

mental Li [63, 64], have given us all the more reason to study the material.
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Chapter 3

Density Functional Theory

3.1 Introduction

Electronic structure calculations provide us with means to describe the physical and

chemical properties of matter. Our knowledge of electronic structure has come a long way

since 1896, when Zeeman discovered the splitting of spectral lines by a strong magnetic

field, and attributed this phenomenon, known as the Zeeman effect, to negatively charged

particles with a very small mass: the electron [65]. With the advent of band theory and

the increasing power of computers, quantitative calculations on electron systems, such

as density functional theory (DFT), have become widespread in the modern era.

DFT is the most common electronic structure method of today. First developed

by Hohenberg & Kohn [66] and Kohn & Sham [67], it is the successor to the many-

electron method of Hartree-Fock [68], which, like DFT, determines the ground-state

density and energy of a system in a self-consistent field. Hartree-Fock involves solving

the 3N-dimensional Schrödinger equation, but DFT greatly simplifies in principle the

problem by replacing this with a three-dimensional single-electron equation. The new

problem that arises from this approach is that it requires a good approximation of the

exchange-correlation functional (electron-electron correlations are not even taken into

account in the Hartree-Fock scheme, only the exclusion principle). However, existing

approximations, popular ones being the local density approximation and the generalized

gradient approximation, are accurate enough to render DFT much more practical and

efficient a method for electronic structure calculations than previous ones.
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3.2 Born-Oppenheimer Approximation

DFT is based on the approximation that the nuclear mass is infinite when compared

to the electronic mass, so that the nuclear and electronic degrees of freedom can be

decoupled. It is called the Born-Oppenheimer (BO) approximation [69]. Within this ap-

proximation, there is no exchange of energy between the electrons and infinitely massive

nuclei; hence it is also referred to as the adiabatic approximation. The BO approximation

provides also the basis for electron-phonon coupling theory.

The formulation of the BO approximation, as laid out by Martin [70], exploits the fact

that the nuclear kinetic energy is small and treats it as a perturbation. The hamiltonian

for a system of nuclei and electrons is

Ĥ = T̂N + T̂e + V̂ (3.1)

= −1

2

∑
I

1

MI
∇2

I −
1

2

∑
i

∇2
i + V̂ , (3.2)

where T̂N and T̂e are the kinetic energy operators for the nuclei and electrons, respec-

tively, MI is the nucleus mass, and V̂ is the operator for all potential energy terms.

The eigenvalue Es and wavefunction Ψs({r,R}) of the coupled system are dependent on

the set of the coordinate parameters of all the nuclei, {R}, and the index s denotes a

particular state of the coupled system of {R} and the electrons’ positions {r}:

ĤΨs({r,R}) = EsΨs({r,R}). (3.3)

Ψs({r,R}) can be written in terms of the electronic wavefunction Φi({r} : {R}),

Ψs({r,R}) =
∑
i

χsi({R})Φi({r} : {R}), (3.4)

where the coefficients χsi({R}) of wavefunctions Φi({r} : {R}) represent the electron-

nuclear coupling. Multiplying Φi({r} : {R}) to the hamiltonian yields the electronic

eigenvalue Ei({R}) of the adiabatic contribution:

ĤΦi({r} : {R}) = (T̂e + V̂ )Φi({r} : {R}) = Ei({R})Φi({r} : {R}), (3.5)

where the nuclear positions {R} are fixed for the calculation. Plugging Eq. (3.4) into
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Eq. (3.3) gives

ĤΨs({r,R}) = Ĥ
∑
i

χsi({R})Φi({r} : {R}), (3.6)

= −1

2

∑
I

1

MI
∇2

I

∑
i

χsiΦi +
∑
i

χsiT̂eΦi +
∑
i

χsiV̂ Φi, (3.7)

= −1

2

∑
I

1

MI
∇2

I

∑
i

χsiΦi +
∑
i

Ei({R})χsiΦi. (3.8)

= EsĤ
∑
i

χsiΦi. (3.9)

The first term on the right-hand side of (3.8) can be written as

−1

2

∑
iI

1

MI
∇2

IχsiΦi = −1

2

∑
iI

1

MI

[
(∇2Φi)χsi + 2∇Φi ·∇χsi +Φi∇2χsi

]
(3.10)

= −1

2

∑
iI

1

MI

[
(∇2Φi)χi + 2∇Φi ·∇χsi

]
+

∑
i

ΦiT̂Nχsi. (3.11)

Multiplying Eq. (3.3) by Φ∗
i after an i↔ i′ index swap, and integrating over {r}, leaves

us with

⟨Φi|Ĥ|Ψs⟩ =
∑
i′

Cii′χsi + Ei({R})χsi = Esχsi, (3.12)

where the matrix elements Cii′ are defined by

Cii′({R}) ≡ −
∑
I

1

MI

[
1

2
⟨Φi|∇2|Φi′⟩χsi + ⟨Φi|∇|Φi′⟩ ·∇χsi

]
. (3.13)

In the BO approximation the off-diagonal terms are set to zero, as adiabaticity allows

no change in the electronic state. When electron-phonon interaction is being calculated,

the off-diagonal terms are not ignored and represent an exchange between different elec-

tronic states.

3.3 Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems [66] set the foundation for DFT. The first theorem states

that the ground-state density of a system of interacting particles in an external potential

uniquely determines that external potential. As a corollary, so long as we know the

density of the ground state, we can completely determine all of the system’s properties.

To prove this, it has to be shown first that two potentials that differ by more than a

trivial constant will give two different ground states. Let the two external potentials be
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V̂ext and V̂
′
ext. The Schrödinger equations for their respective ground-state wavefunctions,

Ψ0 and Ψ′
0, are

ĤΨ0 = (T̂ + V̂ + V̂ext)Ψ0 = E0Ψ0, (3.14)

Ĥ ′Ψ′
0 = (T̂ + V̂ + V̂ ′

ext)Ψ
′
0 = E′

0Ψ
′
0, (3.15)

where Ĥ is the Hamiltonian, T̂ is the kinetic energy, V̂ is the Hartree term, and E is the

ground-state energy. The proof is carried out by reductio ad absurdum. Let us assume

Ψ0 = Ψ′
0. Subtracting (3.15) from (3.14),

(V̂ext − V̂ ′
ext)Ψ0 = (E −E′)Ψ0. (3.16)

The equation above tells us that the potentials differ by no more than a constant, as

E − E′ is just that. This is in contradiction with the original supposition. Hence, no

two different potentials can lead to the same ground state.

Next, we have to prove that no two different potentials can lead to the same ground-

state density. In the nondegenerate case, we have the following inequality per the vari-

ational principle and proof asserting Ψ0 ̸= Ψ′
0:

E0 = ⟨Ψ0|Ĥ|Ψ0⟩ < ⟨Ψ′
0|Ĥ|Ψ′

0⟩. (3.17)

The last term above can be written as

⟨Ψ′
0|Ĥ|Ψ′

0⟩ = ⟨Ψ′
0|Ĥ ′|Ψ′

0⟩+ ⟨Ψ′
0|Ĥ − Ĥ ′|Ψ′

0⟩ (3.18)

= E′
0 +

∫
n′(r)[Vext(r)− V ′

ext(r)]d
3r, (3.19)

where n′0(r) is the ground-state density of the primed system. We rewrite the inequality

as

E0 < E′
0 +

∫
n′(r)[Vext(r)− V ′

ext(r)]d
3r. (3.20)

The primed and unprimed terms can be interchanged, so we also have

E′
0 < E0 +

∫
n(r)[V ′

ext(r)− Vext(r)]d
3r. (3.21)

We again prove by contradiction. Suppose the unprimed system and primed system have

identical ground-state densities: n(r) = n′(r). Adding the two inequalities above,

E0 + E′
0 < E′

0 + E0, (3.22)
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which is incorrect. We can conclude that if two potentials differ by more than a constant,

their ground-state electronic densities are necessarily different. In other words, Vext is a

unique functional of n(r). This is the first of two Hohenberg-Kohn theorems, and it can

be generalized to apply to degenerate ground states.

Since all properties are functionals of the ground-state density, so are the kinetic

and interaction energies. The second Hohenberg-Kohn theorem asserts that there exists

a functional for the energy, E[n(r)], that is a unique functional of the density, and a

universal functional that is independent of the external potential; and the true ground-

state density is one which minimizes the energy functional. E[n] is defined as

E[n(r)] ≡ ⟨Ψ[n]|Ĥ|Ψ[n]⟩ = T [n] + V [n] +

∫
n(r)Vext(r)dr. (3.23)

As a consequence of the first theorem, a unique ground-state density n(r) is determined

for an external potential Vext(r), and the energy takes on the value E[n(r)] = E0. Let

there be a different density n′(r) necessarily corresponding to different a wavefunction

Ψ′. By the Rayleigh-Ritz principle, the energy E′
0 corresponding to n′(r) is

E′
0 = ⟨Ψ′|Ĥ|Ψ′⟩ > ⟨Ψ|Ĥ|Ψ⟩ = E0. (3.24)

This proves the second Hohenberg-Kohn theorem. As a corollary, the ground-state

density and energy can be found by varying the density to minimize the energy, so long

as we know the form of the energy functional. While in practice an approximate form of

the energy functional is used, DFT is in principle an exact theory—i.e., minimizing the

exact energy functional leads to the exact ground-state density.

3.4 The Self-Consistent Kohn-Sham Equations

Kohn and Sham [67] proposed a way in which the Hohenberg-Kohn theorems can be ap-

plied to establish a computationally feasible problem. The Kohn-Sham (KS) approach re-

places the interacting many-body system with a fictitious non-interacting single-particle

system, but that which is in an effective potential veff that produces the same ground-

state density as the original. This, as we shall see, allows for the use of density as the

basic variable to solve the hamiltonian, a method which was already proven in principle

to work by Hohenberg and Kohn. The hamiltonian of the auxiliary KS system is made
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up of kinetic and effective potential terms,

ĤKSψi(r) =

[
−1

2
∇2 + veff(r)

]
ψi(r) = εi, (3.25)

where the index i labels both spin and orbital quantum numbers, and εi are the eigen-

values. The density is derived from the occupied wavefunctions ψi(r) of the individual

non-interacting states (so called Kohn-Sham orbitals),

n(r) =
occ∑
i

|ψi(r)|2, (3.26)

and it is subject to the constraint of the total number of electrons,

N =

∫
n(r)dr. (3.27)

The functional to be minimized is

E[n]− µN [n] = 0, (3.28)

where µ, the chemical potential, is the Lagrange multiplier. The unique KS energy

functional is

EKS[n] = Ts[n] +

∫
n(r)veff(r)dr, (3.29)

where Ts[n] is the kinetic energy of the non-interacting system. Let us rewrite the energy

functional of the real, interacting system from Eq. (3.23),

E[n] =T [n] + V [n] +

∫
n(r)vext(r)dr

=Ts[n] +
1

2

∫
n(r)n(r′)

|r− r′|
drdr′ +

∫
n(r)vext(r)dr

+

{
T [n]− Ts[n] + V [n]− 1

2

∫
n(r)n(r′)

|r− r′|
drdr′

}
, (3.30)

where we have added and subtracted the kinetic energy and Hartree energy of the

non-interacting body. The terms inside the braces make up the many-body exchange-

correlation (XC) energy functional,

Exc[n] ≡ T [n]− Ts[n] + V [n]− 1

2

∫
n(r)n(r′)

|r− r′|
drdr′. (3.31)

Taking the functional derivative,

δE[n]

δn(r)
− µ =

δTs[n]

δn(r)
+ 2 · 1

2

∫
n(r′)

|r− r′|
dr′ + vext(r) +

δExc[n]

δn(r)
= 0, (3.32)
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and similarly,
δEKS[n]

δn(r)
− µ =

δTs[n]

δn(r)
+ veff(r) = 0. (3.33)

The form of the effective potential of the fictitious non-interacting system that leads to

the same density can be seen from the last two equations,

veff(r) =

∫
n(r′)

|r− r′|
dr′ + vext(r) + vxc[n(r)], (3.34)

where the last term is the XC potential

vxc(r) ≡
δExc

δn(r)
. (3.35)

With an unknown density and effective potential, the KS scheme is a self-consistent

scheme. In practice, an initial, approximate form of n(r) is guessed and plugged into

Eq. (3.34) to get veff, which is then inserted into Eq. (3.25) to solve for the KS orbitals

ψi. The orbitals are used in (3.26) to obtain the new density, which is ready for the next

iteration. When the densities of two consecutive iterations are sufficiently close, the true

ground-state density of the system has been found. These three equations are called the

Kohn-Sham equations.

The KS method is built on the ansatz that there exists a system of non-interacting

electrons, whose ground-state density is exactly equal to that of a system of interacting

electrons. Though a rigorous proof has not been found, there hasn’t been any evidence

disproving the ansatz, and it has been validated for simple systems.

Note that the KS orbitals ψi and energies εi do not translate to anything physical;

they must not be mistaken for excited states and energies. The only connections they

have to the real system are the direct relation between ψi and the density n(r), and that

the highest occupied energy εN is equal to the real system’s exact ionization energy [71].

3.5 The Exchange-Correlation Energy Functional

Opting for simplicity comes at a cost to accuracy, in that the exchange-correlation energy

functional contains many-body terms whose exact forms are generally unknown. The

two most popular approximations to the XC functional, the local density approxima-

tion (LDA) and the generalized gradient approximation (GGA), are fortunately quite

accurate for many types of systems, such as insulators and wide-band metals. They are
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not suitable for strongly correlated systems, such as copper oxides and heavy fermion

materials, and corrections for such cases will be discussed.

3.5.1 Local (spin) density approximation

Many solids can closely resemble an interacting homogeneous electron gas (HEG) model

(or jellium model, and the local density approximation exploits this connection: while

there is variation in the density, in the local regime, the density is approximated as

constant. Hence it is more accurate for a system of a slowly varying density. The LDA

XC functional is

ELDA
xc [n(r)] =

∫
n(r)ϵxc(n(r))dr, (3.36)

where ϵxc(n(r)) = ϵx(n(r))+ϵc(n(r)), the XC energy per particle of a uniform interacting

gas of density n(r), is not a functional but an ordinary function, and at r it is dependent

on the density only in some neighborhood of r. The local density spin approximation

(LSDA, often called “LDA” as well) is a generalized form of the LDA that takes into

account electron spin, which is crucial for spin-polarized cases. In LSDA, the functional

will be dependent on both the up- and down-spin densities,

ELSDA
xc [n↑(r), n↓(r)] =

∫
n(r)ϵxc(n↑(r), n↓(r))dr. (3.37)

Using the simpler no-spin LDA form, the XC potential, from (3.35), is

vxc(r) = ϵxc(n(r)) + n(r)
δϵxc(n(r))

δn(r)
. (3.38)

The LDA exchange energy ELDA
x is analytical and the same as that of the HEG, evaluated

in the separate works of Bloch [72] and Dirac [73], then later of Slater [74] to simplify

the Hartree-Fock method. The Hartree-Fock exchange energy per particle of the HEG

is determined as

ELDA
x [n(r)] =

3

4

(
3

π

)1/3

n(r)1/3. (3.39)

The correlation energy ELDA
c , except for in the high- and low-density limits, is not

known analytically, and therefore has to be approximated. The Green’s function quan-

tum Monte Carlo method gives highly accurate expressions for intermediate densities.

The most well-known and well-used correlation energy functionals are interpolations
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based on the Monte Carlo data of Cerperley and Alder [75], and they are the Vosko-Wilk-

Nusair [76], Perdew-Zunger [77], Cole-Perdew [78], and Perdew-Wang [79] functionals.

Even for systems described by a rapidly varying density, the LDA is surprisingly in

good agreement with experimental measurements. As mentioned before, however, the

LDA does not work well for materials with strong local moments. It is also inaccurate for

simpler systems, as van der Waals forces are not accounted for, and hydrogen bonding

is overestimated in the LDA.

3.5.2 Generalized gradient approximation

The generalized gradient approximation is considered a “semi-local” approximation, in

which the XC energy is a functional not only of the density but of the gradient of the

density ∇n(r) as well:

EGGA
xc [n↑(r), n↓(r)] =

∫
fxc(n↑(r), n↓(r), |∇n↑|, |∇n↓|)dr. (3.40)

A similar, earlier approach, called the gradient expansion approximation, was intro-

duced in the original Hohenberg-Kohn paper [66], but the second-order gradient expan-

sion for the Fourier-transformed exchange-correlation hole potential diverges for small

wave vectors and thus violates the sum rule, making it at times even less accurate than

the LDA. This problem is remedied in the GGA by cutting off the spurious terms to

satisfy the sum rule. This and other corrections to the gradient expansion approximation

were first presented by Langreth & Mehl [80] and Langreth & Perdew [81]. A real-space

cutoff method was later implemented by Perdew and Wang [82].

The analytic parameterized function fxc in Eq. (3.40) comes in many forms, of which

the Becke [83], Perdew-Wang [84] (not to be confused with the LDA of Perdew and Wang

[79]), and Perdew-Burke-Ernzerhof [85] versions are most common. The GGA results in

more accurate binding energies, atomic energies, and bond lengths when compared to

the LDA, but is worse in other cases. The GGA does not improve much on the LDA for

strongly correlated systems.
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Figure 3.1. Generic sketch [6] of total energy as a function of number of electrons from
an LDA calculation, and the exact version. LDA+U attempts to correct the difference.

3.5.3 The LDA+U method

That DFT is inadequate to represent localized states of d and f orbitals is its key failure.

The LDA+U method [86] was first formulated to compensate for this flaw when treating

transition metal oxides (TMOs). In TMOs, the d orbitals constitute the outermost shell.

The electrons of the extended and partially filled d orbitals interact strongly with each

other, so they feel a stronger effective Coulomb repulsion than the other electrons in

the system. The charge hopping needed for electronic conduction is thus suppressed,

rendering TMOs insulating rather than metallic.

While the deficiency to properly describe these systems stems not from DFT per se

but the more fundamental formalism of band theory, DFT plays an additional and direct

role in the band-gap problem through the XC term. The total energy as a function of the

total number of electrons N =M +ω, whereM is a non-negative integer and 0 < ω < 1,

is written as [87]

E(N) = (1− ω)EM + ωEM+1, (3.41)

which, due to the XC energy, has a discontinuous derivative at integer values of N

[87] (see Fig. 3.1). The XC energy used in the LDA however does not. Godby et al.

[88] pointed out the significance of the discontinuity, showing its absence leads to the

underestimation of the band gap, as seen in many insulators and semiconductors.

First proposed by Anisimov et al. in 1991 [86], the LDA+U scheme incorporates in
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DFT an extra step of adding an on-site Hubbard U on the d (or f) electrons.1 The

additional term essentially drives the system to prefer integer orbital occupancy. The

total energy of the localized states in LDA+U is not only a functional of the electron

densities ρσ(r) but also the orbital occupation numbers nσ,mm′ [89],

E[ρ↑(r), ρ↓(r), {nσ,mm′}] = ELSDA[ρ↑(r), ρ↓(r)] + EU [{nσ,mm′}]− Edc[{nσ}] (3.42)

(to avoid confusion with the density matrix element nσ,mm′ , where m denotes the mag-

netic quantum number and nσ = Tr(nσ,mm′), the previous notation in this document for

the total spin-σ charge density, “nσ(r)”, has been replaced with “ρσ(r)”). E
LSDA is the

energy from the standard LSDA and EU is the additional Hubbard-U contribution. Edc

is an important and necessary term, for it cancels out correlations effects that are double

counted, in ELSDA and in EU .

In the original work of Anisimov, Zaanen, and Andersen [86], the functional (3.42)

was dependent on the choice of coordinate system, making it theoretically troubling.

The rotationally invariant form that is widely used today, by Liechtenstein, Anisimov,

and Zaanen, came out four years later [90]. The rotationally invariant Hubbard energy

is

EU [{nσ,mm′}] = 1

2

∑
σ,{m}

[⟨ m,m′′|Vee|m′,m′′′⟩nσ,mm′n−σ,m′′m′′′ (3.43)

+
(
⟨m,m′′|Vee|m′,m′′′⟩ − ⟨m,m′′|Vee|m′′′,m′⟩

)
nσ,mm′nσ,m′′m′′′

]
,

where ⟨m,m′′|Vee|m′,m′′′⟩ are the matrix elements of the onsite electron-electron inter-

action and can be expressed in terms of complex spherical harmonics Ykq and effective

Slater integrals F k,

⟨m,m′′|Vee|m′,m′′′⟩ =
∑
k

ak(m,m
′,m′′,m′′′)F k, (3.44)

ak(m,m
′,m′′,m′′′) =

4π

2k + 1

k∑
q=−k

⟨lm|Ykq|lm′⟩ · ⟨lm′′|Y ∗
kq|lm′′′⟩, (3.45)

where l denotes the orbital quantum number and 0 ≤ k ≤ 2l. The Gaunt coefficients

ak represent the angular contribution, as the Slater integrals represent the radial. The

1“LDA+U” is often used as a general term that includes LSDA+U and GGA+U as well, and will be
used in such context throughout the thesis unless specified otherwise.
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Slater integrals need to be determined (F 0, F 2, and F 4 for d electrons, an additional F 6

for f electrons) by the parameters U and J :

U =
1

(2l + 1)2

∑
mm′

⟨m,m′|Vee|m,m′⟩ = F 0, (3.46)

J =U − 1

2l(2l + 1)

∑
mm′

[⟨m,m′|Vee|m,m′⟩ − ⟨m,m′|Vee|m′,m⟩] (3.47)

=
1

2l(2l + 1)

∑
m̸=m′

⟨m,m′|Vee|m′,m⟩ (3.48)

=


1
14(F

2 + F 4) for d electrons

1
6435(286F

2 + 195F 4 + 250F 6) for f electrons.

(3.49)

Knowledge of ratios of the F k’s are needed as well. For d orbitals,

F 4

F 2
=

5

8
, (3.50)

and for f orbitals,

F 2

F 4
=
675

451
, (3.51)

F 2

F 6
=
2025

1001
. (3.52)

When it comes to the double-counting term, there are two functionals that are pop-

ular. The fully-localized-limit (FLL), or atomic-limit, functional was formulated by

Czyżyk et al. [91] and is written as

EFLL
dc [{nσ}] =

1

2
Un(n− 1)− 1

2
J [n↑(n↑ − 1) + n↓(n↓ − 1)], (3.53)

where U and J are the Coulomb and exchange parameters, and n = n↑ + n↓. The other

common double-counting correction is what is now referred to as the around-mean-field

(AMF) functional. Its form is derived from the original fluctuation form of Anisimov’s

LDA+U functional [86], but with spin-splitting effects taken into account. Often the

AMF double-counting term is used in conjunction not with the fluctuation-based EU

[86, 91], but with the basis set-independent form [90] (e.g., in WIEN2k [92, 93] and

FPLO [94]). The AMF functional is

EAMF
dc [{nσ}] =

1

2
Un2 − U + 2lJ

2(2l + 1)

∑
σ

n2σ. (3.54)
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The AMF scheme has a tendency to suppress magnetic moments, favoring nonmagnetic

solutions [95]. In general, FLL is better suited for systems possessing stronger correla-

tions, while AMF is used for weaker interactions.

3.5.4 Basis sets

Before DFT can be applied, a basis set for the Kohn-Sham orbitals (the ψi in Eq. (3.26))

has to be chosen. The eigenstate expansion would be exact if the basis set were complete.

Naturally the accuracy of the calculation is dependent on the size of the basis set. More

basis functions however also means a higher computational cost, and the type of basis

set also affects accuracy. It is important to balance accuracy and efficiency by choosing

a good basis set and size. The vast majority of the computational research presented in

this disseration is done in WIEN2k [92, 93], which utilizes linearized augmented plane

waves (LAPWs), and FPLO (Full Potential Local Orbital) [94], which uses local orbitals.

The APW and LAPW methods

The LAPW method [96, 97] is an improvement from the augmented plane-wave

(APW) method presented by Slater in 1937 [98]. It adopts the muffin-tin (MT) approxi-

mation, which was introduced by Slater at the same time and serves as the foundation for

other augmented methods, such as the Korringa-Kohn-Rostocker [99, 100] and muffin-tin

orbital [101] methods. In the MT approximation, the space in which the electrons and

ions reside is separated into two distinct regions, based on how the potential is expanded.

The MT spheres of some desired radius rMT are centered at the atomic sites, and the

rest of the space is called the interstitial region. In the APW scheme, the interstitial

space is treated with a simple plane-wave expansion, but within the MT spheres the

plane waves are augmented by a linear combination of atomic-like functions, so as to

properly represent the complex nodal structure of the wavefunctions near the nucleus.

The APW basis function is written as

ϕAPW
k+G (r, E) =


∑

lmAlm,k+Gul(r, E)Ylm(r̂), r < rMT

1√
Ω
ei(k+G)·r, r > rMT.

(3.55)

The ul(r, E) are the radial solutions to the Schrödinger equation and the Ylm(r̂) are

spherical harmonics. G denotes the reciprocal lattice vectors and Ω is the volume of
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the unit cell. In practice, the summation over the orbital number l is finite and cut at

a value lmax of choice. The coefficients Alm,k+G and the energy E are parameters that

are to be determined. The Alm,k+G are found by matching each plane wave with its

augmented counterpart at the sphere boundary r = rMT, to ensure continuity. E is to

equal the eigenvalue ϵk of the Kohn-Sham hamiltonian at each k and band (and spin if

relevant), so it has to be solved self-consistently. The coefficients to the basis functions

to construct the KS orbital (the band index i is omitted),

ψk =
∑
G

cGϕk+G, (3.56)

are determined via the Rayleigh-Ritz variational principle, and ψ =
∑

k ψk is equivalent

to the ψi in Eq. (3.26) used to obtain the electronic density.

A shortcoming of the APW method is that the secular equation is energy-dependent.

As a consequence, there exists a secular equation for each k point of each band that

need be solved. This slows down the calculation immensely. Another problem is the

asymptote problem: a singularity arises in Alm,k+G when ul(rMT, E) = 0. This is

particularly problematic for d- and f -orbital systems.

These issues were ameliorated by the linearization of the APWs. First suggested in

1967 by Marcus [102] and formulated in 1975 by Andersen [97] and Koelling & Arbman

[96], the LAPW method added a term, the energy derivative of the radial function, to

the augmented portion of the basis function,

ϕLAPW
k+G (r) =

∑
lm

[Alm,k+Gul(r, El) +Blm,k+Gu̇l(r, El)]Ylm(r̂) (3.57)

(the plane-wave construction outside the sphere remains unchanged). The added term is

merely the second term of the Taylor expansion of ul(El) about the guessed value of El.

Two sets of coefficients, Alm,k+G and Blm,k+G, now have to be solved, by matching the

basis functions at the boundary not just in value but also in slope. While the APW had

one E for all orbitals, the LAPW has an energy El for each l. In the LAPW scheme, El

does not have to equal a KS eigenenergy, but is set to be near the middle of the range

of eigenvalues that are of character l (the range is determined by imposing the empirical

Wigner-Seitz rule [103, 104] on ul). Herein lies the crucial difference between the APW

and LAPW methods: through the linearization and by fixing the energy values El, the
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energy-independent secular equations become linear, making it possible to get the band

energies with a single diagonalization of the hamiltonian matrix. The asymptote problem

is also eliminated, for the form of Alm,k+G (and Blm,k+G as well) in the LAPW formalism

does not have a vanishing denominator, which was the source of the singularity in the

APW. Another difference is that full-potential calculations are possible in LAPW but

not in APW.

WIEN2k has implemented an improved approach, proposed by Singh in 1991 [105],

to the LAPW method. Denoted as LAPW+LO, it has extra functions in the basis set for

the augmented portion of space, called local orbitals (LOs), to better describe semi-core

states. The LO for a particular l and m is written as

ϕLOk+G,lm(r) =


[ALO

lm,k+Gul(r,E1l) +BLO
lm,k+Gu̇l(r, E1l)

+ CLO
lm,k+Gul(r, E2l)]Ylm(r̂), r < rMT

0, r > rMT.

(3.58)

The second energy, E2l, is the energy corresponding to the semi-core band. The decrease

in efficiency, due to the larger basis set, is more than compensated for by the increase in

accuracy.

FPLO

The FPLO method [94] is a full-potential scheme that uses a linear combination of

nonorthogonal atomic-like basis orbitals which overlap. It will be shown that the size

matrix of the eigenvalue problem is reduced to that of a minimum valence basis set. The

Bloch wavefunction is written as

ψkn(r) = |kn⟩ =
∑
RsL

CsL,kn |RsL⟩ eik·(R+s), (3.59)

where R is a Bravais vector, s is a basis vector, and L denotes the set of quantum

numbers l,m. CsL,kn is the coefficient of the basis orbital |RsL⟩, which is made up of a

localized radial function and a spherical harmonic function,

|RsL⟩ ≡ ϕsl(|r−R− s|)YL(r−R− s). (3.60)

Plugging this into Ĥ |kn⟩ = |kn⟩ ϵkn, the secular equation becomes∑
RsL

(
⟨0s′L′|Ĥ|RsL⟩ − ⟨0s′L′|RsL⟩ϵkn

)
CsL,kne

ik·(R+s−s′) = 0. (3.61)
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The Hamiltonian matrix and the overlap matrix are respectively defined to be

Hs′L′,sL =
∑
R

⟨0s′L′|Ĥ|RsL⟩eik·(R+s−s′), (3.62)

Ss′L′,sL =
∑
R

⟨0s′L′|RsL⟩eik·(R+s−s′). (3.63)

In FPLO, valence states (indexed as v) and core states (c) are separated to reduce

the size of the matrix problem. Thus the overlap matrix can be presented in four blocks,

S =

Scc Scv

Svc Svv

 , (3.64)

where

Scc = ⟨R′s′c′|Rsc⟩ = δc′cδR′+s′,R+s, (3.65)

Scv = ⟨R′s′c′|Rsv⟩ = S†
vc, (3.66)

Svv = ⟨R′s′v′|Rsv⟩. (3.67)

And the Hamiltonian matrix becomes

H =

 Hcc HccScv

SvcHcc Hvv

 , (3.68)

where

Hcc = ⟨R′s′c′|Ĥ|Rsc⟩ = ϵscδc′cδR′+s′,R+s, (3.69)

Hvv = ⟨R′s′v′|Ĥ|Rsv⟩. (3.70)

A Cholesky factorization is applied to the overlap matrix,

S = SlSr =

 1 0

Sl
vc Sl

vv

1 Sr
cv

0 Sr
vv

 , (3.71)

which implies

Svc = Sl
vc = Sr†

cv = S†
cv, (3.72)

Sl
vvS

r
vv = Svv − SvcScv (3.73)

The secular equation (3.61), simplified to HC = SCϵ, can be diagonalized:

(Sl)−1H(Sr)−1(SrC) = (SrC)ϵ, (3.74)
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where SrC ≡ D is the unitary matrix. With

(Sl)−1 =

 1 0

(Sl
vv)

−1Svc (Sl
vv)

−1

 (3.75)

and

(Sr)−1 =

1 −Scv(Sr
vv)

−1

0 (Sr
vv)

−1

 , (3.76)

we get

(Sl)−1H(Sr)−1 =

 1 0

(Sl
vv)

−1Svc (Sl
vv)

−1

 Hcc 0

SvcHcc (Hvv − SvcHccScv)(S
r
vv)

−1


(3.77)

=

Hcc 0

0 (Sl
vv)

−1(Hvv − SvcHccScv)(S
r
vv)

−1.

 (3.78)

which leads to

D =

1 0

0 Dvv

 . (3.79)

Therefore, our eigenvalue problem is greatly reduced, to

(Sl
vv)

−1(Hvv − SvcHccScv)(S
r
vv)

−1Dvv = Dvvϵv, (3.80)

and the coefficient matrix is

C = (Sr)−1D =

1 −Scv(Sr
vv)

−1Dvv

0 (Sr
vv)

−1Dvv

 . (3.81)
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Chapter 4

High Pressure Physics Experimentation

4.1 Introduction

High pressure physics aims to study the properties of matter which undergo extreme

application of pressure. It uses pressure, which is the perpendicular force applied on an

object per unit area, as a thermodynamic parameter, to bring to light interesting and

peculiar phenomena that can sometimes change dramatically the nature of the material

that is otherwise inaccessible (see Fig. 4.1, for example). Superconductivity, superflu-

idity, insulator-to-metal transitions, volume collapse transitions, etc. are some of the

changes that are observed when certain materials are compressed. Compressing matter

can provide us with a wide range of interatomic distances, from which we can also study

gradually varying states of electronic, magnetic, and structural properties.

4.2 Diamond Anvil Cell

High pressure physics is highly dependent on the available technology of apparatuses that

can compress materials to such high pressures. Before the 20th century, the maximum

pressure that could be achieved in the laboratory was 3 kbar (3000 atm). After a

stagnancy in the field, Bridgman brought high pressure research into a more active era

in the 1900s with his development of the piston-cylinder device [106] and the opposed

anvil cell [107], both of which increased laboratory pressures to an order of 10 GPa (100

kbar).

In 1959, Weir et al. [108] took the concept of Bridgman’s opposed anvils to invent

the first single-crystal diamond anvil cell (DAC). Before the DAC, the best anvils were
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Figure 4.1. The rich phase diagram of CO2 courtesy of Ref. 7. CO2 has multiple phases
at different temperatures and pressures, ranging from a simple molecular gas to a fully
covalent solid.

made of tungsten carbide (WC), which is a very hard compound in its own right but yet

requires a bulky contraption to get to pressures of only a few tens of gigapascals. With

the switchover to diamond, the strongest and hardest material in the world, such is not

necessary. Today, DACs, a schematic of which is shown in Fig. 4.2, can put forth static

pressures of over 300 GPa, and is the only device that can do so. The DAC uses two

opposing diamonds—cut to have culets—as the anvils, and a gasket is placed between

the culets to create a chamber which holds the sample of interest. Force is exerted on

the tables of the diamonds and is concentrated at the culets to produce ultra-high local

pressure within the chamber.

Another very useful and convenient trait of diamond is its high transparency. This

is fully exploited in DACs for optical experiments. In fact, utilization of diamond for its

transparency was realized before its effectiveness for achieving high pressure. In 1950,

before the invention of the DAC, Lawson and Tang [9] replaced the cast beryllium in

their Be bomb [109]—developed for obtaining x-ray powder diffractions—with diamond,

in order to avoid the Debye-Scherrer rings diffracted by Be. In the “split-diamond” bomb

(see Fig. 4.3), two single-crystal diamonds are cut in half and cleaved together with their

tables touching. The chamber is created by drilling a hole through the center of the

diamond configuration, parallel to the faces. While the Be bomb went up to 1 GPa, the
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Figure 4.2. The diamond anvil cell (image taken from Ref. 8). The ruby in the sample
chamber is used as a pressure sensor (see text). The diamond seats with a hole in the
center for optical transmission are colored in black. The arrows indicate the direction
of force applied by the cell.

split-diamond bomb could maintain a load of 2.5 GPa, and with only a few Laue spots

tainting the diffraction pattern. This work paved the way for Jamison, Lawson, and

Nachtrieb [110] to construct their own version of a DAC, almost concurrently (in 1959)

but independently of Weir, Lippincott, and Van Valkenburg [108]. The DAC by Weir

et al. also was designed with diamond’s optical properties in mind (they used theirs for

infrared absorption measurements).

The DAC was further improved in 1978 by Mao and Bell [111], who were able to apply

pressures of up to 170 GPa [112]. Prior to this, the highest pressure one could attain was

0.5 GPa–with an NBS (National Bureau of Standards) [113] or Bassett [114] DAC. The
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Figure 4.3. Schematic, taken from Ref. 9, of the split-diamond bomb, the first high
pressure tool to utilize diamond.

Mao-Bell DAC set the basis for the membrane DAC, which was conceived and fabricated

by scientists at Lawrence Livermore National Laboratory (LLNL). The membrane DAC

was used in the high pressure experiments discussed in this dissertation. It employs the

piston-cylinder mechanism as well as opposing anvils. A diagram and picture of the

membrane DAC can be seen in Fig. 4.4. The piston and cylinder are held together by

four pressure screws, which can be tightened manually to increase pressure inside the

cell. But the membrane DAC gets its name due to the use of a metal membrane which

holds an easily adjustable amount of inert gas, and when the membrane expands the

pressure of the sample goes up. The gas is metered by a pressure controller which is

connected to a standard gas cylinder as the pressure source. The controller comes with

a precise metering valve so that fine tuning of the pressure is possible. The membrane

DAC is highly efficient for cryogenic and x-ray diffraction (XRD) measurements, as the

pressure in the cell can be altered without having to take it off its mount or disrupt the

x-ray beam. In short, the membrane DAC offers remote, precise, and systematic changes

in pressure.
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Figure 4.4. a) Mechanical drawing of two different cross-sections of the membrane DAC
developed at LLNL. Numbers are in units of inches. b) Picture of the same membrane
DAC, dissassembled. From left to right are the cylinder, piston, the pressure membrane,
and the lid which screws onto the cylinder to keep the membrane in place. The piston
pictured shows also the WC seat which is adjusted and set in place by set screws, and
sitting on the seat is a diamond. A similar setup is attached to the cylinder but hidden
in this view.

4.2.1 Complex components of the DAC

Diamonds

The diamonds used in DACs are 0.16–0.5 carat brilliant-cut gem stones, which can now

be made artificially. The culet diameter conventionally ranges from 50 to 500 µm, and

the smaller the diameter, the higher the potential maximum pressure. 500 µm-culet

diamonds will apply a load of 35 GPa; 200 µm flats can generate pressures of over 100

GPa. To obtain higher pressures, the diamonds have to be beveled (see Fig. 4.5). Since
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Figure 4.5. Top view of a beveled diamond.

its first use by Mao and Bell [115], it has been found that the shear stress at the eight

corners is minimized greatly by beveling the anvil face. 300–500 µm culets can a beveled

face of 25–100 µm in diameter.

A gradient of pressure along the face of the culet can significantly reduce the maxi-

mum attainable pressure in the chamber, as the inhomogenous pressure distribution may

cause the diamonds to prematurely break. So it is important that the opposing diamonds

are aligned with their axes, and that the faces are as parallel as they can be. Modern

piston-cylinder DACs, such as the membrane DAC, are manufactured so precisely that

the latter now is a non-issue, and the former can be resolved by adjusting the WC seats

(on which the diamonds are epoxied) with the set screws.

Gaskets

The gasket in a DAC provides containment of the sample by acting as walls of the

chamber. The gasket is created by drilling a tiny hole through a thin piece of metal, but

not before pre-indenting it with the DAC. A thick gasket has a risk of its hole expanding

beyond the culets, and pre-indentation avoids this. The gasket is indented to have a

thickness of 25–40 µm. Then the chamber is created by drilling a hole with an electric

discharge machine that uses a copper spark drill. A diameter that is equal to or less than
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half of that of the culet is chosen, and care should be taken during the drilling process

so the gasket hole and culet are concentric.

The most common gasket material is rhenium, due to its great strength and high

malleability. Strength is required to maintain the chamber walls at ultra-high pressures,

and malleability is needed so that the gasket won’t break. Re however has a high ab-

sorption for x-rays, and therefore is unsuitable in cases such as XRD settings in which

the incident and emitted beams make a 90◦ angle, and inelastic x-ray scattering, as the

x-ray has to travel through the gasket. For these types of experiments, a Be gasket is

used instead. Be is more brittle than Re, but it has the advantage of having an x-ray

absorption that is even lower than that of diamond. For magnetic measurements such as

resistivity and susceptibility, a material called MP35N (a nickel-cobalt base alloy) may

be used. MP35N not only has exceptional strength, toughness, ductility, and corrosion

resistance, but it additionally has low magnetization and its resistivity is temperature-

independent.

Pressure media and gas medium loading

The pressure medium plays an important role in the DAC, as it increases pressure uni-

formity within the chamber. Without a pressure medium, the uniaxial force generated

by the DAC creates non-hydrostatic conditions, which may result in very different prop-

erties than when the sample is under hydrostatic pressure. Of course, there would be no

point to the medium if it were to have high shear strength. Moreover, the appropriate

medium has to be chosen so as not to mar the measurement at hand. Powdered NaCl is a

soft solid that is a good pressure-transmitting medium below 30 GPa, and can double as

a pressure sensor for XRD. When it is ideal to have no diffraction patterns, liquids such

as mineral oil, silicon oil, and methanol-ethanol mixtures are commonly used, though

they become quite non-hydrostatic beyond 10–15 GPa.

Newer technology has made possible the use of noble gases—Ar, He, H2, and Xe.

These are the best pressure media for they are inert and maintain relative softness at

high pressures. While a medium like mineral oil is easy to deal with (although it requires

a steady hand to transfer a microscopic drop on the tip of a needle into the sample

chamber, it can be done at room temperature), difficulty arises in loading a noble gas
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Figure 4.6. Cryogenic gas loader. The DAC is placed inside the airtight loader, and
gas can flow from one end to the other or gain pressure by closing the vent valve.
The sample may be exposed to the gas by opening its chamber with the two feed-
through allen wrenches. The loader is immersed in liquid cryogen to liquefy the gas.
Temperature in the loader is monitored by a type-K thermocouple.

in the DAC, since it actually has to be in the denser liquid form to be useful. One way

to accomplish this is by using a cryogenic gas loader, seen in Fig. 4.6. The DAC with

the prepared gasket is inserted in the loader before the loader is sealed tightly. Two

wrenches are engaged to two of the four cell-tightening screws, allowing for the sample

chamber to be opened externally. The inert gas is fed into and out of the loader, and,

after some flushing, the vent valve is closed to create pressure within the loader. The

entire loader is immersed in liquid N2 or liquid Ar to liquefy the pressure medium, after

which the chamber is opened to invite the liquid in. The cell (chamber) is then closed

with the liquid gas trapped inside.

Another method is to use a high pressure gas loader. This is especially apt when

the inert gas of choice has a lower boiling point than than of liquid N2. A standard

gas cylinder supplies the gas, which is transferred to the loading system, shown in Fig.
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Figure 4.7. 30,000 psi high pressure gas loader. Gas is loaded from the cylinder (closed
in this image) into the loader, and the pressure within is increased little by little, by
turning the pressure intensifier ([mechanical name for the PI]).

4.7. The cell is placed inside the loader, and like the cryogenic loader, there is access

to the external opening and closing of the sample chamber. The gas is pressurized by

turning the handle [need better name], called the pressure intensifier, which pushes a rod

inward to decrease the gas volume. A little more gas is introduced and gets compressed

as well. This process is performed several times, until the loader reaches a pressure of

25,000–30,000 psi. This is enough for the gas to liquefy and be suitable for loading into

the sample chamber.

Pressure sensors and pressure calibration

A pressure sensor, or pressure standard or marker, is usually placed inside the cell cham-

ber along with the sample. A good pressure sensor should be able to accurately represent

its pressure. Almost as significant as the invention of the DAC was the introduction of

the ruby fluorescence method, by Forman et al. [116] in 1972, as a means of calibrating
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pressure inside the DAC. In years prior, pressure was estimated by applied load over area

or by the XRD patterns of pressure media like NaCl. But ruby fluorescence via optical

spectroscopy became the quick and easy way to make precise pressure measurements,

when it was observed [116] that the wavelength of the R-line luminescence shifts linearly

with pressure in the 0.1–2.2 GPa range, and that the lines broaden under non-hydrostatic

pressures. Ruby is Al2O3 with Cr3+ sitting in place of some of the Al atoms. When

excited by a laser, the Cr electrons will jump to a higher-energy state. Soon they decay

to lower metastable states, from which they fall back into the ground state. The last

step of the process is manifested via fluorescing. For ruby, two signals will seen—one

due to the electric dipole transition from the lowest excited metastable energy, the other

from the second lowest. In 1975, Piermarini et al. [117] showed the R1 line (R1 and

R2 respectively correspond to the larger and smaller signals in Fig. 4.8) is linear up to

19.5 GPa when calibrated against the compression of NaCl, using the Decker equation

of state (EOS) [118]. In 1986, Mao et al. [119] revised the pressure formula based on Cu

and Ag EOSs for up to 80 GPa:

P =
A

B

[(
1 +

∆λ

λ0

)B

− 1

]
, (4.1)

where P is the pressure in megabars, A = 19.04 Mbar (initial slope obtained from Ref.

117), B = 7.665, ∆λ is the R1-line shift, and λ0 is the wavelength of the R1 line (the

zero-pressure value of λ0 is known to be 694.2 Å). More recently (in 2007), Silvera et al.

updated the parameter values to A = 18.76 Mbar and B = 10.71.

Above 100 GPa, ruby’s fluorescence weakens dramatically, and other pressure sen-

sors are used instead. Just as NaCl can be a pressure marker when XRD measurements

are being performed, so can Cu, Au, Ag, Pt, and Ta. These simple metals are used in

particular due to their higher symmetry, which results in fewer diffraction lines, and the

fact that their respective phases are stable up to high pressures.

4.3 X-ray Diffraction at High Pressure

XRD is a very useful diagnostic tool that can determine the crystral structure of a mate-

rial. When the material is in a DAC at high pressures, however, typical laboratory x-ray

diffractometers are not intense nor concentrated enough. The DAC chamber will have
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Figure 4.8. Three pairs of R1 (bigger, right) and R2 (smaller, left) ruby fluorescence
lines for a sample of Li2O at different pressures. Figure courtesy of Ref. 10.

a diameter of 50 µm or smaller, so an x-ray beam of a very tight focus is imperative.

Moreover, the x-rays have to be hard enough to penetrate diamonds. These features are

available only at third-generation synchrotrons, such as the Advanced Photon Source

(APS) in Argonne, IL, the European Synchrotron Radiation Facility in France, and the

Super Photon Ring in Japan, as only they can provide the exceptionally bright and col-

limated x-rays that make high pressure XRD experiments possible.

4.3.1 X-ray diffraction

In 1913, W. H. and W. L. Bragg, father and son, discovered that a crystalline solid

produced methodical patterns of scattered x-rays, and formulated Bragg’s law,

nλ = 2d sinΘ, (4.2)

where d is the atomic spacing of the crystal and Θ is the angle of incident light. The

integer n is called the order of reflection. A schematic of a Bragg reflection is shown in

Fig. 4.9. Light is constructively reflected when the above equation holds, and intense

peaks of radiation are produced, creating an XRD pattern. For a powder crystal, layers

of a certain distance d can be sectioned into different layers of a different distance d′

(and different Θ′), which will contribute additionally to the diffraction pattern. XRD is

observed because the x-ray wavelengths are comparable to interatomic distances, and it
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Figure 4.9. Bragg reflection from lattice planes separated by a distance d. Rays are
incident and reflected. The path difference is 2d sinΘ.

is possible by Rayleigh scattering.

Figure 4.10. Schematic of a DAC XRD experiment. The x-ray from the beamline is fed
through a focusing mirror, a monochromator, a slit, and the first diamond. The beam
is then scattered by the sample, and the diffraction pattern is recorded on an image
plate.

As can be seen in Fig. 4.10, the x-ray from the beamline penetrates the first diamond

and scatters off the sample in the DAC chamber and through the other diamond, resulting

in a diffraction pattern of Debye-Scherrer rings like Fig. 4.11 (in this case the sample is

a polycrystalline powder). The intensity of an x-ray reflection has the relation

I(q) ∝
∣∣∣∣∫ dreiq·rρ(r)

∣∣∣∣2 , (4.3)

where q is the difference between the incident and reflected wave vectors, and therefore

dependent on Θ, and ρ is the charge density. Hence, knowledge of Θ leads to knowledge of

the lattice spacing, and the intensity of the peaks provides information on the interatomic

positions.
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Figure 4.11. Powder XRD diffraction rings and corresponding integrated two-
dimensional spectrum. Taken from Ref. 10.

Figure 4.12. View of the Advanced Photon Source. Image courtsey of Ref. 11.

As mentioned above, Fig. 4.11 shows the Debye pattern data, which collected onto

an image plate. The pattern is processed with a program called Fit2D, which integrates

the two-dimensional diffraction image to create a one-dimensional pattern as a function

of 2Θ, also shown in Fig. 4.11.
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4.3.2 The APS

The XRD measurements discussed in this work have all been taken at the APS at Ar-

gonne National Lab, so the specifics of the APS will be detailed here. At the APS,

electrons are emitted from a cathode and sent through strong alternating electric fields

in the linear accelerator (see Fig. 4.12), causing the electrons to accelerate to relativistic

speeds with an energy of 450 MeV. They then move to the injector or “booster syn-

chrotron”, where in half a second, with the help of bending and focusing magnets, they

are boosted to an energetic 7 GeV. The electrons are taken to the 350 m-diameter storage

ring, which is made up of more than a thousand powerful electromagnets. The lattice

of these magnets is what produces the exceedingly narrow and parallel x-rays, with a

spectral brilliance of over 1015 photons/s/mrad2/mm2/0.1%bandwidth.

The HPCAT facility

APS Sector 16 is run by the High Pressure Collaborative Access Team (HPCAT), whose

members are the High Pressure Physics Group of LLNL, the Geophysical Laboratory of

Carnegie Institution of Washington, the Carnegie DOE Alliance Center, and the High

Pressure Science and Engineering Center of University of Nevada at Las Vegas. Sector

16 has four beamlines in nine hutches. Two (16 ID) of the four, shown in Fig. 4.13,

originate at dual undulator insertion device, and the other two (16 BM) start from the

storage ring bending magnet. The bending magnet radiation covers a broad photon

energy range, but it does not cover all hard x-rays and is not as bright as an undulator

beam. In fact, the x-ray experiments done on CaLi2 in 16 BM-D did not produce worthy

results, due to the large beam size. The 16 ID beam on the other hand is undulated by

the magnets of alternating polarity. By the time it has passed through the undulators,

the beam is very intense and greatly collimated. Then the beam is split by a diamond

double-crystal monochromator into a white beam, which goes to the 16 ID-D hutch, and

a monochromatic beam, which is sent through another monochromator, made of a Si

(220) single crystal. The monochromatic beam is focused by a pair of Kirkpatrick-Baez

mirrors before it reaches 16 ID-B.

The 16 ID-B hutch
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All of the successful XRD research discussed in this work has been done in the 16 ID-B

hutch. The 16 ID-B beam boasts an energy range of 27–36 keV (over 10 keV is required

to go through the diamond), a flux of 5× 1010 photons/s at the sample position, and a

spatial resolution of less than 10 µm.

In 16 ID-B, the experimental equipment is there to aid with cryogenic conditions.

Hence, low-temperature XRD experiments are possible here. This entails inserting the

DAC in a CRYO Industries He gas-flow cryostat, shown in Fig. 4.14, which allows for

liquid He to continuously flow through. The DAC is in contact with a copper block to

promote heat transfer. Two thermocouples touch the DAC and one touches the copper

block. All of the electrical wire can be connected externally, as can been seen above

the lid in the left-hand photo. In principle the temperature inside the cryostat can be

brought down to 4.2 K.

16 ID-B supports angle-dispersive XRD (ADXRD). Another kind of XRD is energy-

dispersive XRD (EDXD), which uses a polychromatic x-ray at a fixed angle. EDXD

however usually has a low resolution and a lower flux (since x-rays are gathered at only

one solid angle). The Debye rings may not turn out uniform, and sometimes some

reflections are completely missed, particularly at high pressures; this is because the

sample may favor a certain orientation due to non-hydrostatic stresses in the DAC.

ADXRD on the other hand uses a single, monochromatic source of x-ray, so all angles

(to a degree) are covered, and it is entirely possible to use a high-resolution, high-flux

beam; it is therefore the preferred approach for high pressure XRD. Fig. 4.15 shows the

ADXRD setup in 16 ID-B.

For the x-ray experiments explained in this dissertation, the mar345 Image Plate

was used. The x-ray ionizes the Eu2+ ions on the image plate to Eu3+ ions at the point

of contact. The excess electrons are excited to the conduction band, and drop back

to recombine with the ions or get stuck in color centers. Color centers, or F centers,

normally refer to vacancy defects in a crystal, but the color centers of the image plate

are deliberate. F centers attract electrons because they are missing a halogen anion.

The trapped electrons stay stuck until the image plate is irradiated (with a blue light,

to allow recombination with Eu3+) to reuse for a different diffraction run.
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Figure 4.14. (Left) inner components and (right) outer shell of the CRYO Industries
continuous He gas-flow cryostat at 16 ID-B. The shell’s circular “window” is made out
of sapphire.
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Figure 4.15. [NEED TO ALTER THIS] The cryostat mounted at the beam of 16 ID-B.
The x-ray beam shoots out from the right, through the sapphire windows and DAC,
and to the image plate, hidden behind the black covers in this picture.
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Chapter 5

NaAlSi: A Self-Doped Semimetallic

Superconductor

This work was done in collaboration with S. Banerjee, E. R. Ylvisaker, and W. E. Pickett

of UC Davis, and pubished in Ref. 120.

5.1 Introduction

The discovery of new superconductors in unexpected materials brings the potential to

understand something deeper, or perhaps something different, about the underlying

properties that favor superconducting pairing. The discovery of high-temperature su-

perconductivity (to 56 K so far) in Fe-pnictides [32] is a recent spectacular example,

and is also an example of close relationships between magnetism and superconductivity,

though the connections are still far from clear.

New superconductors where little or no magnetic effects are present are also aris-

ing, and these clearly involve different physics fromthe cuprate or Fe-pnictide high-

temperature superconductors. Electron-doped MNCl, where M = Zr or Hf, becomes

superconducting immediately upon undergoing the insulator-to-metal transition [121–

124], which, in the case of M = Hf, is higher than 25 K. The similarly layered, electron-

doped, ionic insulator TiNCl superconducts up to 16 K. Magnetic behavior in these

materials is at most subtle, amounting to an enhancement in Pauli susceptibility near

the metal-to-insulator transition [125].

In this chapter we address the ternary silicide NaAlSi (space group P4/nmm, Z = 2),
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another ionic and layered material that shows unexpected superconductivity, and does

so in its native (without doping or pressure) stoichiometric state, at 7 K [126]. NaAlSi

introduces new interest from several viewpoints. First, it is an sp electron superconduc-

tor, with a high Tc for such materials at ambient pressure. Pb is an sp superconductor

with comparable Tc (7.2 K) but with simple metallic bonding and heavy atoms, making

it very different. Doped Si [127] and doped diamond [128] superconduct in the same

range, and are of course very different classes of materials. A more relevant example is

the pseudo-ternary compound Ba1−xKxBiO3 (BKBO), which undergoes an insulator-to-

metal transition for x ≈ 0.4, beyond which its Tc surpasses 30 K [129, 130].

Second, the Al-Si layered substructure is like that of the Fe-As layer in the Fe-pnictide

superconductors, raising the possibility of some connections between their electronic

structures. In fact, NaAlSi has the same structure as the Fe-pnictide “111” compounds,

with Al being tetrahedrally coordinated by Si (analogous to Fe being tetrahedrally co-

ordinated by As). In spite of their structural similarities, these compounds have major

differences; for example, the Fe pnictides are 3d electron systems with magnetism, while

NaAlSi is an sp electron system without magnetism.

Third, NaAlSi is the isovalent sister (one row down in the periodic table for each

atom) of LiBC. LiBC itself is (in a sense) isovalent and also isostructural to MgB2;

however due to the B-C alternation around the hexagon in the honeycomb-structure

layer, LiBC is insulating rather than conducting. When hole-doped while retaining the

same structure, Li1−xBC has stronger electron-phonon coupling than does MgB2 [50].

While NaAlSi has a substantially different structure than LiBC, its isovalence and its

combination of covalence with some ionic character is shared with LiBC.

Yet another closely related compound is CaAlSi, whose two different stacking poly-

morphs and parent structure superconduct in the 5–8 K range [49, 131]. Linear-response

and frozen-mode calculations indicate electron-phonon coupling is the likely mechanism;

in particular, an ultra-soft phonon mode appears and is suggested to play a role in

the superconductivity [132–137]. It is curious that in this compound, where divalent

Ca (comparing it with NaAlSi) contributes one additional electron into the Al-Si sp

bands, the preferred structure is that of AlB2 (i.e., MgB2) with sp2 planar bonding

[132, 133, 135] rather than the more sp3-like bonding in NaAlSi. Electronic structure
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Figure 5.1. Crystal structure obtained using VESTA [12] of NaAlSi. Four Si atoms
tetrahedrally surround an Al atom, and these Al-Si networks sandwich the Na atoms.
The unit cell is outlined in black.

calculations show that CaAlSi has one electron in the conduction band above a bonding-

antibonding band separation at the NaAlSi band-filling level, a situation which would

not appear to be particularly favorable for sp2 bonding.

In this paper we analyze first-principles electronic structure calculations that reveal

that NaAlSi is a naturally self-doped semimetal, with doping occurring—thus charge

transfer occurring—between covalent bands within the Al-Si substructure and 2D free-

electron-like bands within the Al layer. The resulting small FSs are unusual, complicated

by the small but seemingly important interlayer coupling along the crystalline z-axis.

5.2 Computational Methods

First-principles, LDA calculations were carried out using the full-potential local-orbital

scheme [94]. A k-point mesh of 20 × 20 × 12 was used, and the Perdew-Wang 92 ap-

proximation [79] was applied for the exchange-correlation potential. The experimental

lattice constants obtained by Kuroiwa et al. [126] (a = 4.119 Å and c = 7.632 Å) and

internal coordinates of zNa = 0.622, zSi = 0.223, published by Westerhaus and Schuster

[138], were used in our calculations.
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5.3 Electronic Structure

5.3.1 Discussion of the band structure

The calculated band structure of NaAlSi is shown in Fig. 5.2. As expected, the Na

ion gives up its electron to the Si-Al-Si trilayer (see Fig. 5.1), which may have some

ionic character, though it is not easy to quantify (the valence bands have much more Si

character than Al character, seemingly more than suggested by their number of valence

electrons). There are several readily identifiable classes of bands. Two primarily Si 3s

bands, with a small amount of Al 3s character, are centered 9 eV below the Fermi level

εF and have a width of 2.5 eV. Above them there is a six-band complex of Al-Si s-p bands

(heavily Si) that are very nearly filled, the band maximum only slightly overlapping εF .

Above εF lie non-bonding and antibonding bands, and the Na s bands. Among these

there are a pair of distinctive bands, which can be identified most easily by their Al s

character in the top panel of Fig. 5.2. These bands are nearly free-electron-like with

large dispersions, and cross many other bands with little mixing. Along Γ-M they are

degenerate and easily identifiable in Fig. 5.2, as they disperse up through the Fermi level

to nearly 10 eV at the M point. Along Γ-X, and similarly at the top of the zone Z-R, they

are distinct: one again disperses upward rapidly, cutting through many other bands, also

to nearly 10 eV at X; the other disperses much more weakly to X, with a bandwidth

of about 2 eV. Their Al s character and nearly vanishing Si character identify these as

free-electron states, in which electrons move down channels of Al atoms separately in x

and y directions. (Note that their lack of kz dispersion identifies them as planar bands.)

There is some coupling to the states in a parallel channel of Al atoms, giving rise to the

2 eV transverse dispersion. These bands lie 0.5 eV below εF at Γ and contain electrons.

Without interference with other bands near the Fermi level and supposing them to be

isotropic in the plane (but see below), such FSs might include 3–4% of the area of the

zone, which would equate to an intrinsic electron doping for two bands, both spins of

around 0.12–0.16 carriers per unit cell, and the concentration of hole carriers would be

equal. The anisotropy, discussed below, makes the actual carrier concentration much

lower.

The small overlap of valence and conduction bands results in semimetallic character
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Figure 5.2. Band structure, with projected fatbands, of NaAlSi. Top panel: the Al
3s character of bands is indicated by broadening. A doubly degenerate pair of broad
bands is evident along the Γ-M direction. Middle panel: Al 3p character is weak below
2–3 eV. Bottom panel: Si 3s (black) bands below −8 eV, and Si 3p in the valence bands
and lower conduction bands.

and small Fermi surfaces. The valence bands are quite anisotropic. Looking at the

valence bands along Γ-X, one might try to characterize them as one “heavy-hole” and

one “light-hole” band, degenerate at Γ, with the band maximum lying 0.13 eV above εF .

However, the heavy hole band is actually almost perfectly flat for the first third of the
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Γ-X line, before dispersing downward across εF and farther below. Due to this flatness,

the band cannot be characterized by an effective mass. The conduction bands contribute

the pair of light electron bands described above. In addition, one conduction band dips

slightly below the Fermi level along Γ-M near M.

The fatbands representation in Fig. 5.2 that reveals the dominant band character

shows that the Si 3px, 3py, and Al 3s orbitals dominate the valence states near εF . As

anticipated from consideration of the layered structure as mentioned earlier, the elec-

tronic structure is quasi-2D, with generally small dispersion along kz near εF . However,

the small kz dispersion of one band is important in determining the geometry of the FSs,

as discussed in more detail below.

5.3.2 Density of states

Figure 5.3 shows the total, partial, and projected DOSs of NaAlSi, in units of states per

eV per unit cell. The Na contribution near the Fermi level is negligible and thus not

shown. Except for a strong dip (“pseudogap”) near the Fermi level and a less severe

dip in the −3 to −4 eV range, the DOS hovers around 3 states/eV throughout both

valence and conduction bands. Within the pseudogap encompassing the Fermi energy,

there is an anomalous sharp and narrow peak with εF lying on its upper slope, as noted

previously by Kuroiwa et al. [126]. The value of N(εF ) is 1.1 states/eV (both spins).

We discuss below the FSs of both hole (Si) and electron (Al) character.

It seems clear that the transport properties and low-energy properties (which have

not yet been reported), and in particular the superconductivity of NaAlSi, are intimately

associated with this sharp and narrow peak in the DOS, which includes the Fermi level.

The projected DOS shows the flat bands that give rise to this peak are very strongly

Si-derived. There is Al 3s character that turns on just below εF , but it is relatively small

compared to the Si character at εF , and its magnitude remains low and nearly constant

through the peak. There is Al 3p character of the same magnitude in the vicinity of the

Fermi level.

Due to the curious nature of the peak and its importance because it lies very near

εF , we have investigated its origin. The top edge of the peak coincides with the flat band

along Γ-X at 0.13 eV. The width of the peak, about 0.35 eV, must be due to dispersion
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Figure 5.3. Total and partial (atom- and orbital-projected) DOSs of NaAlSi. Top panel:
Total and atom-projected DOS in a 20 eV-wide region, showing the pseudogap centered
at the Fermi level (the zero of energy) punctuated by the curiously narrow and sharp
peak at the Fermi level. Middle panel: expanded view of the peak, and the variation
of the DOS near the Fermi level, separated into Si s and p contributions. Lower panel:
the Al s and p character; the s character “turns on” just below the Fermi level.

and band mixing away from the symmetry lines. Since these effects are not evident in

the band structure, we have examined the bands off symmetry lines, and specifically in

the kz = 0.6π/c plane, since this is the value of kz where the weakly dispersing band near

εF crosses the Fermi level. The bands in two directions in the plane, from (0.042π/a, 0,

0.6π/c) to two zone boundary points are pictured in Fig. 5.4. The Al-derived conduction

band is highly dispersive, and moreover hardly mixes with the valence bands, so it is

not relevant. Although only 0.042π/a off the Γ-Z line, the valence bands’ degeneracy is

split by 0.2 eV, and in the kx direction one band is strongly dispersive downward, while
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Figure 5.4. Bands along two lines in the kz = 0.6π/c plane, near the Fermi level,
showing a flat band (one of the two Si-derived valence bands) lying at the energy of
the DOS peak.

the other is flat halfway across the zone, as is also the case for kz = 0 (the original band

structure plot). It is this region of the zone, and this band, that contributes to the peak,

and is not due to mixing of bands but rather to small but important disperion along kz

but practically no dispersion in kx until halfway across the zone.

Nonetheless, the slope of the DOS at εF is rather steep, and this feature, along with

the low value of N(εF ), may give rise to high thermopower for the material, as often

occurs in doped semiconductors. The standard low-temperature limit of thermopower

(the Seebeck coefficient tensor) S(T ) in semiclassical Bloch-Boltzmann theory is

S(T ) → −π
2kB
3e

d lnσ(ε)

dε

∣∣∣∣
εF

kBT. (5.1)

The conductivity tensor σ(ε) can be written in terms of the average velocity (v⃗(ε))

product, DOS, and scattering time τ(ε) over the constant energy (E) surface:

σ(ε) = 4πe2⟨v⃗(ε)v⃗(ε)⟩N(ε)τ(ε). (5.2)

The thermopower thus picks up contributions from the energy variation of three quan-

tities: the dyadic product ⟨v⃗v⃗⟩, N(ε), and τ(ε). Often the energy dependence of τ

is neglected, out of lack of detailed knowledge, though it also can be argued to fol-

low roughly 1/τ(ε) ∝ N(ε) for elastic scattering. The energy dependence of v2(ε) also

counteracts the energy dependence of N(ε). Nevertheless it is observed that materials
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with large slope in N(ε) frequently have large thermopower. For NaAlSi we calculate

d lnN(ε)/dε|εF = −4.0 eV−1. This value can be compared with other materials that

have fine structure near the Fermi level: TiBe2, where d lnN(ε)/dε|εF = 10–12 eV−1

and N(εF ) also is much larger [139]; and MgCNi3 with its very impressive peak very

near εF , for which d lnN(ε)/dε|εF ranges from −15 to −20 eV−1 [140].

For a diagonal conductivity tensor, as is the case here, the energy derivative of

diagonal elements of σ that occurs in Eq. 5.1 can also be expressed, straightforwardly

from the expression given by Ashcroft and Mermin [141] following an integration by

parts, as
1

σ

dσ

dε
=
d ln τ(ε)

dε
+M−1(ε)[v2(ε)]−1, (5.3)

where M−1(ε) is (a diagonal element of) the inverse mass tensor (second derivative of

εk) averaged over the constant energy surface. This expression provides an alternate

viewpoint to the usual expression follow from the equations above,

d lnσ

dε
=
d ln τ(ε)

dε
+
d ln v2

dε
+
d lnN(ε)

dε
. (5.4)

and this latter expression is more stable to evaluate numerically.

For any quantitative estimate for a semimetal, the expression must be generalized to

two-band form (electrons and holes). The valence and conduction bands have differing

signs of their effective masses, and for NaAlSi the effective mass M will be energy

dependent (the bands are not simply parabolic at E(εF )). The energy variation of the

scattering time for elastic scattering might lead to a simplification, since it should be

dominated by the availability of final states—i.e.,

d ln τ(ε)

dε
≈ d lnN(ε)

dε
(5.5)

holding separately for electrons and holes.

A significant complication arises, however, because the thermopower is not a response

function itself, but rather the ratio of two response functions, each of which involves a

sum over bands. In addition, the temperature dependence of the electron and hole

chemical potentials (hence carrier densities) are coupled. Even in the simple case of a

semimetal arising from quadratic bands, the expressions lose any pedagogic value, al-

though their evaluations require modest numerical calculations.[142] The generalization
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Figure 5.5. Views from the xy-plane (left) and top (right) of the FSs of NaAlSi, centered
at Γ. The blue (dark) surfaces enclose holes and the yellow (light) surfaces enclose
electrons.

to non-quadratic bands as in NaAlSi is beyond the scope of this paper, though a mea-

surement of the thermopower might make it worthwhile to perform the calculation and

make the comparison.

5.3.3 Unusual Fermi surfaces

Fig. 5.5 depicts the calculated FSs. In spite of the generally 2D band structure, the

small kz dispersion of bands at εF make some of the FSs surprisingly three-dimensional.

Electron pockets and hole pockets coexist in the Brillouin zone, with electron and hole

concentrations necessarily being equal.

Hole surfaces. Four hole “fan-blade” surfaces lie oriented in the xz- and yz-planes.

At the center, extending from Γ halfway to Z, lies a long and narrow surface with square

cross section. The top view allows the origin of these surfaces to be understood. The
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cross sections in the xy-plane are of two ellipses that are very anisotropic (in the xy-

plane) and at right angels to each other. Each corresponds to a dispersion that is weak

in one direction (the long major axis) and strong in the other (minor axis). These bands

would intersect, but in fact are intersected by the electron band that cuts a squarish hole

(rotated by 45◦), within which the elongated hole surface inside re-emerges.

Electron surfaces. In the bottom panels of Fig. 5.5, the squarish electron surface (with

kz variation and resulting holes, shown in the lower two panels of Fig. 5.5) that cuts the

aforementioned hole surface is pictured, and substantiates the discussion provided just

above. In addition, there are simple electron ellipsoids centered along the Γ-M lines. It

is curious that in a band structure that is for the most part strongly 2D, all the FSs have

a rather definite three-dimensional character. Although the bands show little dispersion

along Γ-Z, the bands just above the the Fermi level are quite different depending on

whether kz = 0 or kz = π. In particular, the lowest band along R-A is rather flat,

but the lowest conduction band along X-M has a dispersion of nearly 2 eV. Similar

comparisons can be made for the bands along Γ-X and Z-R. The kz dispersion is not

nearly as strong near kx = ky = 0, which is clear from both the band structure and the

FS.

Short discussion. It was noted in the Sec. 5.1 that the NaAlSi structure is the same

as the Fe-pnictide “111” structure. Moreover, in both compounds, the relevant bands

involve only the (Si-Al-Si or As-Fe-As) trilayer. The top view of the fan-blade surfaces

have characteristics in common with those of some of the Fe pnictides,[143, 144] all of

which have this same trilayer. The similarity is that the top view of the fan blades (if

one ignores the diamond-shaped cutout at the intersection, centered at Γ) appears to

show intersecting FSs, neither of which has the square symmetry of the lattice.

Such occurrence of intersecting FSs, each with lower symmetry than the lattice, has

been analyzed for LaFeAsO (a “1111” compound) by Yaresko et al. [145]. A symmetry of

the Fe2As2 (also Al2Si2 substructure is a non-primitive translation connecting Fe atoms

(respectively, Al atoms) followed by z-reflection. This operation leads to symmetries

that allow kz = 0 bands to be unfolded into a larger Brillouin zone (that is, a “smaller

unit cell” having only one Fe atom) which unfolds the band structure and the intersect-

ing FSs. The NaAlSi FSs appear to have this similar crossing (albeit interrupted by
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Figure 5.6. Isosurface of the WFs for (a) Si 3px and (b) Si 3pz. Na atoms are large and
yellow (light) colored, Si atoms are small and blue (dark) colored. The two colors of
the isosurface represent different signs. (c) The tight-binding fatbands band structure
described in the text for the WFs, compared to the DFT band structure (black lines).

the free-electron bands), and the highly anisotropic dispersion is due to distinct (but

symmetry-related) hopping along each of the crystal axes. In this respect NaAlSi may

clarify the electronic structure of the pnictides: by analogy, there are separate bands

that disperse more strongly along the (1, 1) direction or the (1,−1) direction, and give

rise to the intersecting, symmetry-related surfaces. In NaAlSi the bands are much more

anisotropic in the plane (approaching one-dimensional), making such character much

clearer. A difference that complicates the analogy is that in the pnictides the bands near

εF are derived from the Fe atoms, which comprise the center layer of the trilayer, whereas

in NaAlSi the bands under discussion are derived from the Si atoms, which comprise the

two outer layers.
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px py pz

a

px 761 60

py -62 60

pz 60 60 -40

2a px 128 27

b

px 361 300 360

py 300 361 360

pz 360 360 360

b∗

px 12 5 50

py 5 12 50

pz 50 50 185

Table 5.1. Selected hopping integrals in meV for the Si 3p WFs along the vectors
a = (a, 0, 0) (hopping within a Si layer), b = (a/2, a/2, d) (hopping across an Al layer),
and b∗ = (a/2, a/2, c − d) (hopping across a Na layer). d is the distance in the z
direction between Si atoms above and below Al planes.

5.3.4 Wannier functions

Pictured in Fig. 5.6 are symmetry-projected Wannier functions (WFs) projected onto Si

3p orbitals. The extension of the WFs shows considerable involvement from nearby Al

and Si atoms, and in addition have some density extending into the Na layers. The px

WF consists of an atomic px function, with its density shifted downward by the bonding

contribution of Al sp3 hybrid orbitals. Beyond the px lobes the nearest Si atoms form a

bonding lobe that connects to the “small” side of the Al sp3 function. The large px lobes

and the extra contribution from nearby Si atoms are responsible for the largest hopping

amplitudes shown in Table 5.1, although there is some phase cancellation between the

px lobe and the lobe lying beyond the nodal surface.

The pz WF has one lobe extended well into the Na layer; this is responsible for the

largest hoppings along b∗ in Table 5.1, and they create the large dispersion in the pz

bands seen in Fig. 5.6(c). Again, the Al atoms contribute with an sp hybrid orbital,

although it appears to be more sp2-like than sp3-like. There is also a “ring” struc-

ture below the Al layer, where an sp hybrid orbital from the Si atoms forms a bonding

combination, but it is antibonding with the pz function on the central Si. The largest



DRAFT Chapter 5. NaAlSi: A Self-Doped Semimetallic Superconductor 66

Γ X M Γ Z R A
-1

0

1

E
ne

rg
y 

(e
V

)

z
Si

 = 0.213c
z

Si
 = 0.223c (exp.)

z
Si

 = 0.233c

Figure 5.7. Comparison of band structures near εF for different zSi values.

contribution to near-neighbor hopping in the Al-Si plane between pz and px or pz is most

likely due to this ring structure, as the p lobes are confined to the inside of a square of

near-neighbor Al atoms, which are only edge sharing with the nearest Si atoms along b

vectors. This is the likely reason that all the hoppings along b are approximately of the

same magnitude. The dispersion which creates the FSs along Γ-Z (seen in Fig. 5.5) is

composed only of the px and py WFs. This is not caused by the large hoppings, but by

smaller hoppings along b∗ between px and py WFs. Without these small hoppings, the

band just above εF is dispersionless along Γ-Z.

5.4 Response to changes

5.4.1 Electron-ion coupling

A deformation potential D is the shift in an energy band with respect to sublattice atomic

displacement. One can freeze in phonon modes to calculate deformation potentials, which

at the FS are directly connected to electron-phonon matrix elements [146].

Moving the Si atoms in the z direction by ±1% of the experimental parameter, such

that the tetrahedra surrounding the Al atoms stretch or flatten (while remaining centered

on Al), gives an average deformation potential of ∼0.8 eV/Å over five band positions

near the Fermi level. The largest shift is for the ellipsoidal electron pockets, with D ∼ 1.2
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eV/Å. These ellipsoids disappear when the Si atoms are displaced toward the Al plane

(see Fig. 5.7).

Flattening the Na bilayer, so as to remove the buckling of the Na atoms, requires

a (very large) 12% change in the z component of the Na atoms. We chose such a

large displacement because we do not expect a substantial deformation potential for Na

movement. Even this large displacement does not alter very much the valence bands, as

expected, and the hole FSs remain virtually unchanged. The conduction bands at the

Fermi level however shift appreciably, resulting in a modulation of the electron ellipsoids

along (1,1) near M. In addition, the accidental four-band near-degeneracy that is 0.5 eV

above εF at M splits the two separate doubly-degenerate states, opening up a gap of

∼0.7 eV, which is equivalent to a deformation potential of ∼0.8 eV/Å (but the bands

are not at εF ).

These values of D are very small when compared to that of the E2g phonon mode

in MgB2, which has a value of 13 eV/Å [35]. The C atom displacements in B-doped

diamond (Tc = 4 K) give rise to two large deformation potentials of 14 eV/Å and 7

eV/Å [147]. However, these are the largest values known, far larger than in several good

superconductors. In Li2Pt3B, a superconductor at Tc = 8 K, the deformation potential

was calculated for Pd motions in the ⟨011⟩ direction. For about 25 calculated values

near the Fermi surface, the mean value was D = 1.15 eV/Å, with values covering a wide

range from 0.15–4 eV/Å [148]. Values for motions of the Li atom in this compound were

about an order of magnitude smaller. The values we calculate for NaAlSi are comparable

to the mean value for Pt motion in Li2Pt3B, which is not certain to be phonon-coupled

but for which no serious alternative has been suggested. The large variation calculated

in Li2Pt3B warns against drawing any conclusions from a small sample.

5.4.2 Magnetic susceptibility

When an external magnetic field is applied to a material, its quasiparticle energies shift

and magnetic dipole moments are induced. The material’s magnetic spin susceptibility

χ is the degree to which it can be magnetized in the magnetic field and is given by

χ =
∂M

∂H
= (∂2E/∂M2)−1.
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Figure 5.8. Blowup of the band structures of NaAlSi and NaAlGe near εF .

where M is the volume density of the magnetic dipole moment (a microscopic current),

and H is the external magnetic field (associated with macroscopic currents). Fixed-spin-

moment calculations were conducted to produce an energy-vs.-moment E(M) curve,

resulting in a susceptibility of χ = 1.30 µ2B eV−1 (per u.c.). The susceptibility has

contributions from electron-electron interactions, but it is related to the noninteracting

Pauli susceptibility χ0, as follows:

χ =
χ0

1− IN(εF )
=

µ2BN(εF )

1− IN(εF )
. (5.6)

I is the Stoner enhancement factor, and the relation χ0 = µ2BN(εF ) was used to obtain

the last expression. Using the calculated bare Pauli susceptibility χ0 = 1.11 µ2B eV−1,

exchange-enhancement of the susceptibility is

S =
χ

χ0
= 1.17.

A small enhancement of roughly this magnitude (17%) is expected for an sp metal; for

comparison, Janak [149] obtained the value S = 1.34 for Al directly from density func-

tional theory in the H → 0 limit.
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5.4.3 Comparison to NaAlGe

Isostructural and isovalent NaAlGe is not superconducting (above 1.6 K, at least), so it

should be instructive to compare its electronic structure to that of NaAlSi. Using the

experimental lattice and internal parameters of NaAlGe [138], we have calculated its

band structure and compared it with that of NaAlSi on a rather fine scale in Fig. 5.8.

The band structures are extremely similar near εF , the only noticeable difference being

that the band along Γ-M near M does not cross εF in NaAlGe. The free-electron band

is also identical.

Supposing (first) the tiny bit of FS along Γ-M cannot account for the difference in

superconducting behaviors, the factors relevant for electron-phonon coupling will be the

difference in mass (Ge is more than twice as heavy as Si) and the difference in elec-

tronic character, which can affect force constants and electron-phonon matrix elements.

Thus electron-phonon coupling that is concentrated in the Si vibrations might be consis-

tent with the decrease (or disappearance) of Tc. However, an electron-phonon coupled

semimetal with Tc = 7 K would be remarkable.

Another possibility, especially considering the low energy electronic behavior to be

expected in a two dimensional compensated semimetal with low carrier density, is that

the pairing mechanism is electronic rather than phononic. In three dimensions purely

electronic pairing mechanisms have attracted serious study (albeit in the homogeneous

electron gas approximation, by Sham and collaborators [150, 151] for example). How-

ever, 2D semimetals introduce new features that deserve detailed study, such as the 2D

plasmon that goes to zero as
√
q. A model in which the electronic response of a 2D

electronic superlattice plays a central role in the mechanism has been previously studied

[152, 153] using a model of parallel conducting sheets separated by a dielectric spacer.

This model may be useful as a starting point for understanding NaAlSi, with or without

phonon processes.

Another possibility is that the small FS pockets are important. In the scenario that

superconductivity arises from an enhancement of electron-phonon coupling, it would

require a new and unusual contribution of a small density of additional electrons with

non-adiabatic coupling to phonons. These tiny pockets will contribute additional low fre-

quency electronic response as well, including low frequency plasma oscillations, interval-
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ley electron-hole polarization at large momentum, and additional interband transitions.

As noted in the Introduction, NaAlSi adds another low carrier density, two dimensional

system to the list of unusual and unexplained superconductors, and it may be especially

useful for further study specifically for the reason that it does not contain any transition

metal.

5.5 Concluding Remarks

The classes of materials that contain relatively high temperature superconductors [154]

continues to expand. Superconductors derived from doped 2D semiconductors pose many

of the most interesting issues in superconductivity today. The cuprates and the Fe-

pnictides (and -chalcogenides) are strongly magnetic, and comprise one end of the spec-

trum (though they are themselves quite different). On the other end lie those with little,

perhaps negligible, magnetism: electron-doped ZrNCl and HfNCl, and electron-doped

TiNCl. There are several other, lower-Tc systems, whose behavior seems different still

(hydrated NaxCoO2, Li1−xNbO2, and several transition-metal disulfides and diselenides).

A common feature of most of these systems is that they have strong 2D features and

have a small, but not tiny (as in superconducting doped SrTiO3), concentration of charge

carriers, often in the range of 0.05–0.15 carriers per unit cell (u.c.). These materials

also have ionic character, although in the Fe pnictides and NaAlSi the ionic character

is not easily quantified. NaAlSi differs from the other mentioned superconductors in

that it has sp carriers—the others have carriers in d bands—and it is self-doped, being

a compensated semimetal. Our results suggest that a useful view of NaAlSi is that

it be regarded as arising from an underlying ionic semiconductor, but that it has a

small negative gap rather than a true gap. Without the overlap of the valence and

conduction bands, it would be a 2D, partially ionic, partially covalent semiconductor

like the aforementioned nitridochloride compounds, which superconduct in the 15–25

K range. Comparing the characteristics of these two classes of superconductors should

further the understanding of 2D superconductivity.

A further distinction of NaAlSi is that, in spite of a strongly 2D band structure

overall, the small kz dispersion of the doubly degenerate band at the Fermi level gives

three dimensional Fermi surfaces. One of these two bands also has extremely strong
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anisotropy within the 2D plane, especially for a compound with tetragonal symmetry,

which further serves to produce intricate Fermi surfaces and contributes to the peculiar

peak in the density of states at εF .

In summary, NaAlSi contains a number of peculiarities compared to related super-

conductors with strongly layered structure, and it seems certain that the pairing mech-

anism, whether phononic or electronic, will require an increase in understanding of the

relatively low energy electronic behavior in this compensated semimetal. Further study

of this compound should help to generalize our understanding of superconductivity in

low density, layered materials.
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Chapter 6

Determining the Structure of

Superconducting CaLi2

This work was done in collaboration with W. J. Evans and H. Cynn of Lawrence Liver-

more National Laboratory and W. E. Pickett and R. T. Scalettar of UC Davis.

6.1 Introduction

Hexagonal CaLi2, though not known to superconduct at ambient pressure, has been re-

ported to exhibit superconductivity at high pressures, its transition temperature reach-

ing as high as 13 K near 40 GPa [13, 14]. This discovery came shortly after Feng et al.

theorized the possibility of superconductivity for the system [62].

It is natural to look for superconductivity in CaLi2, as Ca and Li each possess a high

superconducting transition temperature, and CaLi2 is the sole intermetallic compound

at ambient pressure between the two elements. A maximum superconducting transition

temperature of 14 K at 30 GPa has been observed in Li [5], and Ca, though not known

superconductor at ambient pressure, has the highest Tc of all elements—25 K at 160

GPa [60]. Ca and Li are simple, free electron-like metals at ambient pressure, yet they are

both easily compressible, allowing room for radical changes in their electronic properties

under pressure. As pressure is increased, the overlapping of ionic cores in CaLi2 causes

the conduction electrons to be pushed out to interstitial sites—a phenomenon observed

in elemental Li [155]—forming a low-valence charge distribution between the nearest

Li-Li neighbors. This results in lower symmetry and a drastic departure from the nearly
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free electron model to one closer to that of a d -electron metal. Contradictory to these

observations, however, the bandwidth of CaLi2 decreases upon pressurization [62]. Our

interest in CaLi2 derives from such anomalous characteristics, and yet we may also find

some familiar features in the material stemming from those same anomalies. For example,

the redistribution of valence electrons in the system suggests regions of electron-phonon

interaction equivalent to the B planes in MgB2.

What with Li having a maximum Tc that is similar to—and that is occuring around

the same pressure as—CaLi2, it cannot be ruled out that the compound segregates into

its elemental components at higher pressures, allowing for Li to superconduct. Debessai

et al. conducted x-ray diffraction on CaLi2 up to 54 GPa, and showed a gradual struc-

tural phase transition above 23 GPa to an orthorhombic structure [13]. No dissociation

of the compound was observed. These measurements however were done at 150 K, not

in the superconducting temperature range. tse-cali2 et al. also examined the structure

of CaLi2, with contrary results to those of Debessai’s group; they observed an increas-

ing amount of Ca and decreasing amount of CaLi2 starting at 14 GPa, suggesting the

possibility of dissociation [63]. They support this with enthalpy calculations that are in

agreement with their experimental observation. But again, this investigation was done at

room temperature and up to only 20 GPa. Lastly, Xie et al.’s enthalpy calculations pre-

dict dissociation at pressures 20–35 GPa, but the elements recombine into a monoclinic

structure for P = 54–105 GPa [64].

In our study, high pressure XRD measurements in a diamond anvil cell were per-

formed at varying low temperatures in order to ascertain the structure of CaLi2 in the

superconducting phase and beyond. At 10 K, our results show a structural distortion

beginning at 24 GPa, and no elemental dissociation, agreeing more so with the findings

of Debessai.

6.2 Experimental Procedure

Our CaLi2 sample was synthesized by D. P. Young and A. B. Karki of Lousiana State

University, by placing stoichiometric amounts of Ca and Li metal in an aluminum oxide

crucible and melting them together in a radio-frequency induction furnace under an

atmosphere of ultra high purity argon gas. The temperature was slowly raised to 900
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Figure 6.1. XRD pattern of CaLi2 at 298 K and 4.3 GPa. Unmarked peaks are from
unknown impurities.

◦C, until both metals melted together. The furnace was maintained an additional 10–15

minutes and shut off. The sample was then removed and immediately sealed in a quartz

tube under vacuum to prevent oxidation.

Angle-dispersed XRD was carried out using a membrane DAC at the HPCAT beam-

line (ID-B) of the Advanced Photon Source. The x-ray beam had a diameter of 10 µm

and an energy of 31 keV. Brilliant-cut diamonds with 0.3 mm flats and a Re gasket were

employed in the DAC. The brittle CaLi2 was broken up, and the powder was loaded into

the DAC in an argon glove box to prevent oxidation. There was no pressure medium,

and gold was used as an internal pressure sensor. To lower the sample temperature, the

DAC was inserted in a CRYO Industries He gas-flow cryostat. Temperatures as low as

10 K and pressures as high as 38 GPa were achieved. The XRD patterns were recorded

onto a MAR 345 image plate detector, and the Debye-Scherrer images were integrated

by the FIT2D software to produce the diffraction patterns, which were subsequently

analyzed using the program XRDA [156].

6.3 Results

XRD measurements were done in the temperature range of 9–298 K and up to 50 GPa

in pressures. Fig. 6.3 shows the pattern of CaLi2 at room temperature and 4.3 GPa, and

confirms the MgZn2-type Laves structure. At this pressure, the lattice parameters are
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Figure 6.2. Lattice parameters c and a vs. pressure of CaLi2. Our data is overlayed
with Debessai’s (‡Ref. [13]). [Note: This figure will be replaced!]

a = 5.9504 Å and c = 9.6717 Å which match well with the equations of state published

in Ref. 13 (see Fig. 6.3 for a comparison). The unassigned peaks are unknown but

speculated to be due to oxidized impurity phases. A significant amount of FCC Ca is

apparent, but it does not increase or decrease as pressure is raised.

In Fig. 6.3, XRD patterns at 10 K and different pressures have been selected. The

cryostat has a beryllium window through which the x-rays pass, which creates unwanted

diffraction patterns. The size of the window also limits the extent of the diffraction angle

2Θ, making it all the more difficult to determine the structure. The HCP structure
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Figure 6.3. XRD patterns for CaLi2 at 10 K and various pressures. Black dots indicate
Au peaks below. Gray bars cover peaks diffracted by the Be window of the cryostat.
The bottom three plots fit the HCP structure nicely; the top-most pattern is distorted
from HCP.

remains stable up to 24 GPa, at which point peak refinement becomes difficult. Upon

further compression, the structure strays even further away from the original HCP. Our

pattern at 37.5 GPa and 10 K is not unlike Debessai’s at 35 GPa at 150 K, but whether

this new structure is orthogonal, monoclinic, or, as Feng has considered, an elongation

or compression in only one lattice direction [62] is unclear. According to ac susceptibility

measurements performed on CaLi2 [13], our sample should be in the superconducting

regime for the top XRD plot in Fig. 6.3. There is no evidence of increased elemental Ca

there.

Fig. 6.3 is the pressure-vs.-temperature phase diagram for CaLi2. Included are all

of our results from this experiment and the results of Debessai as well as Matsuoka. As

shown, the hexagonal structure is stable for all low pressures, regardless of temperature.

Whether T = 10 K or 150 K, deviation from HCP occurs around the same pressure of 24
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Figure 6.4. The structural phases of CaLi2 (†Ref. [14]. ‡Ref. [13]. [Note: This figure
will be replaced!]

GPa. More experiments need to be done in order to conclusively determine the structure

when CaLi2 is superconducting.

6.4 Conclusion

In summary, our research on CaLi2 shows that elemental decomposition is unlikely in

the superconducting regime, but a gradual phase transition to an as-of-yet unknown

structure does occur. Seeing as how our data match well with what is reported in

Ref. [13], it is likely the superconductor is orthorhombic.
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Chapter 7

PuPt2In7: A Computational and

Experimental Investigation

This work was done in collaboration with F. Ronning, J. X. Zhu, E. D. Bauer, J. N.

Mitchell, P. H. Tobash, B. L. Scott, and J. D. Thompson of Los Alamos National Labo-

ratory, Y. Jiang and C. H. Booth of Lawrence Berkeley National Laboratory, and W. E.

Pickett of UC Davis.

7.1 Introduction

Magnetically mediated superconductivity in heavy-electron systems, specifically Ce and

U compounds, has been known to exist for over 30 years [29, 53, 54, 157]. Among the

known heavy fermion superconductors a particularly rich family include the 115, 127,

and 218 structures which are all variants of the ‘103’ parent compound, crystallizing

in the HomConGa3m+2n architecture (see Fig. 7.1) [158]. Many of these are known to

be superconducting [30, 56, 159–166]. It is widely expected that in these systems, spin

fluctuations are what bind the Cooper pairs together, and the balance between these

local-moment fluctuations and long-range magnetism toward a quantum critical point is

crucial for superconductivity to take place. There are however compounds that struc-

turally belong in this family but don’t superconduct, as they tend to shy away from

this ideal balance. For example, the f electrons in the U-115s, -218s, and the Np-115s

are too itinerant to exhibit superconductivity [167–172], and in AmCoGa5 they are too

localized [173, 174]. CeRhIn5, CePt2In7, and Ce2RhIn8, all nonsuperconducting anti-
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Figure 7.1. Crystal structures obtained using VESTA [12] of some Pu-based com-
pounds. The Pu atoms are colored red, Pt/Co atoms dark blue, and In/Ga atoms light
green.

ferromagnets at ambient pressure, require compression to delocalize the f electrons and

make them available for electron-electron pairing [159, 165, 175]. Pu-based compounds

are particularly interesting, because within the actinides it is the Pu that straddles the

line between bearing localized and itinerant 5f electron states.

Pu compounds are often considered the hole analog of their Ce counterparts, for

having five f electrons in the 5f5/2 spin-orbit split multiplet. In fact, the two 115 sub-

groups manifest very similar behaviors from their Curie–Weiss-like magnetic susceptibil-

ities [159, 163, 176, 177] to their quasi-two-dimensional Fermi surfaces (FSs) [178–180].

The indide members show remarkably similar properties as well: PuIn3 is a 14 K antifer-

romagnet [181], while CeIn3 is a 10 K antiferromagnet [30], and PuCoIn5 and CeCoIn5

are both 2 K superconductors [160, 166]. Why the Tc’s of the PuCoGa5 and PuRhGa5

superconductors are so much higher however remains elusive.

Based on the impressive list of superconductors discovered in the past 25 years with

2D structures and properties, a guideline can be made that more 2D structures are

more favorable for superconductivity and will therefore give rise to a higher Tc. The
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average spin fluctuation frequency is higher in quasi-2D systems than 3D, and this brings

about a larger Cooper pairing energy [3]. Indeed, the PuRh1−xCoxGa5 (0 ≤ x ≤ 1)

compounds follow a linear relation in Tc vs. axial ratio c/a [182], which is also observed

in CeM In5 (and, interestingly, with an almost identical slope to its Pu-based cousins’)

[177, 183]. Recently, CePt2In7—a structurally and electronically more 2D version of

115—was discovered [165, 184]. Although Tc was not enhanced, it did achieve a maximum

superconducting transition temperature of 2.1 K, comparable to the other Ce-based

115s’.

In this chapter, we report the discovery of the Pu analog to CePt2In7. We find

PuPt2In7 is a mass enhanced paramagnet which lacks superconductivity down to 2 K.

We report electronic structure calculations on PuPt2In7, including densities of states,

band structures, and Fermi surfaces. We present also analogous analyses on isovalent

PuPt2Ga7, which has yet to be synthesized. In addition, we have calculated the constant-

matrix-element noninteracting magnetic susceptibilities of PuPt2In7 and PuPt2Ga7, as

well as PuCoGa5 and PuCoIn5 as points of comparison. While the Fermi surfaces of the

127 compounds is qualitatively distinct from the 115s’, all four Pu compounds exhibit a

row of peaks in the susceptibility at qx = qy = 0.5. We discuss the possible implication

of these results for understanding Pu superconductivity.

7.2 Experiment

Single crystals of PuPt2In7 were grown by the self flux method from the respective el-

ements with an excess of In metal. The reactions were loaded in the ratio Pu:Pt:In

(1:4:30) using 2 cm3 alumina crucibles which were sealed under vacuum in quartz am-

poules. The isolated single crystals crystallized with a plate-like habit and were found to

be PuPt2In7 based on single crystal X-ray diffraction analysis. The single crystal X-ray

data was collected on a Bruker D8 equipped with a APEX2 CCD detector. Full spheres

of data were collected at room temperature and the collections were handled in batch

runs at different ω and ϕ angles. The structure was refined using the atomic coordi-

nates from the isostructural CePt2In7 compound. The data integration and refinement

procedures were completed using SAINT-Plus, SHELXS97, and SHELXL97 programs.

PuPt2In7 stabilizes into a body-centered tetragonal structure (see Fig. 7.1, Table 7.2).
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Space group I 4/mmm

a (Å) 4.5575(7)

b (Å) 4.5575(7)

c (Å) 21.362(6)

Volume (Å3) 443.71(16)

Formula units/cell Z = 2

Atom x y z

Pu 0 0 0

Pt 0 0 0.32626(6)

In1 0 0 0.5

In2 0 0.5 0.2500

In3 0 0.5 0.10597(11)

Table 7.1. Table of structural parameters and atomic positions for PuPt2In7 determined
from single crystal X-ray diffraction.
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Figure 7.2. Fast Fourier Transformed r-space data (open symbol) and the fit (solid
line) for a) Pu LIII-edge and b) Pt LIII-edge. Both EXAFS data were measured at
T = 30 K, with the FT k range of 3.5–13.5 Å−1 and the Gaussian window of 0.3 Å−1.
The r-space fit range is 2.1–5.4 Å for both edges. Here only the real part, Re, and the

amplitude,
√
Re2 + Im2, of FFT(k3χ(k)) were plotted.

While in PuCoGa5 the PuGa3 layer and CoGa2 layer stack alternately, PuPt2In7 has

two layers of PtIn2 for each PuIn3.

To understand the local structure of PuPt2In7, fluorescence x-ray absorption fine
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σ2 R σ2static θcD

N (Å2) (Å) (Å2) (T)

Pu-In(3)/In(1) 12 0.002( 3) 3.224(4) 0.0001(1) 211(2)

Pu-Pu 4 0.004(2) 4.567 0.0015(5) 145(9)

Pu-Pt 8 0.005(3) 4.925 0.0039(4) 238(15)

Pt-In(3)/In(2) 8 0.0003(2) 2.745(6) -0.0003(5) 266(29)

Pt-In(1) 1 0.0003 3.702 0.0009(18) 408(368)

Pt-Pt 8 0.0006(5) 4.561 -0.0001(8) 255(33)

site-interchange Pu/In(1) Pu/In(2) Pu/In(3) Pu/Pt Pt/In(1)

fraction (%) 6±4 15±6 0±4 3±5 18±21

Table 7.2. EXAFS fit results for the Pu and Pt LIII-edges on PuPt2In7. Fit and FT
ranges are listed in the caption of Fig. 7.2. Though we only show single-scattering
peaks shorter than 5.0 Å, all single- and multiple-scattering peaks within the fit range
are included. To obtain a better estimate of the contribution from the farther atoms in
the fit range, the single-scattering peaks between 5.4 and 6.0 Å are also included in the
fit and are held together with one single σ2. Coordination numbers N are held fixed to
the nominal structure. A small vibration of the lattice is allowed by constraining the
shifts of all longer bonds to the shortest bonds and keep the shortest ones free to move.
In addition, in the Pt edge fit, the Pt-Pu pairs at ∼4.92 Å are fixed to the Pu-Pt pairs
with the same R, and σ2 to reduce the fitting parameter. S2

0 , ∆E, and the fit quality
are 0.90(1), −10.0(1) eV, and 7.6% for the Pu edge, respectively, and 0.90(1), −8.1(15)
eV, and 18.20% for the Pt edge. (Note that the bad fit quality for the Pt edge fit and
large uncertainty in the correlated Debye fit for the Pt-In(1) pair are caused by the
background oscillation around 3.5 Å.) The number of free parameters in the fits are 14
for the Pu and 15 for the Pt edge, far below the number of independent data points
as given by Stern’s rule [15], which is ∼23 for both fits. The fraction of ion/ion site
interchange are shown in units of percentage.

structure (XAFS) data were collected at the Stanford Synchrotron Radiation Lightsource

(SSRL) on the Pu and Pt LIII-edges at beamline 11-2, using a half-tuned double crystal

Si(220) monochromator, with a slit height of 0.6 mm and 0.5 mm for the measurement

of each edge, respectively. A six-month old crystal sample was triply contained in a

sample holder with Kapton mylar, and was 45◦ to the incident X-ray beam. 3 scans

were collected for each edge at T = 30, 100, 200 and 300 K with a temperature deviation

of less than 0.2 K. The self-absorption corrected XAFS data are reduced using standard

procedures outlined in Refs. 185 and 186, including fitting an embedded-atom absorption

function µ0(E) using a 7-knot cubic spline function with a maximum photoelectron wave
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vector k of 15 Å−1. The XAFS function is then defined as µ(k)/µ0(k)−1, where µ is the

absorption coefficient, k =
√

(2me/~2)(E − E0) is the photoelectron wave vector, me is

the electron rest mass, E is the incident energy, and E0 is the absorption edge threshold

energy, which is defined arbitrarily to be the half height of the edge and allowed to vary

in the fit.

k3-weighted EXAFS data, k3χ(k), are fast Fourier transformed (FFT) to r space

(FFT(k3χ(k))), with the FFT range of k = 3.5–13.5 Å−1 and Gaussian window of 0.3

Å−1, for both Pu and Pt edges. The r-space EXAFS data are then fit with theoretical

FEFF functions calculated based on the I4/mmm lattice structure. The r-space data

versus fit are shown in Fig. 7.2; the Debye-Waller factors, σ2(T ), for some atom pairs

(< 5 Å) are fit to the correlated Debye model [187] to obtain the static distortion, σ2stat,

and the correlated Debye temperature, θcD (shown in Table 7.2). The Pu occupancy

(∼98±16%) is estimated by allowing the amplitude of the Pu-Pu peak (4.56 Å) to vary

in the Pu edge fit, though the fit quality doesn’t change from the previous fit, which

assumes 100% Pu occupancy. By arbitrarily constraining σ2stat ≥ 0 for the Pu-Pu pair,

the Pu occupancy is estimated to be > 83%. Possible ion/ion site interchange, such as

Pu to In(1,2,3), and Pt to In(1), are also examined using a similar method as in Ref. 188.

From these fits, the percentage of Pu site-interchange with other ions, shown in lower

part of Table 7.2, is estimated to be close to zero within a small error. Hence, the fit

results indicate well ordered local lattice structure around both Pu and Pt ions.

Specific heat data is shown in Fig. 7.3. A fit of the data to C/T = γ + βT 2 between

7 and 13 K gives an enhanced Sommerfeld coefficient of 250 mJ/mol K2 and β = 3.67

mJ/mol K4. Using the formula ΘD = (12/5 ∗ π4nkB)1/3β—where kB is the Boltzmann

constant and n, the number of atoms per formula unit, is equal to 10—we get a Debye

temperature, ΘD = 174 K. The sommerfeld coefficient is larger than that of PuCoGa5

(γ ≃ 100 mJ/mol K2). Thus the value of γ for PuPt2In7 likely represents a reduction

in the characteristic spin fluctuation temperature of PuPt2In7 relative to PuCoGa5. At

temperatures below 7 K, a small hump is seen in the specific heat which may represent

short range correlations. Susceptibility measurements down to 2 K (see Fig. 7.4) have

no evidence for superconductivity or long ranged magnetic order.
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Figure 7.3. (Color online) Specific heat data (C/T ) vs. temperature of PuPt2In7, taken
in zero field (black circles) and 6 T (red triangles). Inset shows the data plotted vs. T 2

along with a linear fit between 7 and 13 K, from which estimates of the Sommerfeld
coefficient and Debye temperature were obtained.
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Figure 7.4. Susceptibility of PuPt2In7 at 5 T.

7.3 Computational Results

Electronic structure calculations using the generalized gradient approximation (GGA)

within density functional theory were carried out withWIEN2k [92], which employs full-
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potential linearized augmented planewaves and local orbitals. We adopted the Perdew-

Burke-Ernzerhof [85] exchange-correlation potential based on the generalized gradient

approximation, and we included spin-orbit (SO) interactions through a second variational

method. We performed calculations with and without the Hubbard U (using the around

mean field double-counting correction [189]) and exchange J ; we used the widely accepted

values of U = 3–4 eV, J = 0.6 eV for Pu [170, 190–193].

The experimental lattice parameters of PuPt2In7 were used. They were also used to

estimate the size of the hypothetical compound PuPt2Ga7, by means of extrapolating the

lattice differences of PuCoGa5 (Ref. 56) and PuCoIn5 (Ref. 166). The inferred lattice

parameters for PuPt2Ga7 are thus a = 4.22 Å and c = 19.51 Å. The same internal

parameters for PuPt2In7 were used for PuPt2Ga7.

Paramagnetic (PM), ferromagnetic (FM), and two different antiferromagnetic (AFM)

calculations were performed for both PuPt2In7 and PuPt2Ga7, and the relative energies

are listed in Table 7.3. AFM I represents a configuration in which the antiferromagnetic

q-vector is (1/2, 1/2, 0), and AFM II has a wavevector of (0, 0, 1/2). In the GGA scheme,

the ground-state configuration of PuPt2In7 is AFM I, but the FM and AFM II systems

become more stable when U is set to 3 eV. At 4 eV, the AFM II configuration has the

lowest energy, with the FM state just 2 meV higher. Regardless of the value of U , the

energy of PM PuPt2In7 stays far above those of the other magnetic configurations—a

contrast from experimental observations. Even though the AMF double-counting method

was implemented specifically for its suppression of magnetism [95], and has correctly

predicted the nonmagnetic ground state for δ-Pu, PuCoGa5, and the Pu-218s [170, 178,

194] when no other double-counting approach has been successful, it fails to have the

same effect on PuPt2In7. A reason for this may be that the distance between the Pu

atom and its nearest neighbor is greater in PuPt2In7 (3.2 Å) than the other compounds

(it is 3.0 Å for PuCoGa5, 2.5 Å for Pu2CoGa8, and 2.6 Å for Pu2RhGa8; δ-Pu does not

have a ligand but the Pu-Pu distance is 3.1Å), which would provide more room for larger

local moments.

PuPt2Ga7’s energies at U = 0 are not unlike PuPt2In7’s, but when U is turned on,

competition for the ground state is not between FM and AFM II but the two antifer-

romagnetic flavors. It is likely that PuPt2Ga7 will also be a paramagnet but with a
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Table 7.3. Relative total energies (in eV) from GGA and GGA+U calculations of dif-
ferent magnetic configurations of the Pu-127s. The AFM I configuration has a q-vector
of (1/2, 1/2, 0), AFM II has one of (0, 0, 1/2). J = 0.6 eV for all U ̸= 0 calculations.

PM FM AFM I AFM II

PuPt2In7

U = 0 eV +1.15 +0.09 0.00 +0.09

U = 3 eV +0.57 0.00 +0.01 0.00

U = 4 eV +0.17 +0.002 +0.04 0.00

PuPt2Ga7

U = 0 eV +0.93 +0.10 0.00 +0.11

U = 3 eV +0.41 +0.03 0.00 +0.001

U = 4 eV +0.06 +0.06 +0.01 0.00

local-moment arrangement that is weaker and qualitatively different.

7.4 Electronic structure

Fig. 7.5 shows the calculated density of states (DOS) of paramagnetic PuPt2In7 from a

GGA calculation without the Coulomb U , and that from a GGA+U calculation (U = 3

eV and J = 0.6 eV are used for any GGA+U calculation mentioned henceforth). In

both pictures, the Pt manifold, predominantly 5d in character in the region shown, ends

near the −2 eV mark and is fully occupied; such is the general case for 4d and 5d metals

in the 115s and 218s. In the GGA case, the two large Pu peaks correspond to the 5f5/2,

5f7/2 SO splitting. The peaks are separated by roughly 1 eV, which is the expected

splitting level for Pu compounds.

With the addition of U , the Pu peaks each split into multiple smaller peaks. The

left-hand peak broadens to span a range of 1.5 eV; the other peak shifts 0.8 eV to the

right and creates a trail of f character up to above 4 eV. The Pu bands widen as a

result of the on-site Coulomb repulsion and exchange interaction J . The DOS at εF is

N(0) = 6.32 eV−1 (down from the GGA DOS of 9.07 eV−1), which gives a noninteracting

electronic specific heat coefficient of 15 mJ/mol-K2. Comparison with the experimentally

measured Sommerfeld coefficient of 250 mJ/mol K2 gives a mass renormalization of ∼10,

which cannot be captured by our static mean-field calculations. Dynamical correlations

as in the Kondo effect are responsible for this discrepancy, as observed for the other Pu
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Figure 7.5. Total and partial DOSs of PM PuPt2In7 from a) GGA and b) GGA+U
(U = 3 eV, J = 0.6 eV) calculations.

compounds in this family.

Fig. 7.6 provides the DOS of nonmagnetic PuPt2Ga7 from GGA and GGA+U cal-

culations. As in PuPt2In7, the Pt 5d states are filled and the Pu 5f peaks, which are

located between −1 and +1.5 eV before the implementation of U , spread to a wider

range when U is turned on. The bands are generally broader compared to PuPt2In7,

due to the smaller structure of PuPt2Ga7 (the smallness of the structure overrides the

shortness of the Ga wavefunction). When the states near εF are decomposed into their

total angular momentum quantum numbers mj , we find the Pu states with mj = ±3/2

dominate the Fermi energy. This is consistent with the idea that the most relevant hy-
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Figure 7.6. Total and partial DOSs of PM PuPt2Ga7 from a) GGA and b) GGA+U
(U = 3 eV, J = 0.6 eV) calculations.

bridization will be between Pu and its nearest neighbors, which are not the in-plane but

off-plane In atoms.

Figs. 7.7 and 7.8 are the band structures of PM PuPt2In7 and PuPt2Ga7 obtained

from GGA+U calculations, with f -weight fatbands. The band structure of PM PuCoGa5

is shown in Fig. 7.9 for comparison. The highly dispersive band, which spans almost 2

eV from Z to Γ and crosses the Fermi energy in PuCoGa5, barely reaches εF in the 127s

and creates a small hole Fermi surface pocket at the center of the zone (see Fig. 7.10).

This indicates a reduction in dimensionality when going from the 115 to the 127, but

the reduction effect is not as obvious when looking at the FSs as a whole; i.e., the
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127 FSs don’t seem necessarily more 2D than those of the 115s, nor vice versa [178].

Careful analysis of the band structures shows that the large 3D sheet which the 127s

bear (colored turquoise in Fig. 7.10) is analogous to the 115s’ large 3D piece (colored

green in Fig. 7.11) and the red sphere centered at Γ, combined. The 127s’ torquoise

sheet is actually doubly layered, creating a membrane that encloses electrons, and the

analogous volume in the 115s is that which is in between the 3D piece and the sphere.

The detachment of these two pieces of FSs is due to the band that starts 0.8 eV above

εF at the Γ point and disperses below the Fermi level a third of the way through X (see

Fig. 7.9). This band is responsible for the 115s’ spherical hole pocket centered at Γ, but,

in the case of the 127s, the same band rises back above εF , to create the outer layer of

the large turquoise piece. The lack of upturn of the band makes way for the circular

tunnels that connect to adjacent BZs.

The existence of cylindrical electron pockets centered at the zone corners are a com-

monality amongst the Pu compounds. The cylinders of PuPt2Ga7 and PuCoGa5 show

slightly less dispersion along kz than do, respectively, PuPt2In7 and PuCoIn5. We used

WIEN2k to calculate the plasma frequency ratio ωp,xx/ωp,zz of PuPt2In7, PuPt2Ga7,

PuCoIn5, and PuCoGa5, and they are 2.34, 3.22, 1.46, and 1.68, respectively. As ex-

pected, all four ratios are > 1. The larger value of PuPt2Ga7 (PuCoGa5) indicates two-

dimensionality is enhanced when compared to PuPt2In7 (PuCoIn5), despite its smaller

structure.

If, as in the case of the Ce-based superconductors, the presence of superconductivity

relies on the proximity to an antiferromagnetic state, we would like to know the relative

degree of localization in the various Pu-115, -127, and -218 compounds. From the DFT

calculations we can get an estimate for the relative strength of the c-f hybridization.

We take the f -electron density within the Pu muffin-tin sphere as a measure of this

strength of hybridization. For identically sized MT spheres we find values of 5.11, 5.14,

5.23 and 5.24 for PuCoIn5, PuPt2In7, PuCoGa5, and PuPt2Ga7, respectively. Thus, we

obtain that PuCoIn5 is the least hybridized while PuPt2Ga7 would be the most strongly

hybridized. This thought alone does not indicate the degree of localization. However,

dynamical mean-field theory (DMFT) calculations show that the more weakly hybridized

PuCoIn5 indeed results in a smaller Kondo scale, T0, relative to PuCoGa5, and hence
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Figure 7.7. GGA+U band structure of PM PuPt2In7, with f -weight fatbands.
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Figure 7.8. GGA+U band structure of PM PuPt2Ga7, with f -weight fatbands.

can be considered as more localized [195]. Thus, we can now equate the relative degree of

hybridization with the relative degree of localization, and conclude that from PuCoIn5 to

PuPt2In7 to PuCoGa5 to PuPt2Ga7 the compounds are becoming increasingly itinerant.

As a result, since PuCoIn5 is non-magnetic it was to be expected that PuPt2In7 would

also be non-magnetic.

The role of the electronic structure in determining superconductivity depends on the

mechanism. In some cases, superconductivity can be driven by Fermi surface nesting.

Nesting, which indicates instability in the FS, can give rise to a spin density wave or
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Figure 7.9. GGA+U band structure of PM PuCoGa5, with f -weight fatbands.

charge density wave. In a BCS-like mechanism, even if the pairing fluctuations do

not originate directly from a FS instability, the electronic structure will at a minimum

determine the SC gap symmetry. In the Pu-218s, Elgazaar et al. have argued that the

additional FS sheets may provide sufficient differences to suppress the occurrence of

superconductivity [170]. In order to see if there is any nesting present in the Pu-127s, we

used the GGA band structures to calculate the real part of the constant-matrix-element

noninteracting susceptibility for PuPt2In7 and PuPt2Ga7 (see Fig. 7.12). In the interest

of finding nesting features that are unique to the superconductors, we calculated the

susceptibilities of PuCoGa5 and PuCoIn5 as well. The generalized susceptibility is

χ(q) = −
∑
αβk

f(εα,k)− f(εβ,k+q)

εα,k − εβ,k+q + iδ
,

where f denotes the Fermi distribution function, εα,k is the energy dispersion, and

α and β are band indices. Alongside the conventional χ(q), we also calculated the

susceptibility incorporating the relative weight of the Pu f orbital, so as to pick out

the attributes dominated by Pu f character. In the style of Mazin as in Ref. 196, the

weighted susceptibility χ̃(q) is

χ̃(q) = −
∑
αβk

f(εα,k)− f(εβ,k+q)

εα,k − εβ,k+q + iδ
Wα,kWβ,k+q,

where W is the weight of the f orbital. As shown in Fig. 7.12, in which the susceptibil-

ities are normalized and plotted along the qxqy plane for qz = 0.5, in all four cases non-
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Figure 7.10. (Color online) Calculated FSs of a) PuPt2In7 and b) PuPt2Ga7 in the
GGA+U scheme. Γ is located in the center of the unit cell. For clarity, the 3D FSs are
reproduced in the bottom figures.

weighted χ(q) and f -weighted χ̃(q) look almost identical, demonstrating that the weights

of other atoms and orbitals were negligible to begin with. PuPt2In7 and PuPt2Ga7 have

similar-looking susceptibility plots, as do PuCoGa5 and PuCoIn5. Moreover, the suscep-

tibilities of the 115s aren’t very dissimilar to those of the 127s. The primary difference

is that the 127s feature elevated values along (0.5, qx) (and equivalently, (qy, 0.5)), which

can also be seen, to a much lesser degree, in PuCoIn5. The peak-like character is most

pronounced for PuCoGa5, which has the highest Tc of the four compounds.

Wang et al. [197] noted two peaks in PuCoGa5’s χ(q), at q = (0.5, 0.5, 0) and q =
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Figure 7.11. (Color online) Calculated FSs of PuCoGa5 in the GGA+U scheme. Γ is
located in the center of the unit cell.

(0.5, 0.5, 0.5). More accurately, the two peaks are part of a relatively broad mountain

ridge that, when plotted on the qyqz (or, equivalently, qxqz) plane, spans all the way in

the qz direction. This ridge is seen in all four Pu compounds, and is plotted in Fig. 7.13

for PuCoGa5. When χ and χ̃ are plotted along a qxqy plane for any qz, the apex appears

at the corner of the Brillouin zone (qx = qy = 0.5), as can be seen in Fig. 7.12. That

there is little variation in the landscape when varying qz indicates a truly 2D topography

in the susceptibility for both Pu-115s and Pu-127s.

When it comes to the source of the maxima (0.5, 0.5, qz), in all cases, the major con-

tribution is interband nesting involving the largest FS sheet. In the 115s, the large sheet

connects with the larger of the two 2D cylinders (Fig. 7.11); in the 127s, it maps onto the

two of the larger cylinders (Fig. 7.11), where nesting with the bigger of the two cylinders

is stronger than nesting with the smaller, by 7%/20% for PuPt2In7/PuPt2Ga7. Nesting

between the large sheet and cylinder accounts for, on average, 32% of the susceptibility

strength of PuCoGa5, while that factor is only 24% for PuCoIn5. Nestings between the

large sheet and each of the two larger cylinders collectively account for 28% for PuPt2Ga7

and 26% for PuPt2In7. (Comparing the contributions from two cylinders in the 127s to

the single one in the 115s is sensible in that there are twice as many atoms in the unit cell

of the 127s.) PuPt2In7 and PuPt2Ga7 have similar susceptibility plots, as do PuCoGa5

and PuCoIn5, demonstrating the type of ligand atom has very little influence on the
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Figure 7.12. (Color online) a) Non-weighted and b) f -weighted normalized noninteract-
ing spin susceptibilities χ and χ̃, respectively, of Pu-based compounds along the qxqy
plane in the conventional Brillouin zone for qz = 0.5. q = (0, 0, 0) are at the corners.

shape of χ(q). Even the individual band-decomposed χαβ ’s are consistent throughout

the compounds. The aforementioned “elevated values” of the 127 susceptibilities form a

cross along the qx = 0.5 line and the qy = 0.5 line in the plots in Fig. 7.12, with the cross

intersection coinciding with the apical point (0.5, 0.5). Even though the plot looks as
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Figure 7.13. (Color online) Normalized a) χ and b) χ̃ of PuCoGa5 in the conventional
Brillouin zone for qx = 0.5. q = (0, 0, 0) are at the corners. Susceptibilities of the other
three Pu compounds look qualitatively equivalent.

though χ remains strong along the cross at (0, 0.5), when considering only contributions

from nesting between the large sheet and cylinders, the 127s’ susceptibilities take on

more of the conical shape that the 115s possess (these contributions at (0.5, 0.5) are 73%

stronger than at (0, 0.5)).

What do these calculations tell us about superconductivity? Given the virtually

identical FSs, χ(q), and χ̃(q) at the DFT level for PuCoIn5 and PuCoGa5 whose super-

conducting Tc differs by nearly an order of magnitude, suggests an additional energy scale

must be important. The most likely candidate is the Kondo energy scale, T0, extracted

from either specific heat measurements or DMFT calculations. As mentioned above, ear-

lier DMFT work on these two compounds shows that the hybridization strength inferred

from DFT calculations can predict the relative trend of T0 between various Pu-based

family members [195]. Consequently, our work shows that T0 increases from PuCoIn5 to

PuPt2In7 to PuCoGa5 to PuPt2Ga7. Thus, we naively expect the scale of Tc for PuPt2In7

to be between that of PuCoIn5 and PuCoGa5. As a result, it is surprising that PuPt2In7

is not superconducting, especially given the similarity of the susceptibility between the

Pu-115’s and the Pu-127’s. Of course, subtle differences do exist in χ(q) which may be

sufficient to drive Tc below 2 K in PuPt2In7, and more work is needed to investigate this

possibility. However, the fact that PuPt2In7 is non-superconducting and has an interme-

diate scale of T0 between PuCoIn5 and PuCoGa5 suggests an alternative scenario where

two different instabilities mediate superconductivity in PuCoIn5 and PuMGa5 (M=Co,

Rh) respectively [166]. In this case, PuPt2In7 may not be superconducting because it is
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not sufficiently close to either instability.

Finally, a comment with regards to the pairing symmetry. Without knowledge of

the pairing potential it is difficult to make concrete predictions. However, let us assume

for the moment that the pairing potential is peaked at (0.5, 0.5) as is almost certainly

the case in CeRhIn5 and CePt2In7. This is also the expectation based on our calculated

susceptibilities for both Pu-115s and Pu-127s if one were to use a uniform U, weak

coupling approach. In this case, since the dominant contribution to the susceptibility at

(0.5, 0.5, qz) is from nesting between the central large FS sheet and the cylinders centered

at (0.5, 0.5) we would anticipate the order parameter to change sign between these two

FS sheets [198], as is believed to occur in the Fe-based superconductors. However, our

analysis of the susceptibility shows that the Pu-127s contain significant intraband nesting

as well. A dx2−y2 like gap structure is preferred if the dominant term in the susceptibility

originated from states in the vicinity of (0.5, 0) (and equivalent points) as is the case in

the cuprate superconductors. As we mentioned earlier, PuPt2Ga7 contains precisely such

a contribution.

7.5 Conclusion

We have reported the properties of PuPt2In7 a structurally more 2D version of the

known Pu-based superconductors. The gross similarities in structure and FSs between

PuPt2In7 and the other known Pu-based superconductors suggest that PuPt2In7 may be

a likely candidate to find superconductivity. However no superconductivity or magnetic

order was observed down to 2 K. Our calculations suggest two possibilities for the lack of

superconductivity in PuPt2In7. The first relies on the assumption that superconductivity

in PuCoIn5 and PuCoGa5 are mediated by two different instabilities[166]. Then, based

on the fact that the c-f hybridization of PuPt2In7 is intermediate between PuCoIn5 and

PuCoGa5 it may simply lie too far from either instability to superconduct. Second, the

more complex Fermi surface of the Pu-127s suggests that multiple superconducting orders

may compete with one another driving Tc below 2 K as a result. Our calculations of a

hypothetical PuPt2Ga7 reveal strong similarites to PuPt2In7 and PuCoGa5 suggesting

that it is a promising candidate to find superconductivity if it can be synthesized. More

work is needed to explore these various possibilities.
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