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Chapter 1

Introduction

Pressure possesses perhaps the greatest range of all the physical variables. The

physical properties of materials depend strongly on structure and interatomic distances.

Since pressure can vary these distances considerably more than, say, temperature, it pro-

vides an extremely powerful means of examining the relationship between structure and

properties - both towards a better fundamental understanding of the underlying phe-

nomena and also for the improved design of applied materials. Additionally, pressure is

a ’clean’ variable in that it can bring about large changes in structure and properties

without altering the chemical composition or thermal energy of a system. This makes

high-pressure systems particularly amenable to computational study.

The studies of the pressure behavior of the physical properties of materials may

provide additional valuable information about these properties. Applying pressure changes

the lattice parameters and hence produces shifts of the electronic states in the crystal.

Therefore, pressure provides a convenient technique for shifting the relative positions of

some energy levels by a controlled amount. It is also evident that by applying pressure

one can change the band extrema from one point of the Brillouin zone to another, thereby

altering the underlying property of the system as a functional of pressure.
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First principles electronic structure calculations have contributed significantly to

high pressure studies, especially of solids. Main merit of these first principles calculations

is their predictive power, as they demand little a priori experimental data. A few well

established achievements of their independent predictive power are: (1) prediction of

phase transition, even under physical conditions, which are not yet easily attainable in

the laboratories; (2) interpretation of mechanism of physical processes, especially in the

case of observed anomalies by providing finer details of the calculations; (3) resolving

the controversies, often with hints about the associated reasoning for the inappropriate

interpretation.

For example, though superconductivity in MgB2 itself was not predicted a priori ,

the ab initio calculations have shown [1] as to why its Tc falls as a function of pressure.

It is concluded that the increasing phonon frequency and decreasing electronic density of

states at the Fermi level leads to the observed decrease in the critical temperature under

pressure.

In the following chapters, I will present the results of first principles analysis

under pressure for CoN, MnO and Li.

CoN, a paramagnet at ambient pressure, undergoes a change in structure coupled

with a ferromagnetic transition with increasing pressure.

MnO, a classic prototype for a Mott insulator exibits rich physics as a function

of pressure, including phase transition, volume collapse, insulator - metal transition, etc.

This system has been a long standing challenge to density functional methods.

Li, the simplest metal becomes a superconductor under pressure, with the highest

Tc observed in any elemental metal. Increasingly strong electron-phonon coupling concen-

trated along intersections of Kohn anomaly surfaces with the evolving Fermi surface, drives

this simple metal to become a superconductor under pressure.

2



Chapter 2

Density Functional Theory and

Techniques

2.1 Outline of the problem

We wish to address the question, what are the energies and the wave functions of

electrons in a solid under the influnce of the nuclei as well as other electrons. The funda-

mental problem in this regard is the solution of Schrödingers equation for many electron

systems with interaction among the electrons and the nuclei. One of the approaches to

the solution of this problem, which is the basis of the modern quantitative theory for

electronic structure calculations is to rigourously map the problem of many electrons onto

the problem of an independent electron moving in the mean field of the other electrons

and ions.
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2.2 Origin of the solution

The solution to the above problem started off with the Born-Oppenheimer

approximation. This approximation amounts to saying that we can seperate the electronic

and nuclear degrees of freedom. Because the electronic mass is so much smaller than that

of the nuclei the electrons respond almost instantaneously to the changes in the positions

of the nuclei. It is a good approximation to say that the electrons are always in their

ground state as the atoms of the solid vibrate thermally. This means that the positions of

the nuclei are parameters that appear in the potential of the schrödinger equation defining

the wave functions of the electrons.

2.3 Density Functional Theory

The next advent for the independent electron approximation came with the de-

velopment of density functional theory (DFT) by Hohenberg-Kohn-Sham[2, 3]. The basic

idea of DFT originated from the query ‘can we arrive at a potential V(r) uniquely, given

the charge density ρ(r) of the system?’. The density functional theory yields two results,

one important conceptually and the other a framework for practical calculations:

• The solution of the many-body ground state problem is reduced exactly to the solu-

tion for the ground-state density distribution ρ(r) given by one-particle schrödinger

equation. The effective potential in the schrödinger equation includes, in princi-

ple all the interaction effects: the Hartree potential (the coulomb potential due to

the charge distribution when the electrons are treated as fixed), the exchange po-

tential (due to the interaction described by the Pauli exclusion principle), and the
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correlation potential (due to the effect of the given electron on the overall charge

distribution).

• An approximation for effective potential is given by regarding a small neighbourhood

of the electron system. This result forms the so-called ‘local-density-functional’

approximation.

Thus the charge density becomes the central quantity that must be found, in the place

of many electron wave functions. More formally Hohenberg and Kohn showed that the

ground state energy is a unique functional of ρ(r). Unfortunately the functional is not

known! But whatever the functional is, it acquires a minimum value when the charge

density is the correct ground state charge density. Mathematically this means that we

have to use a variational principle for finding the charge density.

Then, Kohn and Sham derived a system of one-particle equations for the descrip-

tion of the electronic ground state. The interacting N-electron problem was thus mapped

exactly onto N single particle equations. This means each electron is moving indepen-

dently of the other electrons, but it experiences an effective potential which emulates all

the interactions with the other electrons. This gives the rigorous justification for the in-

dependent electron approximation which we will be using all along. It was also showed

that the effective potential is a unique functional of the charge density. The one-particle

equations are known as the Kohn-Sham equations.

2.3.1 Hartree Approximation and Self Consistency

First of all we shall discuss the simplest Hartree approximation[46]. This intro-

duces the idea of self-consistency between the charge density and the effective potential.
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In the Hartree approximation each electron moves independently in the mean electrostatic

field of the other electrons and the nuclear electrostatic potentials. The electrostatic po-

tential VH due to the electronic charge density ρ(r) is given by Poisson’s equation,

∇2VH(r) = −(
ρ(r)

ε0
) (2.1)

or

VH(r) =

∫
ρ(r

′

)dr
′

4πε0|r − r′ | (2.2)

where VH(r ) is called the Hartree potential. The effective potential felt by each indepen-

dent electron is then,

Veff (r) = VH(r) + VN (r) (2.3)

where VN (r ) is the electrostatic potential due to the nuclei

VN (r) =
∑

i

Zie

4πε0|r −Ri|
(2.4)

and Zie is the charge on the i th nucleus and Ri is its position. The Schrödinger equation

for the wave function of the j th independent electron is

− ~
2

2m
∇2Ψj(r) + Veff (r)ψj(r) = εjΨj(r) (2.5)

Once this equation is solved the eigen states are populated with electrons. A new charge

density is then calculated from the occupied states as follows

ρ(r) =
∑

joccupied

Ψj(r)Ψ
∗
j (r) (2.6)

Now the wave functions Ψj(r) are being defined by an effective potential in eqn (2.5) which

is a functional of the charge density, through eqn (2.2), which in turn is defined by the

wavefunctions in eqn (2.6)! This is called a self-consistent field problem. When it is solved

till convergence the output charge density is the same as the input charge density.

The Hartree problem that we just discussed can also be set up starting with the total
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energy of the system as a functional of the charge density and then to minimise the

energy with respect to the charge density. This is the variational problem. In this way of

doing things the ground state total energy is expressed as follows

EG[ρ(r)] = T [ρ(r)] +

∫
ρ(r)VN (r)dr +

1

2

∫
ρ(r)VH(r)dr (2.7)

where T [ρ(r)] is the kinetic energy of the electrons. Minimization of this energy, subject

to the constraint that the total number of electrons is conserved,

∫
ρ(r)dr = N, (2.8)

is equivalent to solving eqns (2.3), (2.5), (2.6).

2.4 One-particle Kohn-Sham equation

Now let us see how the Kohn-Sham equation is derived: The exact ground state

energy functional for a system containing interacting electrons in the presence of nuclei

can be written in terms of charge density as

EG[ρ(r), R] = Eel[ρ(r), R] +Eion[R,R
′

] (2.9)

Eel[ρ(r), R] = Ts[ρ] +EES [ρ] +EXC [ρ,R] (2.10)

where,

R, R
′

: denote nuclear coordinates.

Ts[ρ] : Kinetic energy of the non-interacting electron gas of the same density as that

of the actual interacting system.

EXC [ρ] : exchange-correlation energy.

EES[ρ] : total electrostatic energy.

Now,

EES [ρ] = EH [ρ] +Eext[ρ,R] +Emad(R,R
′

) (2.11)

7



EES[ρ] =

∫ ∫
ρ(r)ρ(r

′

)

|r − r′ | drdr
′

+

∫
Vext(r)ρ(r)dr +

∑

R,R
′

ZRZ
′

R

|R−R′ | (2.12)

where,

EH [ρ] : energy due to Hartree potential.

Eext[ρ,R] : energy due to external potential.

Emad(R,R
′

) : energy due to ion-ion madelung potential.

Therefore,

E[ρ(r), R] = TS [ρ] +EXC [ρ] +EH [ρ] +Eext[ρ,R] +Emad(R,R
′

) (2.13)

Now, minimising this energy, subject to the constraint of charge conservation,

∫
ρ(r)dr = N (2.14)

leads to the Kohn − Sham equation,

[−∇2 + Veff ]ψi(r) = εKS
i ψi(r) (2.15)

where,

Veff = effectivepotential.

= VH(r) + VN (r) + Vxc(r)

= 2

∫
dr

′

ρ(r
′

)

|r − r′ | + 2
∑ ZR

|r −R| +
δExc[ρ]

δρ(r)

Thus solving the Kohn-Sham equation, the new charge density is calculated for the oc-

cupied states using eqn (2.6). The only difficulty is that the exchange-correlation energy

functional EXC is not known for a spatially varying charge density. To solve this, we apply

the Local Density Approximation [46]. In this approximation we pick a volume element in

the solid and measure the charge density there and find that it is some value, which we

call ρ0. The exchange-correlation energy we assign to this volume element is then approx-

imated as the exchange-correlation energy of a volume element in a uniform electron gas
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of the same density as ρ0. This is an approximation because it ignores the fact that the

charge density in the solid is varying from one volume to another.

Also the kinetic energy is expressed as,

Ts = −
occ∑

i

ni < ψi|∇2|ψi >=

∫ EF

εN(ε)dε −
∫
Veff (r)ρ(r)d(r) (2.16)

Therefore eqn (2.13) can be recasted as,

EKS[ρ] =

∫ EF

εN(ε)dε −
∫

[
1

2
Φ + µxc]ρ(r)d(r) +ELDA

XC +Emad (2.17)

where,

Φ : Hartree potential

µXC : Exchange-Correlation potential

Now eqns (2.6), (2.15), (2.17) are solved self consistently. Automatically the loop

comes to an end when the output charge density is equal to the input charge density.

2.5 Basis Set

The next step in solving the Kohn-Sham equation to obtain the ground state

eigenfunctions, involves in a suitable choice of a basis set. Most of the electronic structure

calculations presented in my dissertation were performed using a Full-Potential-Local-

Orbital (FPLO)[5, 6] scheme. In this section, I will provide a brief overview of this

scheme.

2.5.1 Local-Orbital Minimum-Basis Scheme

Let us start from the well known ansatz for the Bloch states Ψkn(r),

Ψkn(r) =
∑

RsL

φsL(r −R − s)CLs,kne
ik·(R+s), (2.18)

where, the basis states φsL are used to approximate the Kohn-Sham wave function of the

crystal and are local orbitals centered at sites s in the elementary cell defined by the lattice
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vector R. They are solution of an atom-like Schrödinger equation and are denoted by a

complete set of atomic quantum numbers L = {ρ,l,m}.

Due to the choice of nonorthogonal basis sets, one needs to solve the secular

equation,

HC = SCε, (2.19)

where the Hamiltonian H and overlap S matrices are defined by

HLL′

ss′ =
∑

R

< Os′L′|Ĥ|RsL > eik·(R+s−s′), (2.20)

SLL′

ss′ =
∑

R

< Os′L′|RsL > eik·(R+s−s′). (2.21)

In order to avoid unnecessarily large matrix problems, the local basis states are divided

into core states φsLc
and valence states φsLv

. The core states are then defined by

〈R′s′L
′

c|RsLc〉 = δcc′δRR′δss′ (2.22)

If this condition is fulfilled, the core states can be removed from the basis by an exact

transformation. Next, the overlap matrix can be decomposed into,

S =




1 Scv

Svc Svv


 =




1 0

Svc SL
vv







1 Scv

0 SR
vv


 = SLSR (2.23)

where the left and right triangular matrices SL
vv and SR

vv obey the relation

SL
vvS

R
vv = Svv − SvcScv (2.24)

Further, by definition of the core states,

H =




εc1 εcScv

Svcεc Hvv


 , εc = diag(..., εsLc, ...) (2.25)

So, we can now re-write the secular equation as,

(SL)−1H(SR)−1(SRC) = (SRC)ε (2.26)
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which leads us finally to the reduced problem

H̃vvC̃vv = C̃vvεv (2.27)

with the definition

H̃vv = (SL
vv)

−1(Hvv − SvcHccScv)(S
R
vv)

−1 (2.28)

and

C =




1 −Scv(S
R
vv)

−1C̃vv

0 (SR
vv)

−1C̃vv


 . (2.29)

The orthogonality condition for the core states is controlled during the successive intera-

tions.

2.5.2 Basis Optimization

One of the crucial features of the FPLO method is that, the basis states are

readjusted at every iteration and is optimized in the course of the iteration. The core

states obey the equation,

(t̂+ vat
s )φsLc = φsLcεsLc (2.30)

with vat
s being the crystal potential spherically averaged around the site center s. This

assures that a Bloch sum of the core orbitals and the related core eigenvalues εsLc are

very good approximations to the solution of the true crystal Hamiltonian.

On the contrary, inorder to compress the long range tails, the valence orbitals are defined

as:

(
t̂+ vat

s +

(
r

rsLv

)4
)
φsLvεsLv (2.31)

with rsLv = (rNN (s)x0Lv/2)
3

2 , where rNN is the nearest neighbor distance and x0Lv are

dimensionless compression parameters. The seemingly strange scaling of the rsLv is the
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correct one for an empty lattice. The power law potential has minor influence on the orbital

in the core region, while in the region far away from the nucleus the orbitals undergo a

drastic change, compared to solutions without the confining potential. To be precise, the

valence orbitals are usually unbound states in the potential vat
s alone. A second, even more

important effect of the valence orbital confinement is that the orbital resonance energies

are pushed up to come close to the band centers, providing the optimum curvature of the

orbitals.

2.6 LDA+U

The density functional theory within the local spin density approximation (LSDA)

has been highly successful for electronic structure calculations and zero temperature mag-

netic properties of non-correlated or weakly correlated systems. But the understanding

and evaluation of electronic structure of strongly correlated systems is a long standing

problem, and the transition metal oxides (which, in contrast with the observed insulating

behavior, are incorrectly predicted to be metals or small gap semiconductors by LSDA)

have represented for long time the most notable failure of DFT. One of the most popular

approcahes to correct this deficiency is LDA+U, a method first suggested by Anisimov

[7], for which a variety of different functionals were introduced and developed. The main

idea of this approach is to correct the standard LDA energy functionals with a mean field

Hubbard-like term which is meant to improved the description of the electron correlations.

The formal expression of this additional energy functional is taken from the model hamil-

tonians (the Hubbard model is just one example) that represent the ‘natural’ theoretical

framework to deal with strongly correlated materials. These models are however strongly

dependent on the choice of the interaction parameters which sometimes have been evalu-

ated using ab-initio (constrained) calculations.
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Strongly correlated materials (usually systems with partially filled d or f valence

shells belong to this family) are such that their electrons (or some of them) are supposed to

spend their time in regions (around the ions) where the presence of other particles would

make them feel strong Coulomb repulsion, thus making their motion ‘correlated’. This is

quite different from the scenario of a simple metal where electron-electron scattering is

weak and particles spend vanishing amount of time in the regions around the ions. So,

we have two extreme scenarios. When the kinetic energy is the dominant contribution,

the electrons can overcome the on-site Coulomb cost and delocalize in extended states

giving metallic behavior. On the other hand, when the bands in which they move are

quite narrow, correlation wins and electrons actually localize in some regions, making the

system acquire insulating character.

One way to introduce such a correction is essentially based on an Hartree-Fock

(HF) like expression for the effective (screened) electronic interactions which is introduced

as a mean field Hubbard-like correction to the standard exchange-correlation functionals.

The starting point of the method is the description of the system within LDA which is sup-

posed to contain (screened) correlations in some averaged way. This ‘wrong’ contribution

is then subtracted from the energy functional and a correct term in which the correlations

are supposed to be treated properly is added. The first expression of the LDA+U approach

was formulated by Anisimov etal . [7, 8, 9]. Another important contribution was given by

Pickett [10] and coworkers who, while slightly refining the functionals, introduced a linear

response technique for calculating the Hubbard parameters. Despite some different details

occuring among these approaches, the main physical idea behing them can be captured in
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a very elementary formulation of the total energy functional:

E = ELDA +
∑

I


U

2

∑

m,σ 6=m′,σ′

nIσ
m nIσ′

m′ − U

2
nI(nI − 1)


 (2.32)

where nI
mσ = nI

mmσ, nI =
∑

m,σ n
I
mσ, U is the parameter (the Hubbard U) describing

on-site correlations, the second term is the ‘correct’ on-site correlation functional (Ehub)

and the third term is Mean Field (MF) approximation of the second term (Edc), which

modelling the LDA contribution to the on-site electronic interactions, has to be subtracted

in order to avoid double counting. If we derive this equation with respect to the orbital

occupation to obtain the corresponding orbital energy, we have:

εImσ =
∂E

∂nIσ
m

= ε0I
mσ + U

(
1

2
− nIσ

m

)
(2.33)

(ε0 is the corresponding LDA quantity) from which it is evident that a gap of width ≈

U opens between occupied (nI
i ≈ 1) and unoccupied ones (nI

i ≈ 0) orbitals. If we define

the atomic orbital occupation as the projection of the occupied valence manifold over

the corresponding atomic state (nI
mσ =

∑
k,v〈Ψσ

k,v|P I
m|Ψσ

k,v〉 ) we can easily extract the

potential entering the Kohn-Sham equation,

V |Ψσ
k,v〉 = VLDA|Ψσ

k,v〉 +
∑

I,m

U(
1

2
− nI

mσ)P I
m|Ψσ

k,v〉 (2.34)

From this expression we can see that if the occupation of a particular atomic orbital is

initially larger than 1/2 then the Hubbard contribution to the potential is attractive and

encourages the electrons to localize on that particular atomic state, whereas the opposite

happens when the initial occupation is smaller than 1/2. In practical calculations, the

final result does not actually depend very strongly on the initial conditions as occupations

greatly evolve during the self consistent iterations with possible changes in the sign of the

Hubbard potential. In the final self consistent configuration completely empty or com-

pletely filled atomic orbitals are not necessarily obtained because the LDA contribution to
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the energy functional contains the competing factor (the tendency to minimize kinetic en-

ergy through delocalization) which sometimes could result stronger than the effect due to

the Hubbard U term. Fractional occupation numbers for atomic orbitals around the fermi

level is indeed the situation we would expect when applying this functional to a normal

metal. Furthermore, even for localized electrons we could observe fractional nIσ
m because

localization may occur on hybridized orbital built by d levels with states of the other atoms.

2.6.1 Rotationally Invariant Form

Despite the fact that this simple scheme already contains the main physical

mechanism that could lead to gap openig in strongly correlated materials, it actually

neglects the exchange coupling and the possible non spherical character of the effective

interactions (the dependence of U on the magnetic quantum number m) entering the

model. It’s most serious inconsistency is that, the energy experssion is not invariant

under rotation of the atomic orbital basis set used to define the occupancies nI
iσ. To

solve these problems, Anisimov and coworkers [11, 12] introduced a basis set independent

formulation of LDA+U in which the EHub and Edc are given a more general expression:

EHub[{nI
mm′}] =

1

2

∑

{m},σ,I

{〈m,m′′|Vee|m′,m′′〉nIσ
mm′nI−σ

m′′m′′′

+ (〈m,m′′|Vee|m′,m′′′〉 − 〈m,m′′|Vee|m′′′,m′〉)nIσ
mm′nIσ

m′′m′′′} (2.35)

Edc[{nI}] =
∑

I

(
U

2
nI(nI − 1) − J

2
[nI↑(nI↑ − 1) + nI↓(nI↓ − 1)]

)
(2.36)

where U and I are screened Coulomb and exchange parameters. The Vee integrals in

eq. (2.35) describe the Coulomb interaction among (d) electrons sitting on the same site.

Their expression is borrowed from the expansion of the e2/|r − r′| Coulomb potential in
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terms of spherical harmonics,

〈m,m′′|Vee|m′,m′′′〉 =
∑

k

ak(m,m
′,m′′,m′′′)F k (2.37)

where 0 ≤ k ≤ 2l (l is the angular moment of the Hubbard electrons) and

ak(m,m
′,m′′,m′′′) =

4π

2k + 1

k∑

q=−k

〈lm|Ykq|lm′〉〈lm′′|Y ∗
kq|lm′′′〉 (2.38)

The F k coefficients, that in HF theory are the radial Slater integrals describing the

electron-electron (bare) interaction, in the present formulation represent parameters to

be related to the U and J of the LDA+U approach. For d electrons we just need F 0,

F 2, and F 4 which can be related to the on sire and exchange interaction parameters as

follows:

U =
1

(2l + 1)2

∑

m

,m′〈m,m′|Vee|m,m′〉 = F 0 (2.39)

J =
1

2l(2l + 1)

∑

m6=m′,m′

〈m,m′|Vee|m′,m〉 =
F 2 + F 4

14
(2.40)

where m and m′ describe the electronic orbitals with the same l. In these formulae the

Vee integrals have the same angular dependence of HF electronic interactions, but they

are evaluated using an indirect procedure which allows to account for the screening [13].

2.6.2 Double Counting

One of the main difficulties in LDA+U scheme is correcting for the double count-

ing that arises from the fact that similar interactions are included in LDA. Presently, there

are two schemes that are available and widely used. The first one is called ‘Around Mean

Field’ (AMF) functional [14] and is zero if the orbitals of an atomic shell are equally

occupied, hence it depends on the orbital polarization. It is given by:

eU,AMF =
1

2

∑

Rσ

{U(N − ñσ) − J(Nσ − ñσ)}Nσ (2.41)
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Nσ =
∑

µ

ñµσ = (2l + 1)ñσ

N is the number of electrons occupying a whole correlated l - shell, Nσ is that for one spin

sort, ñ is the occupation matrix. As mentioned above, one weak point of this version is

that it yields no contribution at all in the case of orbital-independent occupation numbers

ñµ′σ = ñσ. This is, for instance, the case of a half-filled completely spin polarized shell

(e.g. 4f -shell of Gd).

In order to provide a better description for systems like Gd, Czyżyk and Sawatzky

[14] introduced another functional called ‘Atomic Limit’ (AL).

eU,AL = eU,AMF +
1

2

∑

Rσ

(U − J)(1 − ñσ)Nσ (2.42)

The main characteristic of this functional is that, in case of an isolated shell, it moves

the occupied states downward by (U - J)/2 and the unoccupied states upward by (U -

J)/2 independent of the shell occupation. By way of contrast, the center of the AMF spin

subshell potential split moves up with increasing subshell occupation (so that the shift of

the occupied levels is zero in the case of a filled spin subshell and likewise the shift of the

unoccupied levels of an empty spin subshell).
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Chapter 3

Pressure Driven Nonmagnetic to

Ferromagnetic Transition in CoN

3.1 Introduction

Transition metal oxides comprise perhaps the most thoroughly studied class of

solids. Transition metal nitrides, which might be expected to retain several chemical and

physical similarities to the oxides, have been studied far less. Although the mononitrides

do show substantial structural similarities to the monoxides (rocksalt structure being

common in both), their physical properties differ considerably. The main sources of these

differences are the electronegativity, which is less for nitrogen than for oxygen, and the fact

that nitrogen requires three extra electrons to form a closed shell whereas oxygen requires

only two. Thus while insulating behavior, magnetic and metal-insulator transitions under

doping, temperature, and pressure, and strongly correlated behavior are the norm in the

monoxides, the mononitrides typically are standard metals.

Transition metal pnictides are attracting increased attention recently partially

due to the discovery that CrAs can be synthesized in thin film form in the zincblende
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(B3) structure, and that it is half metallic[15] and therefore a desirable candidate for

spintronics applications. Several studies have appeared of transition metal pnictides in-

cluding nitrides.[16] Although CoN has been known for almost 50 years, originally being

reported in the NaCl (B1) phase (but off stoichiometry)[17] and confirmed to be cubic

soon after[18], it has attracted little study until recently. The B1 structure was expected

since TN, T= Sc, Ti, V, Cr, share that structure. Much more recently, however, Suzuki,

Kaneko et al.[19] determined their materials to have the B3 structure, and later Suzuki,

Shinohara et al.[20] demonstrated that they were Pauli paramagnetic metals. There has

been conflicting information for other transition metal nitrides. FeN was reported by

Suzuki, Morita et al.[21] to have a B3 structure, with evidence of a mictomagnetic state

after field cooling. It was later reported by Suzuki, Yamaguchi et al.[22] that B3 FeN had

no magnetic order down to 2.2 K. The B1 structure, with magnetic order, has also been

reported for FeN, as discussed below.

Some time ago thin films of CoNx were reported by Matsuoka, Ono, and Inukai.[23]

Unlike the bulk materials of Suzuki et al., their films were ferromagnetic and they reported

hysteresis curves and coercive fields. Being film samples, it was not possible to determine

the N concentration precisely or to obtain specific structural details. Very interestingly,

the magnetic moment showed a strong perpendicular anisotropy, a property that has long

been of great interest to the magnetic recording industry. The source of the magnetism,

whether intrinsic, induced by strain, or induced by N vacancies, was not determined.

Theoretical studies of the electronic and magnetic properties of bulk CoN are few

and rather cursory. Shimizu et al. presented a study[24] of the electronic, structural, and

magnetic structure of several of the 3d transition metal oxides, but the electronic structure

of CoN was only addressed briefly with a rigid band extrapolation from FeN. Eck et al.

have presented[25] a related theoretical study of 3d metal nitrides, again focusing on iron
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nitrides. Our study of these questions about CoN will extend earlier work on CrN and

FeN. CrN transforms to a non-obvious antiferromagnetic phase at 280 K, accompanied by

a shear distortion to an orthorhombic structure.[29] This phase is favored only slightly[30]

over simple ferromagnetism, with the distortion playing a crucial role. Stoichiometric

B1 FeN, on the other hand, was calculated to have a stable ferromagnetic phase,[31] in

agreement some experimental data.[32] The difference between CrN and FeN was traced

to the smaller ionicity and smaller moment of FeN. Experimentally, both structural choice

and the magnetic order may be sensitive to deviations from stoichiometry.

The combination of the structural ambiguity of CoN, of the report of ferro-

magnetism, and the connection to B3 structure transition metal pnictides that suggest

spintronics applications, has led us to make a detailed first principles study of the ener-

getics and magnetism of CoN. We find that B3 CoN is strongly favored over the rocksalt

at zero pressure, and we report the bulk modulus B and its pressure derivative for both

phases. At 43 GPa pressure we predict a pressure driven nonmagetic-to-ferromagnetic

first order transition to the rocksalt structure, which is unusual in the aspect of being

a nonmagnetic-to-magnetic pressure-driven transition. The volume dependence of the

moment in the rocksalt structure is illuminated by using fixed spin moment calculations.

3.2 Structure and Methods

The lattice structures of the B1 and the B3 type CoN are contrasted in Fig

3.1. The cobalt atoms in both these structures form an fcc lattice, but differ in the

coordinations with the nitrogen atoms. The nearest neighbor N atoms in the B1 structure

form an octahedron (sixfold coordinated) about the cobalt atom, while in the B3 structure,

N atoms occupy the tetrahedral site (fourfold coordinated). Both the structures are a

bipartite “AB” type fcc lattice, with different sublattice positions. The two structures are
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related by a shift of the N (or Co) sublattice along a (111) direction. The distinct packing

types lead to different equal-pressure volumes of around 20%.

Figure 3.1. Structure, illustrating the coordination, of zincblende B3 CoN with tetrahedral

coordination (left) and rocksalt B1 CoN with octahedral coordination (right). The big

spheres are the Co atoms and the small spheres are the N atoms (although this viewpoint

is interchangeable between the atoms). In each case the rhombus shaped primitive cell is

pictured.

All calculations reported here have been performed using the full-potential lin-

earized augmented plane wave code Wien2K[26], using both local density functional (LDA)

and generalized gradient approximation (GGA), incorporated in the code for the exchange

correlation potential. The muffin tin radii for Co and N have been set to 1.8 and 1.4 a.u.

respectively for the ground state and all the high pressure calculations for both B1 and B3

structures. The basis set corresponding to RKmax = 7.0 was used for all calculations. The

total energy and density of states (DOS) calculations were done with more than 1000 k-

points in the irreducible ( 1
48) wedge of the Brillouin zone to attain good energy and charge

convergence. The DOS has been calculated using the tetrahedral integration method. The

energies were iterated to within 10−6 Rydberg convergence and the magnetic moments to

within 0.01µB .
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Figure 3.2. Calculated equations of state of CoN for the non-magnetic zincblende structure

and both nonmagnetic and ferromagnetic B1 structure. The zincblende phase is the stable

one at ambient pressure by almost 0.75 eV per cell.

3.3 Equation of State

3.3.1 Equation of State in LDA

To obtain the structural and magnetic properties of CoN, we performed total

energy calculations using the LDA functional of Perdew and Wang[27] by varying the

volumes for the non-magnetic B3 structure and both nonmagnetic and ferromagnetic B1

structure. The volumes were varied from 0.74V◦ to 1.04V◦ for the B3 case and from 0.64V◦

to 1.04V◦ for the B1 case. V◦ is the experimental equilibrium volume[19] of a3
◦/4 = 134.3

a.u.3 (a◦=4.297 Å). Results using the GGA functional will be presented in a following

subsection.

The equations of state E(V) for the three cases are plotted in Fig 3.2. Contrary

to the claim by Shimizu et al.[24] but in agreement with the conclusion of Eck et al.[25],

the total energy of B3 CoN is lower than that of B1 CoN, thereby making the tetrahe-

drally coordinated structure stable at ambient temperature and pressure. The calculated

equilibrium B1 lattice constant is 4.17 Å, 3% smaller than the experimental value[19]
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Figure 3.3. Plot of the enthalpy E+PV versus pressure for both phases of CoN, illustrating

its continuity at the critical pressure Pc for the first order structural transition. Finding

where the enthalpies are equal avoids having to perform the common-tangent construction

to obtain Pc.

a◦= 4.297 Å. For the B1 structure, the energy of the ferromagnetic state is lower than

the nonmagnetic state for all volumes. Therefore, if B1-CoN is prepared, it will favor

a magnetically ordered ground state. The equilibrium B1 lattice constant and magnetic

moment are 3.92 Å and 0.22 µB respectively. The equilibrium volume for the B1 structure

is 17% smaller than the B3 structure, reflecting the openness of the B3 structure. The

possibility of magnetic order in the B3 structure was also investigated. Fixed spin moment

calculations on this system showed no tendency to magnetism.

3.3.2 Transition Pressure

The equation of state E(V) curves shown in Fig 3.2 indicate a phase transition

from the non-magnetic B3 phase to the ferromagnetic B1 phase under pressure. To facili-

tate the calculation of the transition pressure, the total energies were fitted to an equation

of state. We have used Taylor series, Birch,[33] and Murnaghan[34] equations of state to

compare the consistency of the values obtained. Here, we report the results of just the
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Birch fitting

E(V ) = Ec +
9
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)
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(
14 − 3B

′

)
v−

4

3

]

V◦ represents the equilibrium volume of the unit cell, B is the bulk modulus and B
′

is its

pressure derivative, both calculated at V◦. Ec is a constant and v ≡ V/V◦. The pressure

is obtained by taking the volume derivative of the above equation. The next step is to

calculate the enthalpy E + PV of the two systems and the transition pressure (Pc) is the

one at which the enthalpies are equal. The enthalpy-pressure relationship is presented in

Fig 3.3 for both paramagnetic B3-CoN and ferromagnetic B1-CoN. The curves cross at Pc

= 41 GPa. There is a 15% volume collapse at this pressure, where the structure changes

from B3 to the denser (and magnetic) B1 phase.

3.3.3 Corresponding Results using GGA

It is generally found that the GGA functional for the exchange-correlation energy

gives a more accurate equilibrium volume and equation of state than does LDA. For this

reason all the total energy calculations were repeated using the GGA functional of Perdew,

Burke, and Ernzerhof.[28] The calculated equilibrium lattice constants are (quoting GGA

versus LDA): 4.25 Å versus 4.17 Å for the B3 phase, a 1.9% increase; 4.02 Å versus

3.92 Å for the rocksalt phase, a 2.5% increase. Thus GGA brings the calculated lattice

constant to within 1% of the experimental value.

Applying the same procedures as described above to get enthalpy-pressure rela-

tionships, the transition pressure was increased from 41 GPa (LDA) to 43 GPa (GGA).

This small change reflects that the volume increase given by GGA is similar for the two
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Table 3.1. Bulk modulus B (GPa) and its pressure derivative B
′

, contrasting LDA and

GGA results. GGA gives a larger volume and a corresponding softer lattice as usual.

LDA GGA

B B’ B B’

B1 CoN 347 5.4 275 4.8

B3 CoN 305 4.5 260 4.2

crystal structures, leaving a common tangent (whose slope is -Pc) with little change. The

equilibrium moment of the ferromagnetic B1-CoN is 0.12 µB in GGA, roughly half of

the LDA value in spite of the larger volume. This decrease was unexpected, since simple

increase of the volume usually decreases the bandwidth and increases the tendency toward

magnetism as reflected in the enhanced magnetic moment.

3.4 Moment Collapse in the Rocksalt Phase

Applying pressure to any structure with magnetic order increases the bandwidth

and almost always decreases the moment of the system. Figure 3.4 shows the moment

vs. volume M(V) curve of the ferromagnetic B1 CoN phase. A striking feature of M(V)

is the collapse of the moment around 0.98 Vo, which results from a first order magnetic

transition where the moment jumps from 0.9 µB to 0.4 µB . To better understand the

mechanism of collapse of the moment, we carried out fixed spin moment calculations[35]

for the 0.97 Vo case. The resultant energy vs. moment is plotted in Fig. 3.4. We observe

two energy minima for the system with very small energy difference. As the volume

changes, the energies if these two local minima vary, and where they become equal a first

order magnetic transition occurs. In this case it is a moment collapse, 0.9 → 0.4 µB .
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Figure 3.4. Moment versus volume relationship for ferromagnetically ordered B1 CoN.

Around the critical volume of 0.98Vo the moment collapses from 0.9 to 0.4 µB. The

corresponding energy curve E(M) from the fixed spin moment method is shown in Fig.

3.5. The equilibrium volume V◦ is given in the text.

Note that this volume range is where the B3 structure is stable, hence this collapse is not

accessible to experiment.

From the plot of the density of states in the high moment phase at 0.96V◦ in

Fig. 3.6, one can see a peak very close to and above the Fermi energy for the minority

spin. The contribution to that peak arises from Co t2g states. Applying pressure to reduce

the volume (which decreases the magnetization) moves the peak to lower energy, thereby

bringing the peak of the Co t2g states right on top of the Fermi energy. This high density of

states at the Fermi energy is energetically unfavorable enough that the system undergoes

a first order transition to move the peak below the Fermi energy, rather than to move the

Fermi level precisely onto the peak. This jump in the filling of states changes the moment

discontinuously, thus revealing the driving force for the moment collapse. The energy

barrier is quite small, ∼0.1-0.2 meV/cell, accounting for our failure to observe hysteresis.

It is worthwhile to clarify an unexpected feature in the DOS of Fig. 3.6, the

lack of N 2p character in the energy region -3 eV to -1 eV in the majority bands, and the
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Figure 3.5. The energy versus fixed (imposed) spin moment for rocksalt CoN at 0.97Vo.

The double minimum structure reveals the cause of the moment collapse in Fig. 3.4: as

the volume changes, the positions of the minima remain fixed but the energies at the

minima change, and the volume at which the minima are degenerate marks the critical

volume. Note the very small energy scale, which accounts for the calculated values not

lying on a completely smooth curve.
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Figure 3.6. Total and partial density of states (DOS) of ferromagnetic rocksalt structure

CoN for V = 0.96 V◦. Top panel: total DOS; the peak in the minority (plotted downward)

states is responsible for the moment collapse (see text). Middle panel: Co eg and t2g DOS,

illustrating that the peak is due to the t2g states. Bottom panel: the N 2p DOS, illustrating

strong hybridization with both eg and t2g states of Co.

corresponding region about 1 eV higher in the minority DOS – this is the lower of the

two t2g DOS peaks. This void is unexpected because the N 2p states clearly do mix with

the Co t2g states as is clear from the corresponding peaks in the respective DOS in Fig.

3.6 (near -1 eV in the majority, and the important peak at EF in the minority that was

discussed above). To illustrate the origin of the effect, the majority bands are presented

in Fig. 3.7 with N 2p character emphasized. At the zone center Γ, the 3d and 2p states

are close in energy with the 3d states lying below the 2p states. The 2p− eg hybridization

is large, and it results in the 10.5 eV total bandwidth. The t2g bandwidth itself is narrow,

less than 2 eV as shown in Fig. 3.6, and the coupling tends primarily to repel the N 2p

character away, and 2p− t2g hybridization survives only in the upper of the two t2g peaks.
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Figure 3.7. Majority band structure of ferromagnetic B1 CoN along high symmetry di-

rections. The symbol size if proportional to the N 2p character. As discussed in the text,

N 2p character is excluded from the region -2.5 eV to -1.3 eV by t2g − 2p mixing and

resulting repulsion.
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3.5 Conclusions

This study has cleared up several features in the experimental data for CoN.

From total energy calculations, it has been established that CoN takes a paramagnetic

zincblende structure at ambient pressure, rather than rocksalt as sometimes suggested.

Around 43 GPa we predict a first order phase transition to the denser rocksalt phase,

which at this volume has a small but clearly nonvanishing ferromagnetic moment of 0.1

µB per Co. Thus pressure drives the system into a weak ferromagnetic phase that is

relatively close to a quantum critical point (QCP). Our calculations predict this QCP,

where the Curie temperature finally goes to zero, to be Pqcp = 176 GPa. Fluctuations

should renormalize Pqcp to a lower value.

Our work has not explained the observation of ferromagnetic films by Matsuoka et

al.[23] Strain, nonstoichiometry, or even the altered chemistry of the open-shell transition

metal atom and the N atom at the surface, may be factors. Strain can change the in-plane

lattice constant, however the tendency to conserve volume will cause the perpendicular

lattice constant to compensate and there may be much less reduction in volume than the

in-plane lattice alone would suggest. Nonstoichiometry is an obvious concern; since Co

itself is ferromagnetic, regions with decreased N content, or N-free Co clusters, will tend

to be ferromagnetic. Finally, even at perfect stoichiometry, the presence of the surface

can alter the chemistry considerably. At the Mn-terminated (001) surface of CaMnO3,

for example, the coupling between subsurface and surface Mn ions was found to become

ferromagnetic,[36] rather than the antiferromagnetic coupling of the bulk. It is likely to

require further study both experimentally and theoretically to resolve the origin of the

magnetism of CoN films.
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Chapter 4

Mott Transition of MnO under

Pressure

4.1 Introduction

For fifty years the metal-insulator transition has been one of the central themes[37]

of condensed matter physics. The type we address here does not involve spatial disorder

nor change of the number of charge carriers per cell; the competing tendencies arise solely

from the kinetic and potential energies in the Hamiltonian, favoring itineracy and localiza-

tion respectively, and the many real-material complexities that arise. The classic catego-

rization is that of the Mott transition, treated in its most basic form with the single-band

Hubbard model. In the past half-century much has been learned about this model, but

there are very few physical systems that are modeled faithfully by such a model. Real

materials involve multiorbital atoms and thus extra internal degrees of freedom, and an

environment that is often very active and may even react to the configuration of active

sites.

MnO is a transition metal monoxide (TMO) with open 3d shell that qualifies as
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one of the simpler realizations of a prototypical, but real, Mott insulator. It is, certainly,

a multiorbital system with the accompanying complexities, but the half-filled 3d bands

lead to a spherical, spin-only moment at ambient pressure. Applying pressure to such a

system leads to a number of possibilities, including insulator-metal transition, moment

reduction, volume collapse if a first-order transition (electronic phase change) occurs, and

any of these may be accompanied by a structural phase transition, that is, a change in

crystal symmetry. The 3d band width W of such a Mott insulator is very susceptible to

applied pressure, and is one of the main determining factors of the strength of correlation

effects.

While “closed subshell” MnO may seem to be one of the simpler 3d monoxides, it

is actually not at all simple, moreover it is not typical of a 3dmonoxide. The half-filled shell

aspect is what makes it atypical, as shown for example by Saito et al., who compiled[38]

effective parameters for this system from spectroscopic information. An effective intra-

atomic Coulomb repulsion energy as defined by them, for example, is roughly twice as

large as for the other 3d monoxides.

The complexity that should be expected can be considered in terms of the energy

scales that are involved in the electronic structure and magnetism of these oxides. These

include the 3d bandwidth W, an intra-atomic Coulomb repulsion strength U, an intra-

atomic d− d exchange energy (Hund’s rule J, or exchange splitting ∆ex), the crystal field

splitting ∆cf = εeg
− εt2g

, and the charge transfer energy ∆ct ≡ εd − εp (the difference

in mean Mn 3d and O 2p site energies). In the magnetically ordered antiferromagnetic

(AFM) state, there is further symmetry lowering and ligand field subsplittings involving

3d − 2p hybridization. All of these scales change as the volume changes, making the

pressure-driven Mott transition a challenging phenomenon to describe.
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Figure 4.1. The conceptual phase diagram of MnO based on recent high pressure work at

Lawrence Livermore National Laboratory.[39, 40] The thick phase line signifies the first-

order Mott transition which simultaneously accompanies the loss of Mn magnetic moment,

a large volume collapse, and metalization. This transition should end at a critical point

(solid circle). The gray fan above the critical point signifies a region of crossover to metallic

behavior at high temperature. Only the distorted B1 (dB1) phase is magnetically ordered.

It is useful first to recount what is known about the Mott transition at this time.

The current experimental information, mostly at room temperature, on the behavior of

MnO under pressure is summarized in Fig. 4.1. Resistance measurements[39] provided the

first evidence of the Mott transition in MnO near 100 GPa. Recent x-ray diffraction and

emission spectroscopy measurements of the crystal structure and magnetic moment by Yoo

et al.[40] have clarified the behavior. Around 90 GPa there is a structural transformation

from the distorted B1 (rocksalt) phase to the B8 (NiAs) structure. This structure change is

followed at 105 GPa by the Mott transition, consisting of a simultaneous volume collapse

and moment collapse signifying a qualitative change in the electronic structure of the

compound. A related phase diagram is seen in the lanthanide and actinide volume collapse

transitions, with “metalization” defined in terms of the f spectral weight.
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On the theoretical side, little is known about how the Mott transition occurs

in a real multiband TMO in spite of the extensive studies of the Mott transition in the

single-band Hubbard model, which has a simple spin-half moment at strong coupling and

half-filling. The numerous energy scales listed above, and the S= 5
2 moment on Mn aris-

ing from the five 3d electrons, allow for many possibilities for how the moment might

disintegrate as the effective repulsion decreases. The high pressure limit is clear: a non-

magnetic 3d− 2p band metal in which kinetic energy considerations overwhelm potential

energy. This is the competition that is studied in the (simplified) Hubbard model. The

multiband nature has attracted little attention until recently, when for example the ques-

tion of possible orbital-selective Mott transitions[41, 42] have aroused interest. One can

imagine one scenario of a cascade of moment reductions S = 5
2 → 3

2 → 1
2 before complete

destruction of magnetism, as electrons use their freedom to flip spins (as some competing

energy overcomes Hund’s rule, for example). In such a scenario there is the question of

which orbital flips its spin at each spinflip, which involves a question of orbital selection

and ordering. At each flip the system loses exchange (potential) energy while gaining

kinetic energy (or correlation energy through ‘singlet’ formation). The manner in which

kinetic energy changes is difficult to estimate because subband involvement means that

there is no longer a single bandwidth W that is involved. The increasing hybridization

with O 2p states under pressure strongly affects the kinetic energy, directly and through

superexchange (a kinetic energy effect).

It has been known for decades that the conventional band theory (local density

approximation [LDA]) that does so well for so many materials gives poor results for 3d

monoxides in many respects, and some predictions are qualitatively incorrect (viz. no

band gap when there should be a large gap of several eV). Thus even at the density func-

tional level (ground state energy, density, and magnetization) some correlated approach is
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required. In the past fifteen years several approaches, which we refer to as correlated band

theories, have been put forward, and each has had its successes in providing an improved

description of some aspects of correlated TMOs. Although commonly called mean-field

approaches with which they share many similarities, they are not mean-field treatments of

any many-body Hamiltonian. Rather, they are energy functionals based on the complete

many-body Hamiltonian, which must then be approximated due to limited knowledge of

the exchange-correlation functional.

4.2 Structure and Symmetry

Density functional theory, like Hartree-Fock theory, deals in its most straight-

forward form with ground state properties, i.e. zero temperature. The ground state is

known to be the AFMII phase in which < 111 > layers have spins aligned, and succes-

sive layers are antiparallel. The resulting symmetry is rhombohedral, with Mn↑ and Mn↓

being distinct sites (although related through a translation + spin-flip operation). Thus,

while most of the lore about transition metal monoxides is based upon cubic symmetry

of the Mn (and O) ion, in the ordered state the electronic symmetry is reduced. It is

obvious that individual wavefunctions will be impacted by this symmetry, viz. fourfold

symmetry around the cubic axes is lost. It has been emphasized by Massidda et al.[43]

that zone-integrated, and even spin-integrated, quantities show the effects of this symme-

try lowering; for example, Born effective charges lose their cubic symmetry. Since this

issue arises in the interpretation of our results, we provide some background here.
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Figure 4.2. The AFMII phase of MnO. Here, the black spheres correspond to Mn atoms

of one spin arrangement (let’s say, spin up), while the red spheres are Mn atoms with the

opposite spin arrangement (let’s say, spin down) and the blue spheres are the oxygens

In cubic symmetry the Mn 3d states split into the irreducible representations

denoted by t2g and eg. Rhombohedral site symmetry results in the three irreducible

representations ag, eg,1, and eg,2, the latter two being two fold degenerate. The coordinate

rotation from cubic to rhombohedral (superscript c and r respectively) is, with a specific

choice for the orientation of the x and y axes in the rhombohedral system,
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Applying this rotation of coordinates gives the 3d orbitals in the rhombohedral frame in
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terms of those in the cubic frame (dz2 ≡ d3z2−r2):

dr
xy =

1√
3

(
dc

xz − dc
yz − dc

x2−y2

)
(4.1)

dr
yz =

1√
6
(dc

yz − dc
xz) −

√
2

3
dc

x2−y2 (4.2)

dr
xz =

√
2

3
dc

xy −
1

3
√

2
(dc

xz + dc
yz) −

√
2√
3
dc

z2 (4.3)

dr
x2−y2 = −1

3
(dc

xz + dc
yz +

2

3
dc

xy) −
1√
3
dc

z2 (4.4)

dr
z2 =

1√
3
(dc

xy + dc
yz + dc

xz). (4.5)

In rhombohedral coordinates it is useful to categorize the 3d orbitals in terms of

their orbital angular momentum projections along the rhombohedral axis: dr
z2 ↔ m` = 0;

dr
xz, d

r
yz ↔ m` = ±1; dr

xy, d
r
x2−y2 ↔ m` = ±2. It is easy to see that |m`| specifies groups

of states that only transform into combinations of themselves under trigonal point group

operations.

Note that the unique ag symmetry state in rhombohedral coordinates is the fully

symmetric combination of the cubic t2g states. The other two irreps are both eg doublets.

While |m`| = 1 and |m`| = 2 form representations of these irreps, if there are components

of the crystal field that are not diagonal in the L=(2,m`) basis, these states will mix. Then

each of the resulting (orthonormal) irreps eg,1, and eg,2 will contain both |m`| = 1 and

|m`| = 2 components. Such mixing does occur in MnO and complicates the symmetry

characterization of the 3d states.

4.3 Previous Electronic Structure Studies

The origin, and the proper description, of the moments and the band gaps in

transition metal monoxides have been of interest for fifty years. The earliest question

centered on the connection between the antiferromagnetic (AFM) order and the insulating

behavior. Slater’s band picture[46] could account in a one-electron manner for a gap arising
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from AFM order, whereas Mott’s picture of correlation-induced insulating behavior[47] was

a many-body viewpoint with insulating behavior not connected to the magnetic order.

The proper general picture in these monoxides arose from studies of transport above the

Néel temperature and with introduction of defects, giving them the designation as Mott

insulators.

Much progress on the understanding of MnO and the other monoxides came from

early studies using LDA. While understanding that LDA does not address the strong cor-

relation aspect of the electronic structure, Mattheiss[48] and Terakura et al.[49] quantified

the degree and effects of 3d−2p interactions, and pointed out the strong effect of magnetic

ordering on the band structure. More recently, Pask and collaborators[50] have studied

the structural properties, and the rhombohedral distortion, with LDA and GGA approxi-

mations. The symmetry lowering and resulting structure is described well, and in addition

they found that AFM ordering results in significant charge anisotropy. Effects of AFM

order were further probed by Posternak et al. by calculating and analyzing maximally

localized Wannier functions for the occupied states.[51]

The application of correlation corrections in MnO already has a colorful history.

The first work, by Svane and Gunnarsson[53] and by Szotek et al.,[52] was in the ap-

plication of the SIC-LSD method. The former pair correctly obtained that MnO, FeO,

CoO, NiO, and CuO are AFM insulators, while VO is a metal. They calculated a gap

of 4 eV for MnO. Szotek et al. used a fairly different implementation of the SIC-LSD

approach but find a similar gap (3.6 eV). Their 3d states lay about 6 eV below the center

of the 2p bands, although hybridization was still clearly present. In this same time frame,

Anisimov, Zaanen, and Andersen introduced[7] the LDA+U method with application to

the transition metal monoxides. They obtained a band gap of 3.5 eV but few other results

on MnO were reported.
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Kotani implemented[54, 55, 56] the “DFT exact-exchange” method of Talman

and Shadwick[57] to crystal calculations. This method consists of taking the Fock ex-

pression for the exchange energy in the DFT functional, then performing a Kohn-Sham

solution (minimization), giving a local exchange potential (“optimized effective poten-

tial”). In Kotani’s results for MnO, the Mn eg and t2g bands form very narrow (almost

atomic-like) bands between the occupied O 2p bands and the conduction bands. Taka-

hashi and Igarashi[58] proposed starting from the Hartree-Fock exchange and adding cor-

relation from a local, three-body scattering viewpoint. Their corrections were built on a

parametrized tight-binding representation, and they obtained small self-energy corrections

for MnO, much smaller than they obtained for the other transition metal monoxides.

The effective potential approach used by Kotani was extended by Solovyev and

Terakura[59] in an unconventional way. They obtained an effective potential using the

criterion that it had to reproduce the spin-wave spectrum, i.e. that it had to describe

the magnetic interactions correctly. They found clear differences when comparing to the

LDA+U and the optimized effective potential results, and discussed limitations of the

one-electron band method itself.

More recently, Savrasov and Kotliar applied a dynamical extension[60] of the

LDA+U method (dynamical mean field theory) to MnO and NiO. Being a self-energy

method, this is not really a correlated band theory. For the properties they calculated

(band gap, effective charges, dielectric constant, optic phonon frequencies) the dynamical

results are similar to the LDA+U results and differ considerably from LDA values.

Even though hybrid-exchange DFT applications to solids are still in their infancy,

there have been two previous studies of MnO. The first, by Bredow and Gerson,[61] utilized

the B3LYP hybrid functional. Unlike the LDA and GGA, they found B3LYP provided an

excellent band gap for MnO. More recently, Franchini et al. have examined MnO in more
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detail using the PBE0 approximation.[62] They also found a gap, lattice constant and

density of states in quite good agreement with experiment. In particular, the distorted

dB1 rhombohedral structure was determined to be the minimum energy geometry, in

agreement with experiment. Neither the B3LYP nor the PBE0 approximation can be

applied to the metallic side of the transition of interest here. For that, we must turn to

the screened hybrid-exchange of HSE.

Therefore, while there has been thorough LDA studies of MnO and a variety of

approaches to treatment of the correlation problem, nearly all of these have considered

only ambient pressure or small variations of the volume near zweo pressure. The work

described in the following sections focuses on using the LDA+U correlated band method

from ambient conditions to high pressures, through the volume collapse regime, to see

whether some base foundation can be laid for the understanding and theoretical description

of pressure-driven Mott transitions in real materials.

The results are organized as follows: First, I will present the LDA results at

ambient conditions, in the AFMII rocksalt phase to help us orient ourselves, and follow

it up in the next section with LDA+U results as a function of pressure, still limiting the

analysis to the AFMII rocksalt (NaCl) phase, since it undergoes a first-order transition

in both moment and volume. Later, i will add the LDA+U results of the high pressure

NiAs phase, to compare and contrast with the experiemental findings. By definition of the

Hubbard ‘U’ in the LDA+U functional, the choice of ‘U’ regulates the possible states that

are obtained from a self-consistent calculation. Bearing that in mind, i will also provide

the effects of U on these transitions.

40



4.4 LDA Calculations

For LDA band structure plot (Fig. 4.3) we used version 5.20 of the full-potential

local orbital band structure method (FPLO[5, 44]). Relativistic effects were incorporated

on a scalar-relativistic level. We used a single numerical basis set for the core states (Mn

1s2s2p and O 1s) and a double numerical basis set for the valence sector including two

4s and 3d radial functions, and one 4p radial function, for Mn, and two 2s and 2p radial

functions, and one 3d radial function, for O. The semi core states (Mn 3s3p) are treated

as valence states with a single numerical radial function per nl-shell.
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4.4.1 Baseline: LDA Bands
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Figure 4.3. Top: LDA band structure of AFM MnO along rhombohedral symmetry lines,

calculated with the FPLO method[5, 44], with horizontal line (“Fermi level”) placed at

the top of the gap. The Γ-T lies along the rhombohedral axis, while Γ-L lies in the basal

plane. The O 2p bands lie in the -8 eV to -3.5 eV range, with the majority Mn 3d bands

just above (-3 eV to -1 eV). The five minority 3d bands are just above the gap. Note

the small mass, free-electron-like band that lies below the unoccupied 3d bands at the Γ

point. Bottom: The high symmetry points in the rhombohedral brillouin zone, depicted

here for better understanding the band structure

The LDA (uncorrelated) band structure of AFM MnO is shown in Fig. 4.3

as the reference point for the following calculations. There is a band gap of ∼ 0.7 eV.
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The five bands immediately below the gap are the majority Mn 3d bands, those lying

below are the O 2p bands. The charge transfer energy mentioned in the Introduction is

∆ct = εd − εp = 6 eV, and the exchange splitting is ≈3.5 eV. It is tempting to interpret

the 3+2 separation of occupied 3d states as t2g + eg, but the rhombohedral symmetry

renders such a characterization approximate. The five bands above the gap are primarily

the minority Mn 3d bands. However, a free-electron-like band at Γ lies lower in energy

than the 3d bands, but disperses upward rapidly, so over most of the zone the lowest

conduction band is Mn 3d and the gap is 1 eV. The presence of the non-3d band does

complicate the interpretation of the band gap.

4.4.2 Energetics under pressure

The LDA energetics, band gap and Mn moments as a function of pressure are

displayed in Fig.4.4. With pressure the moment on the Mn sites decrease continously,

though around 0.7V0, the rate is a bit steeper, indicative of a possible transition. The

total energy curves also show a change of curvature close to 0.68V0, consistent with the

moment picture. With pressure, the LDA band gap closes within less than 20% of the

volume reduction.
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Figure 4.4. Top Left: The calculated LDA total energy versus volume for rocksalt MnO.

Top Left: Change in moment on the Mn site as a function of pressure. Bottom: LDA band

gap for MnO versus volume

The behavior of MnO under compression within GGA has been given earlier by

Cohen, Mazin, and Isaak.[64] They obtained an equilibrium volume 2% higher, and bulk

modulus 13% smaller, than measured. Pressure studies including extensive structural

relaxation have also been provided by Fang et al.[65] Their structural relaxations make

their study more relevant (within the restrictions of GGA) but also make comparison with

our (structurally restricted) results impossible.
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4.5 LDA+U Method

The LDA+U approach of including correlation effects is to (1) identify the corre-

lated orbital, 3d in this case, (2) augment the LDA energy functional with a Hubbard-like

term (Coulomb repulsion U) and Hund’s (exchange J) energy between like spins, (3) sub-

tract off a spin-dependent average of this interaction energy to keep from double-counting

repulsions (once in LDA fashion, once in this U term), and (4) include the correlated

orbital occupation numbers in the self-consistency procedure, which leads to an orbital-

dependent Hartree-Fock-like potential acting on the correlated orbitals. The addition to

the energy functional has the schematic form

EU =
1

2

′∑
(U − Jδσσ′)[nmσnm′σ′ − n̄σn̄σ′ ]. (4.6)

where the primed-sum is over all indices mσ 6= m′σ′.

We actually use the coordinate-system independent form of LSDA+U [45, 12, 14]

implemented in FPLO,[5] which leads to four m indices on U and J which for simplicity

have not been displayed (nor has the full off-diagonal form of the occupation matrices

nmm′σ). This treatment of the on-site interactions U and J incorporates on-site correlation

effects in the Mn 3d-shell. We have used the so called ‘atomic-limit’ (strong local moment)

form of the double-counting correction, the last term in Eq. 4.6. This form is appropriate

for the high-spin state, but it is less obviously so for the low-spin state that is found at

reduced volumes. The Slater parameters were chosen according to U = F0 = 5.5 eV,

J = 1
14 (F2 + F4) = 1 eV and F2/F4 = 8/5. (The choice of the value of U and possible

ways to evaluating them will be addressed later)

The shape of the basis orbitals has been optimized yielding a sufficient accuracy

of the total energy over the range of geometries considered in this work. The k-integrals

are performed via the tetrahedron method with an irreducible mesh corresponding to 1728
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(123) points in the full Brillouin zone.

4.5.1 Rocksalt (NaCl) AFMII MnO:

Energetics and Equation of State

The equation of state (EOS) energy vs. volume curve obtained from the LDA+U

calculations are shown in Fig. 4.5. We obtain a large volume, high-spin (S = 5µB) state

and a small volume, low-spin ( S = 1µB) state. The analysis to obtain the first-order

volume collapse transition was done as follows. For the high volume and low volume

phase separately, an EOS function Eh,l(V ) was determined (h, l=high, low) by a fit to

the Murnaghan equation. Both fits give minima, with the most relevant one being for

the high spin phase and being the predicted equilibrium volume V th
0 . The pressure is

obtained from the volume derivative of the EOS, then is inverted to give V (P ). Then

equating the enthalpies E[V (P )]+PV (P ) of the two phases gives the critical pressure Pc.

The volumes at this pressure then give the volume collapse ∆V = Vh(Pc) − Vl(Pc). The

various quantities from our computational scheme are given in Table 4.1, along with the

uncorrelated results of Cohen et al.[64] The equilibrium volume from the LDA+U method

is smaller than the experimental volume and hence over binding. We obtain a volume

collapse of nearly 5.4% within the rocksalt phase (Yoo and coworkers [40] observed a 6.6%

isostructural volume collapse around 110 GPa, though within the NiAs (B8) phase). The

critical pressure Pc = 123 GPa, and is fairly comparable to that of the GGA work of

Cohen et al.[64]
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Figure 4.5. The calculated total energy/MnO versus volumes for the AFMII rocksalt

phase, referred to zero at their equilibrium volume. The filled symbols denote the energies

of the large volume, high spin configuration and the open symbols denote the energies of

the small volume, low spin configuration. The continuous and dashed lines are the least

square fitted curves to the Murnaghan equation of state for high and low spin configura-

tions respectively.

v0 vh vl ∆v Bh Bl B′
h B′

l Pc

GGA 1.02 0.70 0.62 0.08 196 - 3.9 - 149

LDA+U 0.93 0.66 0.61 0.05 192 195 3.2 3.6 123

Table 4.1. Quantities obtained from fits to the Murnaghan equation of state for the

LDA+U functional and compared to the GGA column, which are taken from Ref. [64]. v0

is the experimental equilibrium volume, B and B’ are the bulk modulus (in GPa) and its

pressure derivative. vh, vl are the calculated volumes of the high and low pressure phases,

respectively, at the critical pressure Pc (in GPa). ∆v is the amount of volume collapse

that occurs at the transition pressure Pc. All volumes are referred to the experimental

equilibrium volume. The experimental values are B=142-160 GPa, B ′ ≈ 4; see Zhang[63]

and references therein.
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Figure 4.6. Calculated moment on each Mn site as a function of volume. We observe

a distinct collapse (first order) of magnetic moment with decrease in volume. At large

volumes, the high spin state with S = 5/2 (single occupancy of the d-orbitals) is realized

whilst the low spin state with S = 1/2 is favored for smaller volumes.

Magnetic Moment

The moment collapse behavior as a function of pressure is collected in Fig. 4.6.

We predict a distinct collapse (first order) of the magnetic moment with decrease in

volume. For comparison, the GGA result presented by Cohen et al.[64] was a moment

collapse from 3.4µB to 1.3µB at the volume given in Table 4.1. At low pressure, we get

the high-spin S= 5
2 configuration of the Mn2+ ion, with the local moment being reduced

slightly from 5µB by 3d − 2p mixing. This electronic phase persists over a substantial

volume reduction, becoming unstable around v = 0.60 and rearranging to a low-spin state

S=1
2 , not the nonmagnetic S = 0 result that might naively be anticipated.

Fundamental Band Gap

In Fig. 4.7 the calculated band gap of both high-spin and low-spin states are

shown. At ambient pressure the LDA+U method gives a gap of less than 2 eV. Experi-

48



0.5 0.6 0.7 0.8 0.9 1
V/V0

0

1

2

3

4

B
an

d 
ga

p 
(e

V
)

NaCl high spin
NaCl low spin

Figure 4.7. Calculated band gap as a function of volume. For LDA+U, the band gap

increases with decrease in volume for the high spin state, but decreases with volume in

the low spin state. At very low volumes, were the low spin configuration is preferred

LDA+U gives a substantial gap and is still an insulator

mental values lie in the 3.8-4.2 eV range. Referring to Fig.4.3 , it can be observed that

the large volume gap depends on the position of the majority 3d states with respect to

the free-electron-like band, i.e. it is not the 3d− 3d Mott gap. The LDA+U gaps, smaller

initially, show a much stronger increase with pressure, and also incur the band crossover

that leads to decrease of the gap (within the high-spin state). This gives the transition

a distinctive character: the low-spin state has a larger gap than the high-spin state, and

there does not seem to be a metallic state nearby.

Analysis of the Transition

In this section we analyze the character of the states just above and just below

the Mott transition. The projected DOSs (PDOSs) in Fig. 4.8 refer to projections onto

Mn 3d orbitals, with the z-axis being the rhombohedral axis, the ag 3z2 − r2 (|m|=0)

state; the e′g pair {xz, yz} (|m|=1); and the eg pair {x2 − y2, xy} (|m|=2). Because the
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Figure 4.8. Projected DOS onto symmetrized Mn 3d orbitals in the rhombohedral AFMII

rocksalt phase using the LDA+U method. Top panel: High spin solution at the LDA+U

equilibrium volume. Bottom panel: Low spin solution at 60% of the LDA+U equilibrium

volume. The ag orbital is the 3z2−r2 oriented along the rhombohedral axis, other symme-

tries are described in the text. The overriding feature is the spin-reversal of the m = ±1

e′g orbitals between the two volumes.

two eg representations have the same symmetry, they can mix and the actual combinations

eg,1, eg,2 are orthogonal linear combinations of eg, e
′
g which depend on interactions. For

the LDA+U results, however, there is little mixing of the eg, e
′
g pairs. The character of

the transition is simple to describe: the e′g pair (|m|=1 with respect to the rhombohedral

axis) simply flips its spin.

This S= 1
2 state is unexpected and quite unusual. First, each 3d orbital is still

singly occupied, verified by plotting the charge density on the Mn ion and finding it just

as spherical as for the high-spin state. Second, each 3d orbital is essentially fully spin-

polarized, with the configuration being ag ↑ eg ↑ e′g ↓. A plot of the spin density (Fig. 4.9)
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reveals the unanticipated strong anisotropy with nodal character, characteristic of spin-up

m = 0 and |m|=2 orbitals, and spin-down |m|=1 orbitals (in the rhombohedral frame).

Third, it makes this transition with essentially zero change in the gap, which is 3.5 eV.

The band structure changes completely, however, so the close similarity of the gaps on

either side is accidental.

Figure 4.9. Spin density plot of the AFMII MnO in the LDA+U method. (red = majority

spin channel, blue = minority spin channel) Left: High spin solution, wherein all the 5

spins are parallel to each other in each layer and antiparallel along the [111] axis. So, we

see a layer of up-spins (all red) surrounded by a layer of down-spins (all blue) above and

below. Right: Visible difference in the spin arrangement due to the un-anticipated strong

anisotropy. The ag orbital is still fully polarized (red - axial) and pointing along the [111]

axis of the rhombohedron. The two doublets, eg (red - inplane) and e′g (blue) are also

fully polarized with equal and opposite spins as seen in the plot

Now, I will move on to the high pressure NiAs (B8) phase witnessed in experi-

ments.
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4.5.2 NiAs (B8) MnO:

Fig.4.10 shows the arrangement of Mn and O atoms in the NiAs (B8) phase.

The B8 structure can be generated from a hcp arrangemet of oxygens and then filling

the octahedral holes with Mn ions. In contrast the rocksalt (B1) structure has a fcc

close packing of ions with all of the octahedral holes filled. In the B1 structure, both

Mn and O sites are octahedrally coordinated while in the B8 structure, the Mn atoms are

octahedrally coordinated by the 6 surrounding O sites, but the O sites are surrounded by a

trigonal prism of 6 Mn ions. The local environment around the Mn ions is still octahedral

like in the B8 structure.

Figure 4.10. The NiAs phase of MnO. The blue spheres are the Mn ions, and the purple

spheres represent the O ions. The left panel shows the top view of 4 formula unit cells,

wherein the octahedral coordination of the Mn ions with the 6 neighboring O sites is

depicted. On the right panel, a frontal view of one formula unit cell is shown, elucidating

the trigonal prismatic coordination of the oxygens.

All the experiments have only ascertained the structural arrangement of the high

pressure phase (NiAs), but have not obtained information about the possible magnetic

ordering of the Mn ions in the NiAs phase. There are two possibile arrangements of the

Mn spins in the NiAs phase, ferromagnetic or antiferromagnetic. We have done total
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energy calculations for both the orderings for a wide range of pressures and the findings

are displayed in Fig.4.11. Our LDA+U calculations show the antiferromagnetic (AFM)

phase to be energetically favorable than the ferromagnetic (FM) phase, by 0.2 eV for

a wide range of pressures. Fang and coworkers [65] have previously reported GGA and

LDA+U calculations for the NiAs phase of MnO and concluded that the FM ordering is

favourable, which is contrary to our findings. This could be due to the fact that, they did

not do a c/a optimization for the B8 phase. We have optimized the c/a ratio for a wide

range of volumes and found it to undergo substantial changes.
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Figure 4.11. Calculated total energy versus volume for both FM and AFM ordering of

the Mn ions in the high pressure NiAs structure. All the energies were obtained after a

c/a optimization within their respective magnetic ordering. Throughout the phase-space

considered here, the AFM is lower than the FM by about 0.2 eV. Thus, we only do further

analysis of the AFM NiAs-MnO structure.

Displayed in Fig.4.12 and 4.13 are the results of our c/a optimization for the

AFM ordering in the B8 phase. Since LDA+U gives two solutions, a high spin (S = 5µB)

and a low spin (S = 1µB), we performed calculations for both such solutions. We notice,
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the c/a values show a substantial increase with pressure and the trend is the same for both

possible spin solutions. These ratios do change for different magnetic orderings. Keeping

that in mind, we also did optimizations for the FM ordering and noticed the same trend.

All these calculations were done within the LDA+U methodology with U = 5.5 eV and

J = 1 eV, to retain consistency with the rocksalt phase results. Using our findings as a

benchmark, I will now concentrate on AFM NiAs MnO as the high pressure phase and

analyse the electronic structure.
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Figure 4.12. Calculated total energies versus c/a for different volumes of NiAs MnO in

the high spin state. The arrows indicate the optimized c/a value for the corresponding

lattice constant. With pressure, the c/a ratio increases.
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Figure 4.13. Calculates total energies versus c/a for different volumes of NiAs MnO in the

low spin state. The arrows indicate the optimized c/a value for the corresponding lattice

constant. With pressure, the c/a ratio increases.

The equation of state (EOS) energy vs. volume curves for both the AFMII NaCl

and AFM NiAs-MnO structure are collected in Fig.4.14. There are two electronic phases

within each structure, a high-spin (S = 5/2) and a low-spin (S = 1/2) phase. From

the enthalpies of all the four curves, we notice that the previously mentioned first order

magnetic transition and volume collapse within the NaCl phase still prevails at 123 GPa

but is quickly followed by a transition to a low spin NiAs phase at 130 GPa, without much

change in the volume. (Note: The LDA+U results are very much dependent on the choice

of U and J. The numbers reported here are only true for U = 5.5 eV and J = 1 eV. One

can get different transitions and pressures for other choices)
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Figure 4.14. The calculated total energy/MnO versus volumes for the low pressure and

high pressure structures of MnO. The filled symbols denote the calculated energies and

the continous lines are the least square fitted curves to the Murnaghan equation of state

for high and low spin configurations respectively.

Changes in the Mn-moment and band gap for both the structures as a function

of pressure are collected in Fig.4.15 and 4.16. As shown previously for the rocksalt phase,

LDA+U gives two distinct spin states for the NiAs phase also. At low pressure we obtain

the S = 5
2 high-spin configuration while at high pressures the S = 1

2 is realized. An inter-

esting fact to notice here is that, even the high pressure AFM NiAs phase also stabilizes

in the S = 1
2 spin configuration and not in the nonmagnetic S = 0 state. Discussions in

the previous sections have indicated that the NaCl low spin phase continues to be an in-

sulator upto very high pressures, with a substantial gap. The results of the NiAs low spin

phase also follows the same trend, with the S = 1
2 state having a larger gap than the S = 5

2

state. So, LDA+U predicts a NaCl-MnO (insulator, high-spin) −→ NaCl-MnO (insulator,

low-spin) transition at 123 GPa −→ AFM NiAs-MnO (insulator, low-spin) transition at

130 GPa.
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Figure 4.15. Changes in moment on the Mn site as a function of pressure for both NaCl

and NiAs structures of MnO.
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Figure 4.16. Band gap versus volume for NaCl and NiAs-MnO. LDA+U predicts an

insulator for a wide range of pressures.

Analysis of the transition

Our findings of an insulator → insulator transition is contrary to the recent

experiments which witness a Mott transition in the NiAs structure. The AFM ordering

of the Mn moments in the NiAs structure along with the LDA+U methodology used for
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the total energy calculations seems to aide in the persistence of an insulating gap upto

very high pressures. Now, I will analyze the character of the Mn d states in the NiAs

structure and compare it with the previously analyzed NaCl structure. The projected

DOSs for both high-spin and low-spin states and for both structures are displayed in

Fig.4.17. The physics of the S = 5
2 → S = 1

2 transition for the NiAs structure is strikingly

similar to that of the NaCl structure. The so called ‘spin-flip’ solution is also realized in

the NiAs structure. Going from NaCl to NiAs, the structure changes from rhombohedral

to hexagonal, but the underlying local symmetries do not change much and the d orbitals

are still seperated into two doubly degenerate doublets and a singlet. The singlet ag is

pointing along the hexagonal axis. So, the low-spin state is obtained by just ‘flipping’

the e′g pair with respect to the hexagonal axis. This novel spin transition produced by

LDA+U prevails for both the structures.
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Figure 4.17. Left: Projected DOS onto symmetrized Mn 3d orbitals in the NaCl AFMII

phase using the LDA+U method. Top panel shows the solution at the LDA+U equilib-

rium volume, while the bottom panel shows the low-spin solution at 60% of the LDA+U

equilibrium volume. The ag orbital is oriented along the rhombohedral axis. Right: Pro-

jected DOS onto symmetrized Mn 3d orbitals in the NiAs AFM phase using the LDA+U

method. Top panel shows the high spin solution, while the bottom panel shows the low-

spin solution at 54% of the equilibrium volume. The overriding feature is the spin-reversal

of the m = ±1e′g orbitals between the two volumes for both the structures.

4.6 Trends due to U and J

In this section, I will present a systematic look at the energetics for various

choices of the ‘Hubbard U’ and the ‘Exchange constant J’. I will concentrate only on the

rocksalt phase of MnO, since the trends are quite similar for the NiAs phase.

In Figs.4.18 and 4.19, I have collected the total energies versus normalized lattice
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constant for two choices of U = 4.5 eV and 5.5 eV, with J going from 0.0 eV to 1 eV. First,

let us look at a fixed value of J (say 1 eV) and observe what happens when we change

U from 4.5 eV to 5.5 eV. The energy difference between the minima’s of the high and

low spin insulating states increases. This results in an increase in slope of the common

tangent that connects both the curves, thereby leading to an increase in the calculated

transition pressure, with increase in U. Now, let us keep U constant (say 5.5 eV) and

change J from 1 eV to 0 eV. From Fig.4.19 we observe that, the low spin energy curve is

again shifted upwards with respect to the high spin energy curve, leading to an increase in

transition pressure. Though, the trends look similar for changes in U and J, the curvature

of the trends are not the same. i.e. critical pressure Pc increases with increase in U, while

decreases with increase in the value of J, with the possibility of no transition for J → 0.

Along with the two insulating solutions, we were also able to obtain a metallic

low spin state, but that was always energetically unfavorable for all choices of parameters.

For the sake of completeness, their energetics are also presented in Figs.4.18 and 4.19.

The various transition pressures due to our choices of U and J are collected in

Fig.4.20.
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Figure 4.18. Calculated LDA+U total energies versus normalized lattice parameter for

rocksalt phase of MnO with U = 4.5 eV and J = 0, 0.3, 0.6 and 1 eV. The filled symbols

denote the actual energies, while the continous lines are there as a guide to the eye.
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Figure 4.19. Calculated LDA+U total energies versus normalized lattice parameter for

rocksalt phase of MnO with U = 5.5 eV and J = 0, 0.3, 0.6 and 1 eV. Notice the change

in the energy axis of this plot as compared to the previous plot with U = 4.5 eV.
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Figure 4.20. Calculated transition pressure Pc, from high-spin insulating rocksalt MnO to

the low-spin insulating rocksalt MnO, for the various choices of U and J. These numbers

were obtained from doing a least square fit to the Murnaghan equation of state and

equating the resultant enthalpies for the various solutions.

4.7 Effect of the exchange constant J

Depending on the value of the exchange constant J, we are able to calculate

multiple magnetic solutions within the LSDA+U method. As discussed in the previous

section, when using J = 1 eV, we obtain the possibility of a phase trasition from a S = 5/2

B1 phase to S = 1/2 B1 phase around 123 GPa, followed by a transition to S = 1/2 B8

phase at 130 GPa. On the contrary if we choose J = 0 eV, we do not obtain the possibility

of any phase transition. In order to understand the unique effect of J, we will start from

the simple cubic (rocksalt) structure in the LDA approximation. We will focus on the low

spin state, since the major effects of J are witnessed in that regime.
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4.7.1 Cubic Ferromagnet - LSDA

The cubic (fcc) MnO cell contains one Mn site. The LDA total and the orbital

projected DOS of the ferromagnetic (FM) solution at the compressed volume V/V0 ≈

0.64 is shown in Figure 4.21. The cubic symmetry splits the Mn d orbitals into a triplet

t2g and a doublet eg. From the Mn d orbital projected DOS we see that the eg bands are

more involved in the covalent bonding with the O p orbitals producing a covalency split

of 10 eV. The t2g and eg states are split due to the crystal field effect.
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Figure 4.21. Left: Total DOS of fcc MnO (spin polarized) in the LDA approximation at

64% of the equilibrium volume (a0 = 4.45 Å. Right: Orbitally resolved DOS of the Mn

d orbital. Cubic symmetry splits the d orbitals into a triplet t2g (green/continous) and a

doublet eg (brown/dashed)

The Mn atoms along the cubic axis can interact via the Oxygens. These involve

mainly the eg orbitals with the O p orbitals. This covalency pins the position of the eg

bands relative to the Oxygen bands. And there is no direct Mn-Mn next nearest neighbor

(NNN) coupling due to symmetry constraints. This leads to the fact that the t2g bands

are more flexible and hence more active when the symmetry is changed and/or LSDA+U

is applied. Presently, the eg bands are basically unoccupied and the 5 d electrons are
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distributed in the t2g orbitals thereby leading to a metallic solution.

Now, let us apply a U to this system. Here we fix U = 5.5 eV and J = 0 eV.

4.7.2 Cubic Ferromagnet - LSDA+U

Figure 4.22 shows the result of applying LSDA+U on the Mn d states. The main

effect of U is to shift the occupied bands down and the unoccupied bands up. The eg

bands are basically unoccupied, which results in an up-shift of both eg spin sub bands.

This additional up-shift removes the eg bands completely from the discussion of the oc-

cupation effects and energetics. But the covalent split of about 10 eV is still maintained

by the eg states. The t2g spin sub bands are shifted according to the expected U -effect.

There is no possibility for a gap in the spin down band since the cubic symmetry does

not allow a gap opening with in the t2g band and the electron count requires the minority

band to contain two electrons, resulting in a spin 1
2 half-metal.

However, one can release the cubic symmetry by creating a rhombohedral cell,

still maintaining the ferromagnetic alignment of the spins, (i.e. fcc unit cell with lower

number of symmetry operations). This rhombohedral symmetry then splits the 5 d or-

bitals into two doublets and a singlet which we shall refer to eg1, eg2 and ag respectively.

Now applying U (J = 0 eV) to this lower symmetry structure will lead to a gap formation

in the system, which we discuss below.

4.7.3 Rhombohedral Ferromagnet - LSDA+U

Figure 4.23 shows the orbital projected DOS for the rhombohedral (low symme-

try fcc) MnO, within the LSDA+U approximation. The rhombohedral cell that we use
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Figure 4.22. Mn d orbital projected DOS for the fcc MnO (spin polarized) in the LSDA + U

(5.5 eV) approximation. The dashed (brown) curve is the eg state, completely unoccupied

and separated from the Oxygen states by a covalent split of about 10 eV. The 5d electrons

are distributed among the t2g levels producing a spin 1
2 half-metal.

for this calculation is obtained by rotating the coordinate system and interpreting the

primitive cell of the fcc lattice as a rhombohedral cell, with only D3d symmetry. So, we

still have only one formula unit of MnO in the unit cell. For clarity we show the DOS

in both the rhombohedral and the cubic coordinate system. We observe the effect of the

symmetry lowering, which has aided in the creation of a band gap.
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Figure 4.23. Left: Mn d orbital projected DOS for the low symmetry fcc (rhombohedral)

cell for LSDA+U method. The orbitals are projected along the rhombohedral axes. The

ag orbital is the 3z2 − r2 oriented along the body diagonal of a cube. Right: Cubic

decomposition of the orbitals depicted in the top panel.

From the cubic decomposition we can clearly see the split happening in the mi-

nority t2g band. The former eg bands continue to remain unoccupied and do not mix in,

since they do not have the relevant energies.

The fact that the singlet ag is split by U makes the resulting solution insulating.

Within the rhombohedral symmetry, the 2 two-dimensional irreducible representations

(eg1&eg2) are equivalent and hence are allowed to mix. Out of the 5 electrons, one is

in the singlet ag. The remaining 4 electrons seem to be equally distributed between the

spin up/down channels of eg1 and eg2 thereby cancelling out and producing a net S = 1/2

insulator.

There is another possibility, however. The splitting could occur in the doublets,

eg1 and/or eg2. This means that the ag is fully filled, thereby bringing eg1 and eg2 to

the fermi level producing a metal. This solution ‘does’ exist, but is energetically higher
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than the insulating one described above. For simplicity we will maintain our focus on the

insulating solutions.

Now, we move to the next step. We maintain the rhombohedral (low symmetry

fcc) symmetry, but introduce the AFMII ordering in the system. In this phase, <111>

layers have spins aligned, and successive layers are antiparallel. In order to account for

the two types of Mn sites in the system, the rhombohedral cell that we consider for this

calculation has two formula units of MnO per unit cell. Just to reiterate, we still are fixing

U = 5.5 eV and J = 0 eV.

4.7.4 Rhombohedral Antiferromagnet (AFMII) - LSDA+U

Since the large exchange split is responsible for the ferromagnetic calculation

itself to be insulating, the superposition of the AFMII ordering does not change the en-

ergetics much. Since we are already in the gapped regime, the AFMII order does not

create a new gap, but slightly enhances the gap (2.5 eV) created by the ferromagnet. The

striking feature is that, the projected DOS depicted in Figure 4.24 for the rhombohedral

AFMII ordering looks exactly like the rhombohedral FM Figure 4.23. The minority t2g is

split and the eg states are still fixed above the fermi level by the covalency.
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Figure 4.24. Left: Spin and symmetry projected DOS for the AFMII MnO using the

LSDA+U method. The orbitals are projected along the rhombohedral axes. Right: Cubic

decomposition of the Mn d orbitals from the top panel.

As mentioned in the previous section, it is possible to occupy the singlet ag fully,

thereby bringing the two doublets on to the fermi level creating a metallic solution which

is again energetically unfavourable for the chosen parameters.

Next, we take the final step and turn on the J in our calculations. We now

present the results of the rhombohedral AFMII cell with U = 5.5 eV and J = 1 eV.

4.7.5 Rhombohedral AFMII - LSDA+U & J = 1 eV

Figure 4.25 shows the DOS in both rhombohedral coordinate system and the

corresponding cubic decomposition. Except for the inclusion of the exchange constant

parameter J of 1 eV, all other parameters are indentical to the previous calculation. The

first difference we observe between Figures 4.24 and 4.25 is the increase in the band gap

by 1 eV and the occupied band width of the Mn d orbitals is smaller. The next striking

feature is the nature of occupancy of the doublets eg1 and eg2. The majority spin sub

band of eg1 is fully filled and the minority spin sub band is completely empty and vice
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versa for the other doublet eg2. The net result still produces a S = 1/2 insulator. Each

of the 3d orbital is still singly occupied, thereby still spin polarized with a configuration

of ag ↑ eg1 ↑ eg2 ↓. Comparing to the S = 5/2 solution where each of the 3d orbitals are

also singly occupied with a configuration of ag ↑ eg1 ↑ eg2 ↑, the S = 1/2 state is obtained

when the eg2 orbital just simply flips its spin. This ”spin flip” result due to J = 1 eV is

quite unusual. One could have anticipated the possibility of the same S = 1/2 state in

which either one of the two doublets are fully filled with 4 electrons and the other doublet

is completely empty. Such a state was not obtainable.

-9 -6 -3 0 3 6
Energy [eV]

-2

-1

0

1

2

D
O

S 
 [

st
at

es
/e

V
]

eg1
eg2
ag

-9 -6 -3 0 3 6
Energy [eV]

-2

-1

0

1

2

D
O

S 
 [

st
at

es
/e

V
]

t2g
ag

Figure 4.25. Spin and orbital projected DOS for the AFMII MnO in the LSDA+U method.

Here we use J = 1 eV. Left: Orbitals projected along the rhombohedral axes. Right: Cubic

decomposition

Comparing just the cubic decomposition of the DOS in Figure 4.24 and 4.25, we

do not notice too many differences. But, one feature needs to be pointed out here. The

eg orbital is still fixed above the fermi level by a covalent split of 10 eV. But, when using

J = 1 eV, we notice a small mixing of the eg states with the t2g in -6 to -3.5 eV region

which is not seen in any of the previous DOS. The cubic decomposition is obtained by

mere redistribution of the rhombohedral DOS along the cubic axis. Such a transformation

neglects the off-diagonal contribution. If one includes the off-diagonal contribution also

70



into this picture, it is quite possible that the small eg mixing that we notice here may not

be as small anymore ! This could may be provide the insight into the effect of J in our

calculations.

This unexpected difference between the solutions obtained from using J = 0 or

1 eV is also observed in the spin density plots (Figure 4.26), wherein we have plotted the

spin density on a real space grid.

Figure 4.26. Spin density plot of the AFMII MnO in the LSDA+U method (red = majority

spin channel, blue = minority spin channel). Both the plots depict the same S = 1/2

insulating solution. The left panel is from the calculation with J = 0 eV and the right

panel is from the calculation with J = 1 eV. In the left panel, we can see the ag orbital

character only, corresponding to Figure 4.24, wherein they are completely spin polarized,

while the other two doublets are not. All the red ag orbitals (majority spins) depict the

<111> layer with spins aligned and the adjacent layers are antialined with only minority

spins (blue). In the bottom panel, we see a visible difference from the unanticipated strong

anisotropy, corresponding to Figure 4.25. The ag singlet is still fully polarized and looks

identical to the top panel. But, the two doublets eg1 and eg2 are also fully polarized with

equal but opposite spins as seen by the blue and red surfaces of the plot.
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A compilation of the most relevant energetics for just the B1 phase from ambient

pressure to high pressure are shown in Figure 4.27, for both choices of J = 0 and 1 eV.

As mentioned earlier, we see no possible phase transition for the choice of J = 0 eV.
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Figure 4.27. The calculated total energy/MnO versus volumes in the B1 phase for the

LSDA+U method with different choices of J.

Having analyzed the B1 (NaCl) structure to understand the effects of J for a

broad range of volumes, the next obvious question to ask is whether this behavior is wit-

nessed in the B8 (NiAs) structure also. A detailed understanding of the crystal structure

of the B8 phase would clearly reveal the fact that the underlying symmetries surrounding

each Mn and O atoms are quite similar for both the B1 and B8 phases, which in turn

leads to similar effects of J for both phases. Analysis of the DOS for a S = 1/2 insulating

state of B8 MnO shows the ”spin flip” solution similar to that of B1 phase when using U

= 5.5 eV and J = 1 eV.

For the choice of J = 0 eV, we do not obtain either magnetic or structural phase

transitions.
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4.8 Conclusions

Our study provides some of the first detailed information on how magnetic mo-

ments in a real material may begin to disintegrate without vanishing identically, at or near

a Mott transition, when correlation is taken into account. It is accepted that dynamic

processes will be required for a truly realistic picture of the Mott (insulator-to-metal)

transition. However, a moment collapse between two insulating phases may be described

reasonably by a correlated band (static) approach.
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Chapter 5

Lattice dynamics via

Density-functional linear response

5.1 Framework

Response of electrons to a static external field is one of the important charac-

teristics of a solid which can be uniquely determined within density functional theory. In

recent years, the density-functional approach to the linear-response problem has proved

to be powerful method for determining various solid-state properties. These include static

dieletric properties in semiconductors and ionic crystals, screening response to electric

fields and point charges, as well as lattice dynamical properties.

In this chapter, I will present a short overview of the algorithm of the perturbation

theory, that takes into account the exchange effects and correlations in an inhomogeneous

electron liquid by the density functional method. The results presented in the forthcoming

chapters on lattice dynamics is solved using a code based on this formalism.
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Within density-functional theory, the problem of calculating the lattice dynamics

essentially amounts to finding the change in the electronic charge density in the presence

of a phonon with wave vector q. One of the most efficient technique developed for calculat-

ing this quantity is the solid-state analog[67, 68, 69] of the self-consistent Sternheimer[70]

equation (which is the Schrodinger equation to linear order) for atomic polarizabilities.

Its main features include, the study of the response via perturbation theory and the re-

sponse to the total (bare+electronic) potential is obtained by iteration of the calculation

up to self-consistency. The method is not restricted to perturbations written in terms of

local potentials. This is of particular interest in lattice dynamics, where norm-conserving

potentials are used to describe the electron-ion interaction. The calculations can be per-

formed for perturbations of arbitrary wavelength, with use of only valence energy bands

and wave functions of the unperturbed crystal.

The energy of a crystal is given by,

[−∇2 + V (r)]ψi(r) = Eiψi (5.1)

or

[−∇2 + Vbare(r) + e2
∫

ρ(r
′

)

|r − r′|dr
′ + Vxc(ρ(r))]ψi(r) = Eiψi (5.2)

where V is the sum of the external potential acting on the electons, plus an efffective

electron-electron potential which depends on the density itself, plus the local-density

approximation for the exchange and correlation. Now, when a perturbation ∆Vbare is

superimposed on the external potential, the whole self-consistent potential is modified

accordingly: VSCF −→ VSCF + ∆VSCF (because, the perturbation also changes the

wavefunction and the density).
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Now let us consider the response of the atom when we apply an infinitesimal

perturbing field δVM (r). Each wave function ψi(r) will be perturbed by this field. In the

first order, the change is given by ψ̄i(r) which is defined by

ψi(r) −→ ψi(r) + ψ̄i(r)εM (5.3)

Of course, this causes the density ρ(r) to change, which in the first order is given by

ρ(r) −→ ρ(r) + δρ(r)εM (5.4)

δρ(r) = 2Re(
∑

i

ψi(r)
∗ψ̄i(r)) (5.5)

The change in the wavefunction and the density also changes the potential acting upon the

electron. Along with the new external perturbation, the density changes cause a change

in the potential V(r) in equation (5.1). So, the total self consistent potential is found by

combining all these effects:

V new(r) = Vbare(r)+e
2

∫
ρ(r

′

)

|r− r′|dr
′+Vxc(ρ(r)+δVbare(r)+e

2

∫
δρ(r

′

)

|r − r′|dr
′+δρ(r)(

∂Vxc

∂ρ(r)
)

(5.6)

or

V new(r) = V (r) + VSCF (r)εM (5.7)

Using the first order perturbation theory on Schrödinger’s equation, we can evaluate the

change in the wave function, ψ̄i(r). Since the energy changes will be of the order of ε2M

and negligible, we will have

[−∇2 + V (r) + VSCF (r)εM ](ψi(r) + ψ̄i(r)εM ) = Ei(ψi(r) + ψ̄i(r)εM ) (5.8)

⇓

[−∇2 + V (r) −Ei]ψ̄i(r) = −VSCF (r)ψi(r) (5.9)

The above equation is the so called solid-state generalization of the Sternheimer equa-

tion. The original Sternheimer equation only used Vbare instead of VSCF , the modified
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self-consistent potential. First, one can do an atomic calculation to find the set of atomic

wave functions ψi(r), eigenvalues Ei and the potential V(r). With these in hand, one can

solve equations 5.3 to 5.9 self-consistently to find ψ̄i(r) and δρ(r).

5.2 Choice of basis set

We have used an all-electron generalization of the linear-response approach, based

on the above framework as implemented by Savrasov[71, 72, 73, 74]. In this approach,

the first-order corrections are represented in terms of the muffin-tin (MT) basis sets which

greatly facilitate the treatment of localized valence wave functions. The self-consistent so-

lutions are obtained via the linear-muffin-tin-orbital (LMTO) method[76]. In this method,

the space is partitioned into nonoverlapping (or slightly overlapping) muffin-tin spheres SR

surrounding every atom and the remaining interstitial region Ωint. Within the spheres, the

basis functions are represented in terms of numerical solutions of the radial Schrödinger

equation for the spherical part of the potential multiplied by spherical harmonics as well

as their energy derivatives taken at some set of energies εν at the centers of interest. In

the interstitial region, where the potential is essentially flat, the basis functions are spher-

ical waves taken as the solutions of Helmholtz’s equation: (-∇2 - ε)f(r,ε) = 0, where the

average kinetic energy ε = κ2
ν = 0 is chosen to fit the atomic-sphere approximation (ASA).

5.3 Calculation of the electron-phonon matrix element and

the superconducting transition temperature

The electron-phonon interaction in metals plays an important role in a variety of

experimentally accessible quantities, including the enhancement of the electron mass, the
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phonon lifetime arising from electron-phonon scattering, electrical and thermal conduc-

tivities, and the superconducting transition temperature. The electron-phonon spectral

function α2F (ω) measures the effectiveness of phonons with energy ω to scatter electrons

from one part of the Fermi surface to another. Once it and the Coulomb pseudopotential

µ∗ are determined for a superconducting material, all of the thermodynamic properties of

the superconductor, including the superconducting gap as a function of temperature, the

transition temperature, and the discontinuity in the specific heat at Tc, can be computed

[108]. In addition, transport properties of materials in the normal state can be calculated

from the closely related spectral function α2
trF (ω).

The superconducting transition temperature is evaluated via the Allen-Dynes[77]

formula, the derivation of which is based on strong coupling theory. Here, I only highlight

some of the important quatities that are needed to calculate Tc, the details of which can be

obtained from reference [75]. The electron phonon matrix element describes the scattering

of an electron at the Fermi surface from the state |kj〉 to the state |k + qj’〉 via the phonon

perturbation δV qν
eff :

gqν
k+qj’,kj = 〈k + qj’|δV qν

eff |kj〉 (5.10)

where, q is the phonon wave vector, ν numerates the phonon branches, k lies in the first

Brillouin zone and j is the band index. Band structure calculations done using the vari-

ational principle produces energy bands and wave functions that are not exact solutions

of the one-electron Schrödinger equation. This leads to incomplete-basis -set (IBS) cor-

rections in force calculations and this must be taken into account when calculating the

electron-phonon matrix element. The above equation only holds good when ψkj, ψk+qj

are exact solutions. The above expression is the linear-response analogy of evaluating

the strength of the electron-phonon matrix element via the splitting of the bands in the

frozen-phonon method.
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The electron-phonon spectral distribution functions α2F(ω) in terms of the phonon

linewidths γqν is evaluated as:

α2F (ω) =
1

2πN(εF )

∑

qν

γqν

ωqν
δ(ω − ωqν) (5.11)

where N(εF ) is the electronic density of states per atom per spin at the Fermi

level. When the energy bands at the Fermi level are linear in the range of phonon energies,

the linewidth is given by Fermi “golden rule” and is written as follows:

γqν = 2πωqν

∑

kjj’

|gqν
k+qj’,kj

|2δ(εkj − εF )δ(εk+qj’ − εF ) (5.12)

The Allen-Dynes formula for the superconducting transition temperature Tc is

given as

Tc =
ωlog

1.2
exp

(
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)
(5.13)

where

λ = 2

∫ ∞

0
dω
α2F (ω)

ω
(5.14)

with

wlog = exp〈ln ω〉, 〈ln ω〉 =
2

λ

∫ ∞

0
dω
α2F (ω)

ω
ln ω (5.15)

where λ is the dimensionless electron-phonon coupling constant, ωlog is the logarithmic-

averaged phonon frequency and µ∗ is the effective screened Coulomb repulsion constant

whose value is usually taken to be between 0.1 and 0.15. [78]

In the case of monatomic metals λ can also be expressed in the following form:

[95]

λ =
N(εF )〈I2〉
M〈ω2〉 =

η

M〈ω2〉 (5.16)
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where M is the mass of the atoms and 〈ω2〉 denotes the average of squared phonon

frequencies (second moment of the frequency). The frequency moments are defined by

〈ωn〉 =
2

λ

∫
dω
α2F (ω)

ω
ωn (5.17)

Further the quantity η which is called the Hopfield parameter is defined by η = N(εF )〈I2〉

with 〈I2〉 representing the Fermi surface average of the squared electron-phonon coupling

interaction,

〈I2〉 =

∑

qν

∑

kjj′

| gqν
k+qj′,kj |2 δ(εkj − εF )δ(εk+qj′ − εF )

∑

qν

∑

kjj′

δ(εkj − εF )δ(εk+qj′ − εF )
(5.18)
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Chapter 6

Superconductivity and Lattice

Instability in Compressed Lithium

6.1 Introduction

Lithium is considered to be a ‘simple’ metal, because it is the lightest of the alkali

metals and at ambient conditions, its properties are well described by a free electron model,

since the motion of the conduction electrons is only weakly perturbed by interactions with

the cubic lattice of atomic cores. Therefore metallic lithium has high conductivity, due

to the delocalized valence electron (the two core electrons effectively shield the nucleus).

Conventional BCS theory predicts the possibility of superconductivity in elements with

low atomic numbers when compressed to a dense metallic phase [?]. In sharp contrast to

the intutive expectation, that applying hyrostatic pressure normally favours high symmet-

ric (high-coordination) crystal structures, Neaton and Ashcroft [88] using first principles

band structure calculations predicted the possibility of Lithium preferring low-symmetry

structures under pressure. Motivated by those predictions, Hanfland and coworkers [90]

performed monochromatic synchroton X-ry powder diffraction studies of Li in a diamond

81



anvil cell (DAC) at pressures up to 50 GPa. They evidenced pronounced structural changes

under pressure, with a fcc to hR1 phase around 39 GPa followed by a transition to cI16

(bcc unit cell with 16 atoms) phase at 42 GPa. The structural transitions are associated

with a softening of the lattice caused by the pressure-induced electronic s −→ p transition.

This also suggests the possibility of superconducting properties of dense lithium near the

phase transition regime.

The initial report of superconductivity in compressed Lithium was by Shimizu

and coworkers [80], who observed a superconducting critical temperature (Tc) of 20 K at

48 GPa (onset at 30 GPa and above). This was quickly followed by magnetic susceptibility

and electrical resistivity measurements by Struzhkin and coworkers [81], who observed Tc

to range from 9 to 16 K at 23 to 80 GPa. The Tc of 16 K occured in the fcc phase around

37 GPa. Both these experiments had used non-hydrostatic pressure cells. Later, Deemyad

and coworkers [79] used near-hydrostatic pressure conditions and witnessed a Tc of 14 K

at 30 GPa (fcc phase).
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Figure 6.1. Superconducting critical temperature Tc versus Pressure from the three groups

mentioned in the text. (a): Shimizu and coworkers [80] (b): Struzhkin and coworkers [81]

(c): Deemyad and coworkers [79]

This provided almost as startling a development as the discovery[82] in 2001 of

Tc = 40 K in MgB2. Lithium at ambient conditions, after all, is a simple s-electron metal

showing no superconductivity above 100 µK.[83] What can possibly transform it into the

best elemental superconductor known, still in a simple, monatomic, cubic phase? There

is no reason to suspect a magnetic (or other unconventional) pairing mechanism, but it

seems equally unlikely that it transforms into a very strongly coupled electron-phonon

83



(EP) superconductor at readily accessible pressures.

The strength of EP coupling in Li has attracted attention for some time. Eval-

uations based on empirical pseudopotentials[84] early on suggested substantial coupling

strength λ=0.56 and hence readily observable superconductivity (Tc > 1 K); more re-

cent calculations relying on the rigid muffin-tin approximation (RMTA) reached a similar

conclusion[85, 86] and led to prediction of remarkably high Tc ∼ 70 K under pressure.[86]

None of these studies actually calculated phonon frequencies, relying instead on estimates

of a representative phonon frequency ω̄ based on the Debye temperature, which is only an

extrapolation from the q → 0 phonons. Linear response calculations of the phonons and

EP coupling[87] in bcc Li confirmed that superconductivity would occur in bcc Li (λ =

0.45), but superconductivity is not observed due to the transformation into the 9R phase

with 25% weaker coupling. Experimentally, superconductivity only appears above 20 GPa

in the fcc phase.

In the work presented here, we focus on the monatomic fcc phase that is stable

in the 20-38 GPa range. After providing additional characterization of the previously

discussed[88, 89, 90, 91] evolution of the electronic structure under pressure, we analyze

the implications of the Fermi surface (FS) topology for properties of Li. To study λ

microscopically we focus on the decomposition[95] into mode coupling strengths λQν ,

where λ = (1/3N)
∑

Qν λQν =< λQν > is the Brillouin zone (BZ) and phonon branch (ν)

average. We find that increase of pressure leads to very strong EP coupling to a specific

branch in very restricted regions of momentum space determined by the FS topology; these

features are directly analogous to the focusing of coupling strength[92, 93, 94] in MgB2.

Unlike in MgB2, tuning with pressure leads to a vanishing harmonic frequency at ∼25

GPa, beyond which the fcc phase is stabilized by anharmonic interactions.
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6.2 Electronic Structure

First, let us look at the evolution of the band structure with pressure. Fig. 6.2

shows the s and p - orbital projected band structure at 0 and 35 GPa. Necks start to

appear along the Γ → L, 〈111〉 direction. The volume at 35 GPa is 51% of that at P=0, so

the conduction electron density has doubled. We observe an increase in the p character of

the band crossing the Fermi level as we go from 0 to 35 GPa. This shift in character from

s to p is analogous to the s → d crossover in the heavier alkali metals.[96] The occupied

bandwidth increases by only 14%, much less than the free electron value 22/3-1 = 59%;

this discrepancy is accounted for by the 55% increase in the k=0 band mass (mb/m=1.34

at P=0 to mb/m=2.08 at 35 GPa).

85



Figure 6.2. Lithium, s and p orbital projected band structure at 0 and 35 GPa. The size

of the filled circles indicate the relative contribution of the orbital to the underlying bands.

As noted in the text, we observe an increase in p character as a function of pressure, with

necks appearing along 〈111〉 direction.

At P=0 in the fcc phase the FSs are significantly nonspherical and just touch at

the L points of the BZ; necks (as in Cu), where the p character is strongest, grow with

increasing pressure, and the FS at 35 GPa is shown in Fig. 6.3, colored by the Fermi

velocity. The topology of the FS plays a crucial role in the superconductivity of Li, as we

discuss below.
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Figure 6.3. Fermi surface of Li at 35 GPa plotted in a cube region around k=0 and

colored by the value of the Fermi velocity. Red (belly areas) denotes fast electrons (vmax
F

= 9×107 cm/s), blue (on necks) denotes the slower electrons (vmin
F = 4×107 cm/s) that

are concentrated around the FS necks. The free electron value is 1.7×108 cm/s.

6.3 Analytic Properties of the Nesting Function

The coupling strength λ is the average of mode coupling constants[95]

λ ~Qν =
2Nν

ω ~QνN(0)

1

N

∑

k

|M [ν]
k,k+Q|2δ(εk)δ(εk+Q), (6.1)

with magnitude determined by the EP matrix elements M
[ν]
k,k+Q and the nesting function

ξ(Q) describing the phase space for electron-hole scattering across the FS (EF =0),

ξ(Q) =
1

N

∑

k

δ(εk)δ(εk+Q) ∝
∮

dLk

|~vk × ~vk+Q|
. (6.2)

Here the integral is over the line of intersection of the FS and its image displaced by Q,

~vk ≡ ∇kεk is the velocity, and N(0) is the FS density of states. Evidently ξ(Q) gets large

if one of the velocities gets small, or if the two velocities become collinear.

Note that 1
N

∑
Q ξ(Q) = [N(0)]2; the topology of the FS simply determines how

the fixed number of scattering processes is distributed in Q. For a spherical FS ξ(Q) ∝
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Figure 6.4. Surface plots of the nesting function ξ(Q) at 35 GPa throughout three symme-

try planes: (010) Γ-X-W-K-W-X-Γ; (001) Γ-K-X-Γ; (110) Γ-K-L-K-X-Γ. The Γ point lies

in the back corner. The dark (red) regions denote high intensity, the light (blue) regions

denote low intensity. The maxima in these planes occur near K and along Γ-X. To obtain

the fine structure a cubic k mesh of (2π/a)/160 was used (2×106 points in the BZ).

1
|Q|θ(2kF − Q); in a lattice it is simply a reciprocal lattice sum of such functions. This

simple behavior (which would hold for bcc Li at P=0, for example) is altered dramatically

in fcc Li, as shown in Fig. 6.4 for P=35 GPa (the nonphysical and meaningless 1
|Q|

divergence around Γ should be ignored). There is very fine structure in ξ(Q) that demands

a fine k mesh in the BZ integration, evidence that there is strong focusing of scattering

processes around the K point, along the Γ-X line peaking at 3
4 Γ-X≡XK , and also a pair

of ridges (actually, cuts through surfaces) running in each (001) plane in K-XK -K-XK -K-

XK -K squares. Some additional structures are the simple discontinuities mentioned above,

arising from the spherical regions of the FS.

Structure in ξ(Q) arises where the integrand in Eq. 6.2 becomes singular, i.e.
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when the velocities at k and k+Q become collinear. The FS locally is either parabolic or

hyperbolic, and the nature of the singularity is governed by the difference surface which

also is either parabolic or hyperbolic. In the parabolic case (such as two spheres touching)

ξ(Q) has a discontinuity. In the hyperbolic case, however, ξ(Q) diverges logarithmically.

Such divergent points are not isolated, but locally define a surface of such singularities (or

discontinuities, in the parabolic case). The ridges and steps visible in Fig. 6.4 are cuts

through these singular surfaces; the intensity at K arises from transitions from one neck to

(near) another neck and is enhanced by the low neck velocity (In Fig 6.5, two such scenario

wherein the intensity arises from neck to neck transitions are shown ). Roth et al. have

pointed out related effects on the susceptibility[97] (which will analogously impact the real

part of the phonon self-energy), and Rice and Halperin[98] have discussed related processes

for the tungsten FS. In the susceptibility (and hence in the phonon renormalization) only

FS nesting with antiparallel velocities gives rise to Q-dependent structure. This explains

why the ridge in ξ(Q) along the Γ-X line (due to transitions between necks and the region

between necks) does not cause much softening (Fig. 6.6 portrays such a scenario); there

will however be large values of λQν because its structure depends only on collinearity.
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Figure 6.5. Two dimensional view of the nesting function ξ(Q) along with the Fermi

surfaces with relative shift, indicating lines of intersection. The light areas indicate the

‘hot spots’ (the intersection of the Kohn anomaly surfaces with the Fermi surface) that are

involved in strong nesting and strong coupling. Top and Bottom panel: Nesting intensity

near K, arising from one neck to another neck transition.
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Figure 6.6. Same as Fig. 6.5, but shown here is the unphysical nesting arising along the

Γ → X line from the transition between necks and regions between the necks.

Divergences of ξ(Q), which we relate to specific regions of the FS shown in Fig.

6.4 (mostly distinct from the flattened regions between necks discussed elsewhere[91]),

specify the Q regions of greatest instability. However, instabilities in harmonic approxi-

mation (ωQν → 0) may not correspond to physical instabilities: as the frequency softens,

atomic displacements increase and the lattice can be stabilized to even stronger coupling

(higher pressure) by anharmonic interactions.

6.4 Electron-Phonon interaction and evaluation of Tc

The phonon energies and EP matrix elements have been obtained from linear

response theory as implemented in Savrasov’s full-potential linear muffin-tin orbital code

[74, 75]. We have used the Vosko-Wilk-Nusair local exchange-correlation [104]. To illus-

trate the evolution with pressure, we use the fcc lattice constants 8.00, 7.23, 6.80, 6.6, and

6.41 bohr, corresponding approximately to 3, 10, 20, 30, and 35 GPa respectively, accord-
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ing to the experimental equation of state [102]. (and we use these pressures as labels).

The 8.00 bohr value is the local density approximation equilibrium lattice constant. The

3 and 35 GPa phonon energies are calculated at 72 inequivalent Q points ( a 12 × 12 × 12

grid), with a 24 × 24 × 24 grid for the zone integration when calculating the Eliashberg

spectral function. The 10 GPa phonons are calculated at 29 inequvalent Q points (a 12

× 12 × 12 grid), with a 24 × 24 × 24 grid for the zone integration. The 20 and 30 GPa

phonons are calculated using a fine mesh with 413 inequivalent Q points ( a 24 × 24 ×

24 grid), with a 40 × 40 × 40 grid for the zone integration. Though all the calculations

were not done for the same sampling, the results presented here show the general trend in

understanding the physics as a function of pressure, i .e. what coupling is important for

Tc, as opposed to what is important in increasing λ, which is a far simpler question.

6.4.1 Dispersion throughout the zone

The calculated phonon dispersion curves for the various pressures are displayed

in Fig. 6.7. As a function of pressure, we notice softening midway along the Γ - L direction

(transverse T branches), for the 〈11̄0〉 polarized T1 branch along the Γ - K direction which

becomes unstable around 32 GPa, and possibly softening in the T branches around the

X point. The noticeable dip near the midpoint of Γ - L is reflected in the ridge in ξ(Q)

running downward from the uppermost K point in Fig. 6.4. The T1 branch softens

dramatically around the K point and at 35 GPa this mode is unstable in a substantial

volume around the K point. This is also reflected in the ξ(Q) in Fig. 6.4. Although, we

obtain a ‘harmonic’ instability at Q ≈ K already at around 32 GPa, it is entirely feasible

that this system is anharmonically stabilized beyond this pressure (experimentally, the

fcc phase prevails to upto 40 GPa), an example of anharmonically stabilized ‘high-Tc’

superconductivity.
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Figure 6.7. Calculated phonon spectrum for fcc Li along high symmetry directions for

the various pressures as noted in the text. The solid diamonds denote the longitudinal

mode L, and where the transverse branches are non-degenerate, solid circles denote the

transverse mode T1 and open circles denote the transverse mode T2. The mode symmetry

has been used to connect braches across crossings (Γ → K) although this is not possible off

symmetry lines where branches do not cross. As a function of pressure, we notice softening

midway along the Γ - L direction (transverse T branches), for the 〈11̄0〉 polarized T1 branch

along the Γ - K direction, which becomes unstable around 32 GPa and possibly softening

in the T branches around the X point.
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Figure 6.8. Calculated mode λQν values for the various pressures, following the notation

in Fig. 6.7. The landscape is dominated by peaks in the transverse branches near K, a

longitudinal peak along Γ - L, and an increase around Q ≈ zero where the phase space

is limited. Here λQν is normalized such that the total λ requires a sum over the three

branches (rather than an average).

The corresponding ‘mode λ’ values λQ,ν are presented in Fig. 6.8. With increase

in pressure from 3 to 35 GPa, the electron-phonon coupling constant increases. The λQ,ν

values for the T1 branch near K, and also near the midpoint of the Γ - L line are larger
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compared to the other areas in the BZ, as expected from the phonon kinks. In addition,

we notice that the λQ,ν values for all the three branches are large along the Γ - X; this

coupling is not immediately obvious from the phonon dispersion in Fig. 6.7 because it

depends only weakly on Q.

The calculation of ξ(Q) and the phonon spectrum has shown that the Fermi

surface topology concentrates scattering processes into well-defined surfaces inQ space and

even in alkali metals, can lead to very strong coupling to specific phonons that can finally

drive lattice instability. To enhance λ, it is necessary in addition that the large regions

of ξ(Q) are accompanied by large electron-phonon matrix elements. In order to verify

that, we took the Q = ( 2
3 ,

2
3 , 0)

2π
a phonon (near K) and did frozenphonon calculations as

a function of pressure for both T1 and T2 transverse modes. T1 mode is polarized along

the 〈001〉 axis, while the T2 mode is polarized along the 〈11̄0〉 axis. From our total energy

calculations, we find that the T1 (unstable) phonon causes large band shifts with atomic

displacement (δεK/δu ≈ 5eV/Å) near the Fermi surface necks, while for the stable T2

mode band shifts are no more than 5% of this value (Fig. 6.9, 6.10). Thus, the focusing

of the scattering processes is indeed coupled with large, polarization-dependent matrix

elements.
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Figure 6.9. Frozen phonon results for the 〈11̄0〉 polarized T1 branch. Left panel: Super

cell, which contains two wave length of the Q = ( 2
3 ,

2
3 , 0)

2π
a phonon polarized in the 〈11̄0〉

direction. Right panel: Total energy curves as a function of absolute displacement. As the

pressure increases the minimum in the total energy happens when the atoms are displaced

away from their fcc equilibrium positions. A plot of the band structure reveals large band

shifts of 5 eV/Å.
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Figure 6.10. Frozen phonon results for the 〈001〉 polarized T2 branch. Left panel: Super

cell, which contains two wave length of the Q = ( 2
3 ,

2
3 , 0)

2π
a phonon polarized in the 〈001〉

direction. Right panel: Total energy curves as a function of absolute displacement. As

the pressure increases the minimum in the total energy always occurs when the atoms are

in the fcc equilibrium positions. A plot of the band structure reveals no band shifts in

particular.

In Fig. 6.11, we display the corresponding linewidths γQν, which are given by[95]

γQν = 2πωQν

∑

k

|M [ν]
k,k+Q|2δ(εk)δ(εk+Q). (6.3)

While γQν includes the same Q-specific Fermi surface average of the EP matrix elements

with respect to the available phase space for scattering through wavevector Q as does λQν ,

it is proportional to ωQν rather than inversely proportional. As a result, γQν is a much

better indicator of the importance of the coupling for Tc. Coupling at high frequency is

much more important than at low frequency for Tc, whereas the opposite is true for λ.

Thus it is not surprising that the linewidth ‘dispersion’ in Fig. 6.11 provides a different

viewpoint than does the λQν dispersion. There is still the large contribution from the

region around K where there is an incipient instability, but it is very limited in Q and
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very sharply structured, not being resolved even by the Q mesh we have used. The really

impressive region however is the L branch along (100) directions, which dominates the

landscape (at least along symmetry lines). There are also important contributions from

the L branch along the Γ-K lines and from the T branches along (100). Even the small

peak in the T branches midway between Γ and L (where the kink in the T branch occurs)

is small compared to the contribution from the L branch along the same line. Tse et al.

present γQ at V/V0 = 0.45 GPa (≈ 50 GPa) which have some features [105] in common

with Fig. 6.11, but cannot be compared in detail because of the different volumes.
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Figure 6.11. Calculated linewidths γQν , following the notation of Fig. 6.7. The landscape

here is dominated by all modes along Γ - X, and the region near K.

6.4.2 Spectral functions and Tc

The phonon frequency distribution F (ω) is shown in Fig. 6.12. The contribution

to the phonon density of states comes from both the low and high frequency phonons as

we increase the pressure from 3 to 35 GPa, indicative of the fact that the higher energy

longitudinal phonons also play a role in determining the Tc.
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Figure 6.12. Phonon density of states as a function of pressure.

The electron-phonon spectral function α2F (ω) was evaluated using the tetrahe-

dron method and is displayed in the inset of Fig. 6.13. Because of the fine structure in

ξ(Q) and hence, in λQν , numerically precise results cannot be expected, but general trends

should be evident. The resulting spectra shows the hardening of the highest frequency L

mode with pressure (43 → 83 meV). The most important change is the growth in weight

centered at 25 meV (10 GPa) and then decreasing to 15 meV (20 GPa), beyond which the

instability renders any interpretation at 35 GPa questionable. The growing strength is at

the low energy; note, however, that this region is approaching the energy ωopt = 2πkBTc ≈

10 meV, which Bergmann and Rainer [99] found from calculation of δTc/δα
2F (ω) to be

the optimal position to concentrate the spectral weight. The frequency resolved coupling

strength α2(ω) is also shown in Fig. 6.13.

100



Table 6.1. From the calculated α2F (ω) at various pressures, this table provides: the

logarithmic, first, and second moments of the frequency; the value of λ; Tc (K) calculated

using µ∗=0.13 and µ∗=0.20; and two simple measures of α2F (see text).

Pressure ωlog ω1 ω2 λ Tc Tc λω1

√
λω2

2

mesh (K) (K) (K) (µ∗=0.13) (µ∗=0.20) (K) (K)

3 GPa 209 247 277 0.4 0.4 0.01 99 175

10 GPa 225 261 300 0.65 5 1.8 169 242

20 GPa 217 255 297 1.0 13 8.7 250 294

30 GPa 183 225 273 1.3 19 14 292 311
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Figure 6.13. Comparison of the Eliashberg spectral function α2F (ω) (inset) and the

frequency resolved coupling strength α2(ω) for fcc Li as a function of pressure.

We now concentrate on the evaluation of Tc and the interpretation of the dis-

tribution of coupling. Since the material constants listed in Table 6.1 for the various
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pressures have been obtained from different set of sampling of the irreducible BZ, it would

not be fair to compare the numbers, but as mentioned previously, the trends should be

evident. We have obtained Tc using the Allen-Dynes equation[77]

Tc =
ωlog

1.2
Λ1Λ2exp{−

1.04(1 + λ)

λ− µ∗(1 + 0.62λ)
} (6.4)

where Λ1,Λ2 are strong coupling corrections that depend on λ, µ∗, and the ratio ω2/ωlog,

which is a measure of the shape of α2F . These values should be compared with the nearly

hydrostatic value Tc = 6 K at 20 GPa found by Deemyad and Schilling.[79] One main

thing to notice is the fact that the Tc values are not directly related to the change in λ as

a function of pressure.

6.5 Analysis and Summary

This apparent weak dependence of Tc on λ reflects the observation, made several

times in the past,[108] that, for providing an estimate of Tc with averages of α2F , the

combination of λ and some frequency moment separately is not the best choice. This ob-

servation is connected with the observation that coupling at low frequency, which strongly

enhances λ, has only a weak effect on Tc. Carbotte and collaborators[108] argued that

the product λω1 (with ω1 being the first moment as defined by Allen and Dynes[77]) is

nearly proportional to Tc for 1.2≤ λ ≤ 2.4; this quantity is proportional to the area un-

der α2F and corresponds to a zone integral of γQν/ωQν . They were not including strong

coupling corrections to Tc,[77] however, which were unknown at the time of the original

work. The strong-coupling limit[77] gives Tc ∝
√
λω2

2; this product λω2
2 corresponds to a

zone integral of γQν . Even with the differences in the zone samplings, the Carbotte ratio

follows the change in Tc best, of these choices.

The behavior of λQν ∝ γQν/ω
2
Qν does not faithfully represent the relative im-

portance of modes for Tc except in the weak-coupling limit. In the strong coupling limit
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(which we do not claim is the case for Li) it is γQν that gives the better picture. For

another perspective we display in Fig. 6.14 an isosurface of γQν for the L modes. As ex-

pected from Fig. 6.11, it is dominated by contributions near the center of the (100) line.

The isocontours form a blunt jack-like shape although the true symmetry is only four-fold.

Our corresponding plots for λQν are almost like those of Profeta et al.[103] except that we

seem to find somewhat larger contributions near the zone center.

Figure 6.14. Isosurface plot of γQν = 0.054 meV for the longitudinal branch at 20 GPa.

The box contains the Γ point at the center and at each corner for this fcc structure. The

amplitude is high inside the jack-shaped region midway between Γ and X, corresponding

to the large linewidths evident in Fig. 6.11. [Unfaithful interpolation at the edges of the

box account for the extra structure in those regions; the box edges are also Γ-X-Γ lines.]

This focusing of EP coupling strength makes accurate evaluation of the total

coupling strength λ numerically taxing. The richness and strong ~Q dependence of the

electron-phonon coupling and the drastic softening at large Q indicates that a denser zone

sampling would be necessary to obtain accurate numerical results and also to obtain a

correct understanding of the microscopic origin of the pressure-induced increase in Tc.

Compressed Li, thus has several similarities to MgB2 - very strong coupling to
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specific phonon modes, Tc determined by a small fraction of phonons - but the physics

is entirely different, since there are no strong covalent bonds and it is low, not high,

frequency modes that dominate the coupling. Compressed Li is yet another system that

demonstrates that our understanding of superconductivity arising from ‘conventional’ EP

coupling is far from complete.
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