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Abstract

Computational methods applied to Superconductivity and Magnetism

by

Alan Kyker

Superconductivity and magnetism are two phenomenawhere the microscope quantum
world manifestsmacroscopicvisible behavior. The methods of studying thesecondensates
generally follow a quantum medanical (bottom up) or phenomenological(top down). In
principal, bottom up methods are su cien t to describeall behavior, but in practice the cal-
culations becomeintractable. The e ect of electronic structure on the formation of FFLO
phaseswas studied using a modi ed BCS formalism. Featuresof the Fermi surfaceswhich
promoted the formation of FFLO phaseswere identied. Magnetically induced orbital
currents, vortex dynamics and multi-order parameter superconductorswere studied using
the phenomenologicalformalism of Ginzburg and Landau. A new topological structure
was identied in multi-order parameter superconductors with Josephsoncoupling. The
electronic structure tools the were developed for studying FFLO phaseswere then applied
TiBe,. The sourceof the anomaloustemperature dependert susceptibility was identi ed.
Classical magnetism was studied using transfer matrix methods. A method was dewel-
oped for extracting the density of states for long, narrow, nearestneighbor, 2D Ising and

Edwards-Andersonspin systems.
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1.1 Intro duction

The work in this chapter is derived from the publication
\F ermiology and Fulde-Ferrell-Larkin-Ov chinnikov Phase Formation"; A. B. Kyker, W.
E. Pickett, and F. Gygi, Phys. Rev. B 71, 224517(2005).

Almost half a certury ago Ginzburg addressedthe question of possible super-
conductivity in ferromagnetic material[1], and studied the problems posedby orbital su-
percurrents within a material with intrinsic magnetic ux. About a decadelater, and
armed with BCS theory[2], Fulde and Ferrell (FF)[3] and separately Larkin and Ovchin-
nikov (LO)[4] addressedhe separatequestionwith how a BCS superconductor copeswith
an intrinsic spin splitting, which breaksthe degeneracyof spin up and spin down Fermi
surfaces. Both FF and LO concludedthat (neglecting orbital current e ects) that there
is a superconducting phase(the \FFLO phase") above the usual upper critical eld H
where superconductivity persists basedon ¢ 6 0 (non-zero momertum) pairs and the
order parameter becomesnhomogeneous.

Sincethat time there has been a considerablenumber of papers exploring the
competition between,and possiblecoexistenceof, the superconducting and magnetic long
range order parameters.[3 Full treatment requires consideration of both orbital and spin
e ects, and for the most part theories have tended to supposethat oneis dominant in a
particular systemand concerirate on that one. Thus investigations have focusedeither on
the orbital e ects sud as spontaneousvortex phases,or on the exposition of the FFLO

phase without complications from vortex behavior. Much has been accomplishedwith
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this approad, although little in a material specic way that would allow theoriesto be
carefully tested. With regard to the FFLO phase, the move has beenin the opposite
direction: make the system t the idealizations of the theorists.

Two dimensionallayered organic crystals provide the primary playground. With
negligible carrier hopping betweenlayers and the magnetic eld can be oriented nearly in-
plane, the competition betweenspin- and orbital-pairbreaking rst studied theoretically by
Bulaevskii[6] can be probed. If the eld lies preciselywithin the layer, orbital pairbreaking
vanishesleaving only a small exchangesplitting (g B) to inhibit superconductivity. This
setup has led to strong evidencethat a distinct high eld, low temperature phasein -
(BEDT-TTF) 2,Cu(NCS); is an excellent candidate for an FFLO phase.[] The obsened
new phaseseemsconsistert with theoretical expectations,[§ and is suggestedo arise due
to a favorable Fermi surfaceshape.[7]

A less prosaic candidate, still within the quasi-two-dimensional realm, is -
(BETS) »FeCls, which cortains the conducting layers of BETS moleculesand layers of Fe3*
magnetic ions. At ambient pressureit undergoesa transition to an antiferromagnetic in-
sulating phasebelonv 10 K. Upon application of a eld, it undergoesan insulator-to-metal
transition at 11 T and then becomessuperconducting above 16-17 T, with T increasing
with eld.[9, 10] The eld-induced superconductivity is thought to be dueto the Jaccarino-
Peter mechanism in which the applied eld counteracts the internal exchange eld due to
the magnetic ions, enabling singlet pairing. At the edgesof this eld-induced supercon-
ducting phase,FFLO phasesare expectedto arise.[1] Experimental determination of the

Fermi surface[12 has becomea certral part of the understanding of this system.
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An FFLO phase has been suggestedto accourt for a secondsuperconducting
phasedeepwithin (H < Hy) the main superconducting phasein CeColns.[13] This com-
pound is a favorable casefor an FFLO phasebecauseit is extremely pure and due to its
large Maki parameter (which indicates that orbital pair-breaking is a minor e ect). The
transition betweenthe suggestedFFLO phaseand the normal state is rst order. It has
alsobeenfound that the phaseboundariesdepend strongly on the direction of the applied
eld.[14] Obsenation of a possibleFFLO phasehasalsobeenarguedfor UBe;3[15], based
on a strong upturn in the upper critical eld at low temperature.

Underlying the criteria for a speci ¢ superconducting phaseis not only the cou-
pling strength and character (anisotropy, for example), but alsothe characteristics of the
Fermi surface where superconductivity \liv es." It is vaguely expected , of course, that
FFLO pairing is favored by \nesting" in somesenseof the exchange-split Fermi surfaces.
Speci cally, howevwer, little has been established quartitativ ely about the importance of
the shape of the FS, and the value and the anisotropy of the Fermi velocity of the quasipar-
ticles. Theseaspects can be very important for superconducting properties, for example,
the symmetry of the vortex lattice can change depending on the degreeof anisotropy of
the Fermi velocity around the FS,[16 and the quasiparticle spectrum within a vortex is
sensitive to the Fermi surfacetopology[17]

FFLO phasesare traditionally studied in the context of exchange splitting due
to applied elds, but the samesituations arise for superconductivity in weak ferromagnets
(which waswhat FF and LO had in mind). The recen identi cation of seweral examplesof

superconductivity coexisting with weak ferromagnetism (RuSr,GdCu,0g, UGe,, URhGe,
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ZrZn2) andin closeproximity to the magnetic quantum critical point (QCP), broadensthe
interestin the e ects of exchangesplitting on pairing and superconducting phenomenology
Certainly near the QCP where the exchange splitting goesto zero, the action depends
strongly on the Fermiology, and Sandemanet al. have modeled the metametamagnetic
behavior of UGe; in terms of changing Fermi surfacetopology.[18] The spectrum of critical
uctuations nearthe QCP are also sensitive to the Fermiology, speci cally the magnitude
and anisotropy of the Fermi velocity.[19] In ZrZn, additional phases(di ering at leastin

magnetic properties) have recertly beenobsened.[2]
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1.2 Cooper Pair

With seweral decadedetweenthe discovery of superconductivity and a successful
microscopic description one can appreciate that it was a di cult problem. This is espe-
cially true whenoneconsidersthat the dramatic nature of the superconductingphenomena
attracted a great many of the best minds of the day.

In an important developmen in 1956, L.N. Cooper [21] was able to shaw that
an arbitrarily small attractiv e potential betweentwo electronsaddedto a non-interacting
Fermi seawas su cien t to producea bound state. This was a somewhatsurprising result
since it was well known that in three dimensionsa minimum attractiv e potential was
required to produce a bound state.

Taking ¢ 0 and using operator notation, the Hamiltonian Cooper considered

X X
RC;; Ck; * Cyko;“cy KO;#VKO;R ¢ R;#Ck;" (1.1)
R; &;KO

Hc = Hg+ Hp =

wherethe sumsare over all statesabove the Fermi level and c,. is a destruction operator
for an eigenstatesof Ho. The potential V, .., acts on spin zero pairs of eigenstatesof Hg
which form a complete set of zero momertum states. The creation eld operator for an

eigenstateof H¢ and eigenstatesof Hc and Hg can be written as

v
I
—
®
v

v
I
=
o
®
v

(1.2)
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where the ground state jG > is taken ot be the lled Fermi sea. The eigervalue problem

is solved by rst projecting out a single :

< (Hcj > = < ;jHo+ Hpj >
X
aW = 2+ AV
RO
(1.3)
where W is the eigenenergy Then solving for a, gives
ko A0 Vi 0
%= Wz, (14

K
In generalthis integral equation is not sohable, soit is customary to make the approxi-
mation that V, .., = V for all R and k%in athin energyshell~! p above the Fermi energy

and zero otherwise. Then summing over all K within the energylimits gives:
0 1
X X X Vv

K RO K K

P
Dividing by . a, and performing the integration

X Y, VZ~!D NC) VN(O)Iog 2~ p

= w2, VY, w2 2 L ow (1.6)

where the density of states is assumedto be nearly constart over the energy range of
integration. Here one can seehow the Pauli exclusionof occupied statesin the Fermi sea
createsa extensive degeneracyof the lowest available states and thereby enablesthe low

lying bound state. The binding energyis found by solving for W

_ 2~ p 2=N (0)V
W - m 2“" De (17)
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where the approximation is valid for weak coupling, N (O)V << 1.

Pairing of non-localizedelectronsin momertum space(suggestedby F. London[22])
is attractiv e becauseit suggeststhat screeningof the strong Coulomb repulsion allows a
weak attractiv e potential to dominate. The resulting Cooper pair are non-local, but the
averagereal spaceelectron separation has beenestimated for reasonableparametersto be

1 m[23]. This is more than su cien t for screeningto occur.

The assumptionthat Vk(,;R is evenin K forcesthe pairing to spin singlets. Singlet
is not the only possiblepairing. The Fermonic super uid Helium forms triplet states[24]
and some\unconvertional" superconductorssuc as Sr,RuQ,4 are thought to alsoto form

triplets [25]. A spin zerotriplet pair will have the form

0
X ci;"c"k_ +cd

o= 2 @ T A (1.8)
K

while there are two possiblespin one triplets of the form

T = akcy; (o4 = (1.9
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1.3 BCS

Using the electron pairing model, J. Bardeen, L. N. Cooper, and J. R. Sdri-
e er (BCS) deweloped a model for superconductivity in 1957 [2] earning them the 1972
Nobel prize in physics. The model they deweloped assumesnon-interacting normal elec-
trons and non-interacting Cooper pairs and correctly predicted much of the experimental
obsenations.

The BCS (Bardeen-Cooper-Sdirie er) reducedHamiltonian with exdangesplit-

ting gB, in units in which g =1,is

g cywcyﬁo#c e (1.10)
RRO

Here c; (¢, ) is the creation (destruction) operator for single electron states, n,

c; G, » and the single particle dispersion is referencedto the Fermi energy ¢=0. The
attractiv e pairing strength g is positive for single particle energiesj ,j within a cuto

energy c, and zero otherwise. Useis made of the symmetry . = , to write the rst

two terms in an uncorvertional manner (involving n ., rather than n.,,).

[¢

To accommalate the formalism to pairing with momertum ¢, the interaction
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term of the Hamiltonian is rewritten for pairing of states (K + g) "with ( K+ g) #,

X
H = g(Npw + 0 2)
X
B (N N )
XR
J Ocykwg;"cymg;#c R+ 9385+ 95 (1.11)
RR

The R + g;" and K+ g;# indices appearing in the pairing potential can be simpli ed in

preparation for the Bogoliubov-de Gennes(BdG) transformation:

A 112)
Fy eé & (1.13)
A further simpli cation is made by making a small & approximation:
T vy r 1.14
ko8 kT e e Ty (1.14)

The Fermi surface that de nes v, at K = Rg is the non-spin polarized normal state
Fermi surface. With the linear approximation, the normal state Fermi surfacemarks the
superconducting state's chemical potential.

After collecting operators with commonK, the Hamiltonian for non-zeromomen-

tum becomes:

X
H = (e + B )

R
X

+ (§ Yee  B)(Fp B o)
bY
g eyk(,‘ey o€ 7S
x KK X

= kR 0 eyko,eylzo#e S (1.15)
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where the spin-dependert dispersionis given by

_ . g .
sk = rgtsowe ow EVRF B:
s 1, su 1 (1.16)

In this form seeral new features can be understood. First, becauseof the corvertion of
assaiating K with up spin and K with down spin and assuminginversion symmetry of
the Fermi surface,the pair momertum ¢ 6 O acts soasto add another e ective Zeeman
splitting term to the Hamiltonian. Second,the new Zeemansplitting term is a peculiar
one that varies over the Fermi surface. A certral feature in the physics and in the un-
derstanding of the resulting phenomenais that for one half of the Fermi surface these
splittings (from B, and from ¢) tend to cancel, which enablesFFLO superconducting

statesto arise.

1.4 Bogoliub ov-V alatin transformation

The mean eld approximation for the superconducting state consistsof presum-

ing the appearanceof an order parameter
b =< € kutkr >; (1.17)
intro ducing the tautology
€ kibk = Dot (6 kb D), (1.18)

and neglecting the product of the uctuations (terms in parentheses)in the interaction

term. In the casewe considerhby givesthe amplitude for nding a pair with momentum ¢
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and zerospin in the superconducting state. The \energy gap" (seebelow for clari cation)

is given by

=g b (1.19)
k

from which it is seenthat the assumption of an isotropic coupling matrix elemerts g leads
to an isotropic gap. The Hamiltonian becomes:
X X h i
¢

H = k Py ko-eyw+ h:c: : (1.20)

K K

The resulting mean eld Hamiltonian is diagonalized by a Bogoliubov-Valatin
(BV) transformation, leading to the Bogoliubov-de Gennesequations. In general,the BV
transformation leadsto quasiparticlesthat are superpositions of electronsand holeswith

both up and down spin. The Hamiltonian matrix which de nes the quasiparticle eigen

amplitudes and eigenenergiess

1
w T Wk 0 0
0 v Wk 0
0 v Wk 0
g T Wk

0 0
0 1 0 1
C C
C C
¢ T R#
=E , (1.21)
D D
D o R# D o R#

where is an index for the 4 possiblequasiparticle statesand C and D are the coe cien ts

for the single particle creation and destruction operators respectively.
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The expressionof Powell, Annett, and Gyory [26] for more general types of
pairing (albeit only §=0) reducesto this form for singlet pairing. Diagonalizing the matrix,
which reducesto a pair of 2 2 matrices, producesfour branches of quasiparticles states

with de nite spin and eigenenergies

E =sw 24 2 (1.22)

and which obey the Fermion anti-commutator relations.

In the superconducting ground state with w, = 0O, (i.e. ¢ = 0 and B = 0), all
of the negative energy states will be occupied. The positive energy states can then be
considered quasiparticle excitations. The rest of the analysis will be in terms of these

excitations. The quasiparticle operators are:

%’" = ukeg" +0 +0 Vi€
y - .
g =0 T Ve +0 (1.23)
e = 0 Ve® ks gl +0
R " Vk‘%u +0 0 HULE gy
where u, and v, are given by
v
P~ u .
2u, = {1+ g=F—
2, 2
K
i
2v, = 1 qzkiz: (1.24)
+
K

The BCSresultsarerecoreredwhenw, = Oand ¢ = 0. It isinteresting that the quasiparti-
cle amplitudes u, and v, areindependert of the Zeemansplitting. This canbe understood

by noting that wy in eady 2 2 submatrix enters proportional to the identity matrix.
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ky

Figure 1.1. Sketch of the four branches of the quasiparticle dispersion in a magnetic
superconductor. An energygap of 2 opensat the Fermi surfacebetween quasiparticles
with common spin direction. The exdcange splitting will reduce the opposite-spin gap,
but doesnot directly e ect the superconducting parameter . The thicknessof the line

represerts the electron character of the quasiparticles.
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1.5 The Gap equation

The quarntity 2 becomesthe gap betweenthe quasiparticle eigenenergiesvith
common spin label. The actual opposite-spin gap 2 2jw,j, does not erter the gap
equation directly, and the quasiparticle energiesenter only through the Fermi occupation
functions. SeeFig. 1.1. The gap equation is given by:

X

= g v @ f(EL) f(E*)) (1.25)
K

Sincethe index R now enters through the energyterm s % v, aswell asthrough ., it is
no longer possibleto simply changethe K summation to a one dimensionalenergyintegral
scaledby the density of statesat the Fermi surface,which is the technique typically applied
when the Zeemanterm is not K dependert.

Intro ducing the integral over -function 1= R (] Ve V)dV in addition to the
usualonel= R ( k)d leadsto the form of the gap equation that we focus on:

z z

c

C

@ f(ET) f(EL)
z

dVN (V; ) K ( ;T;%qv B): (1.26)

Ny is the density of states evaluated at Ex and we intro duce the usual coupling strength
= Nog, E® s given by Eq. 1.22with , ! , and the variation in N (E) within . of
the Fermi level has been neglected. This expressionreducesto BCS when jgj = 0. The

dependenceon exchange splitting erters only through the quasiparticle eigenenergiesin

the secondexpressionthe kernel K already includesthe energyintegral.
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The newfunction that hasbeenintro ducedis the Fermi surfaceprojected-velocity

distribution that dependson the direction of g

X

1
NVIO= - (F ) @Y V)
R
I
¥, Vv
_ 1 . @ TRe )ds; (1.27)
No(2)° s %]
which is normalized as

Z

N(V;¢dVv = 1 (1.28)

N (V; ¢ will be called the nesting density for reasonsrelated to FFLO phaseformation.
The Fermi surfacegeometry and the variation of the velocity get folded into N (V; §), which
incorporatesthe local density of statesfactor 1=ijF j. The energyintegral, K( ;T; %qv
B), remainsindependernt of the details of the Fermi surface.

We will explore the solutions to the gap equation while varying the parameters
T, B, , and q for a given dispersionrelation , and coupling strength . It will also
be of interest to considervariations in the direction of the pair momertum, however we
will restrict oursehesto directions of high symmetry since these directions will provide

extrema of the functions by symmetry considerations.

1.6 BCS Phase

We rst mertion the BCS phasediagram in the T-B plane. Ignoring magnetically
induced supercurrerts, any applied eld will induce somemagnetization by due to thermal

excitations when T > 0. Band crossinginduced magnetization and ¢ = 0 (BCS) pairing
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coexist in the region S'in Fig. 1.2 betweenT T.=2and T = T.. In this region where
jBj > > 0, the gap between opposite-spin quasiparticles closesgiving rise to eld
induced pair breaking at the Fermi surface while pairing occurs away from the Fermi

surface. When jBj < , an opposite-spin gap exists over the entire Fermi surface.

Reduced field B/A,

0O 01 02 03 04 05 06
Reduced Temperature T/A

Figure 1.2. The phasediagram in the T-B plane. The solid line marks the BCS to normal
phase transition. The BSC region S' betweenthe \B > " and \BCS" lines has no
opposite-spin excitation gap but superconducting pairing still exist. Solutions to the gap
equation exist for B under the \Gap limit* region N', but the free energy of the normal

phaseis lower than the BCS phase.
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1.7 FFLO Phase

The FFLO phasetakes advantage of the Zeemanenergy due to magnetization
that ariseswhen B > , but then usesa nite pair momertum to enhancepairing. A
graphical way of understanding this enhancedpairing through the quasiparticle Fermi
surfaceis showvn in Fig. 1.3. The closing of the opposite-spin gap shrinks the minority
spin Fermi surfacewhile expandingthe majority spin. The coupling of the pair momertum
to the quasiparticle eigenenergyis then usedto reopen an opposite-spingap on part of the
Fermi surface. Due to inversion symmetry of the dispersionrelationship ., spin splitting
on the opposite side of the Fermi surfaceis increased. This trade-o can be energetically
favorable becausepairing is strongestnear the Fermi surface. Nesting can be saidto occur

on the portions of the Fermi surfacewhere an opposite-spingap is closedby a given &.
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¢ BdG
Fermi Surface

9= 5

Electron
J, Fermi Surface

Figure 1.3. The top graph represerts occupied BdG quasiparticle statesin K and K space
for spin up and spin down respectively for 2D square Fermi surfaces. This non-standard
represertation highlights how the pairing momertum neststhe Fermi surfacesby canceling
the magnetic induced splitting to enablepairing. The bottom graph is the electron Fermi
surfaces. In the electron picture states are not shifted by the pair momertum asin the

quasipartical picture.
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Figure 1.4. BdG quasiparticles excitations occur when the combination of the magnetic
exchange splitting and pair momertum induced splitting are greaterthan . This graph
corresponds to the separatedpart of the BdG Fermi surfacesin Fig. 1.3. The fact that
the quasiparticlesare a superposition of holesand electronsresults in the spin separation

appearing more uniformly in the electron Fermi surfacesin Fig. 1.3.
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FFLO phasesare favored when (1) enough of the Fermi surface can be paired
(nesting is strong enough) to allow for a superconducting ( 6 0) solution to the gap
equation, (2) the FFLO free energyis lessthan the BCS free energy and normal param-
agnetic free energy Using the form of the gap equation that includesthe nesting density,
we want to understand what features of the Fermi surface favor the FFLO state. For a
given splitting and direction of ¢, the lowest FFLO free energy occurs when pairing is

maximized. Pairing is enhancedwhen %qv = % v, is chosento cancel the magnetic

Re
splitting on somepart of the Fermi surface. The value of q selectsthe range of V where
j%qv Bj< (e.g. where nesting occurs).

The e ective width of nesting in V spacecan be found by noting when the
guasiparticle eigenenergiesare greater than zero at the Fermi surface. Rewriting the

inequality asjq(Mo+ V) Bj< , we nd

2 Vo
Vv 5 B (1.29)

where Vy solvesthe equationj%qvo Bj = 0. In general, Vo will be optimal near a peak
in the nesting density and as large as possibleto maximize V.

Figure 1.5 illustrates the behavior of the energyintegral K( ;T; %qv B) for
two possible choices of g which solve the equation j%qvo Bj = 0 at dierent values of
Vo, T = 0, and xed < B. Aslongas > B @V, the integral will be a constart
( 0:4in this case). For the q= O case, < B 0V over the ertire range causing pair
breaking over the entire Fermi surface. The gure also shaws two possiblevalues of pair

momertum. Plateaus occur when < B gV causesboth Fermi functions to be zero at
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the Fermi surface.
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Figure 1.5. Graph of the energy integral part of the gap equation (K( ;T; %qV B))
as a function of V for two values of g, xed and T = 0. The plateau occur where
the magnitude of the exchange splitting energyis lessthan  since this is where both
Fermi functions are zero at the Fermi surface. The sharp drop at the edgeof the plateau
re ects the breaking of pairs at the Fermi surface. Note how low valuesof g produce wider

plateaus at higher valuesof V.
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1.8 Applications of Nesting Density to FFLO calculations

For the calculations, we normalize ( B = 0;T = 0) = ¢ = 1 to specify the
energy scale for the problem. The energy cuto for the gap equation is a parameter
that is setto . = 50 (. In a real material the energy cuto would be determined by
the pairing boson (phonon, spin uctuation, etc.). With the above parameters set, the

coupling strength  now becomesa function of . and ¢, given by

1ogmmt < (1.30)
0

In the weak coupling regime ( Nog << 1) this reducesto the well known BCS relation
0= 2ce ¥ . This coupling strength 0:2 for = = 50 is well within the weak
coupling regime for which the equationswere derived.

The free energy competition betweenBCS and FFLO is a crucial factor in de-
termining whether an FFLO state will exist. Even in the best case,at T = 0 the free
energydriven transition from BCS to FFLO occursvery nearthe BCS critical eld which
is proportional to the density of states at the Fermi surface. The FFLO critical eld
calculation is more complex. A higher proportion of FFLO pairs occur in electron states
away from the Fermi surfaceand on averagepay a higher kinetic energy cost. Howewer to
rst order the FFLO critical eld is determined by the fraction of nesting density where
pairing occursat the Fermi surface. If the FFLO critical eld is lessthan the BCS critical

eld for a material, no FFLO stateswill exist.
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1.9 1D Fermi Surface

The simplest caseis the 1D Fermi surface. The nesting density consists of
functions at vg. The resulting phasediagram is given in Fig. 1.6. At T = 0, solutions
to the gap equation extend to arbitrarily large B with a correspondingly largeq= 2B =vg.
Free energy constraints howewer limit the FFLO phaseto nite B.

At the higher applied elds, the pairing on one half of the Fermi surfacewill be
almost completely suppressedand not cortribute to the condensate. It may be possible

that a secondcondensateform that has opposite pair momertum.

3 :
2.5
o |
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o
&

0O 01 02 03 04 05 06
Reduced TemperatureOy

Figure 1.6. The phase diagram of a 1D system. The presenceof a function in the
nesting density guaranteesthat half the density of states at the Fermi surfacecan always

be paired.
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1.10 2D Fermi Surface

The nesting density of states for 2D Fermi surfaceswill tend to have van Hove
like singularities, as obsened by Shimahara [27], that produce strong peaksin N (V; Q)
that goas 1=p jVpeak Vj. Thesepeaksarisewhenewer V = ¢ v is at alocal extremum.
A simple exampleis the circular Fermi surface. The projected velocity is V = jvgjcoq )
where is the angle betweenwr and §. Figure 1.7 is the nesting density for positive V
and shows the peak causedby the extrema that occurs when ¢ is normal to the Fermi
surface. Figure 1.8 shaws the phasediagram for the circular Fermi surface. From Eq.
1.29, we know that as B is raised, the width of pairing ( V) will go down. This happens
directly through the increaseof q necessaryto maintain Vo near the peak, and indirectly
through the reduction in  causedby the decreasein pairing. This reduction in pairing

as B is raised causesthe FFLO phaseto be quended much earlier than the 1D case.
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Figure 1.7. The nesting density of a 2D circular Fermi Surface for positive V showing
peakat V = jvgj. The optimal FFLO solution will chosea value for g suc that this peak
has enhancedpairing. The nesting density is symmetric around V = 0 due to inversion

symmetry of the Fermi surface.
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Figure 1.8. The phasediagram of a 2D circular Fermi Surface. The FFLO regionis reduced

from the 1D casedueto alower percertage of statesbene ting from the enhancedpairing.



CHAPTER 1. THEORY OF Q 6 0 PAIRING SUPERCONDUCTIVITY 27

1.11 3D Fermi Surface

While the nesting density for 3D material may have peaks,in most casesthese
peakswill not be causedby van Hove singularities. This can be understood by noting that
any extrema in the projected velocity will usually occur at isolated points on the Fermi
surface. For example on the spherical Fermi surface,the extrema of V occur at the two
points where ¢ is normal to the Fermi surface. The nesting density for a spherical Fermi
surfaceis constart between j vgj, and consequetly our calculations have shavn a very
small FFLO region in the phasediagram.

A 3D examplewith a strong peakin the nesting density at Vihax is simple cubic
nearest neighbor tight binding model at half ling. With g taken in the 100 direction,

the projected velocity as a function of the position on the Fermi surfaceis given by
V = Vmax Sin(Ky) (1.31)

wherethat lattice constart is assumedto be 1. V hasextremaat ky = =2 which occurs
along a curve de ned by cogky) + cogk;) = 0. Sinceextrema occur along a curve rather
than a point, N (V; @) will have integrable divergenceghat go as(jVpeak Vj) =2 Figure
1.9 is the tight binding Fermi surfacewith the enhancedpairing region highlighted. The
nesting density is similar to that shown in Fig. 1.7 with slightly more weight in the peak.
Becauseof the increasedweight, the resulting phasediagram seenin Fig. 1.10 shows an
increasedFFLO regionrelative to the circular Fermi surfacecase. Any deviation from the

100 direction will causethe extremain V to occur at a few isolated points.
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Figure 1.9. Tight binding Fermi surfaceat half lling. The white region corresponds to
the part of the Fermi surface where enhancedpairing occursfor T = 0, B 0:9, and
¢ along the 100 direction. Becausethe pairing is suppressedon the opposite side of the

Fermi surface,it conceiable that a separatecondensatecould form with ¢ alongthe 100

direction.
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Figure 1.10. Phasediagram for the 3D nearest neighbor tight binding system shows a
larger FFLO region than the circular phasediagram 1.8. This re ects the fact that the

nesting density for the tight binding casehas more weight near Viax .
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1.12 ZrZn,

We choseto apply our methods to ZrZn, sinceit has a relatively simple cubic
structure, and as a weak ferromagnet it is a possiblecandidate to shov an FFLO phase.
A non-spin-polarized electronic structure calculation was performed using the FPLO [28]
electronic structure code. The resulting four conduction bands and Fermi surfaceshave
been preserted by Singh and Mazin[29]. The nesting density for the four bands that
crossthe Fermi surfacewere combined into a single N (V; §) function. This represens the
caseof equal pairing on all bands, consistert with out constart  model. The preferred
direction of ¢ was found to be in the 111 direction after considering nesting properties
for the three high symmetry directions. The nesting density is showvn in Fig. 1.11. Most
of the cortribution to the density of states comesfrom the \cubic" shaped Fermi surface
showvn in Fig. 1.12 that Singh and Mazin call band 3. The large peak in the nesting
density doesnot comefrom the nesting of the facesof the cube as one might expect but
instead comesfrom the nesting of the grooves along the edgesof the cube. The Fermi
velocity of the facesis at leasttwice aslarge asthe Fermi velocity of the grooves. The high
value of the Fermi velocity of the facesreducesthe cortribution to the density of states,
and variations of the Fermi velocity spread out the contribution to the nesting density
over a range of V values.

The position of the largest peak gives the optimum value of V which in con-
junction with B can be usedto calculate the pair momertum gq= 2B=Vy. While this is a

substartial peak,it occursat alow value of jVj which will require a high pair momertum.
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As wasillustrated in Fig. 1.5, high pair momertum reducesthe the amount of total den-
sity available for pairing. While FFLO solutions exist for the gap equation, at no point
was the free energy of these solutions below both the free energy for the BCS phaseand
the normal phase.

By allowing a non-uniform , it may be possiblefor FFLO solutions to exist in
a small region above the BCS phase,however other considerationsmake this unlikely. In
the Hamiltonian we have assumedthe Zeemansplitting term B for ferromagnetsincludes
the applied eld aswell asthe ferromagnetic exchangeenergy The averageB for ZrZn»

can be calculated as

M
B = 2Ng 30 meV (1.32)

whereM  0:15 g and using the Singh and Mazin calculated value Ng = 2:43 states/eV-
spin-unit cell). Sincethe Curie temperature is greater than the obsened superconducting
temperature, we are not able to determine o= ( T = 0;B = 0) for ZrZn,. We can
howewer place a lower bound on ¢ for singlet pairing by noting that even allowing for
FFLO solutions, the maximum B will be on the order of O:p 2. The resulting ¢ is
orders of magnitude to large asit would corresppndto a T, 2 (=3:5%&g = 28K From

this we concludethat singlet pairing of either BCS or FFLO statesis highly unlikely.
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Figure 1.11. ZrZn, nesting density. The units of V are 10’ cm/sec. A small non-zero

density extendsto higher valuesof V. The noiseis a function of both the nite sampling

of the Fermi surfaceand the complexity of the electronic structure.
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Figure 1.12. Fermi surfacefor the cube shaped band that is responsible for the peakin
the nesting density 1.11. The white region correspndsto the part of the Fermi surface
where enhancedpairing occursfor T = 0, B 06, and ¢ in the 111 direction. It is
interesting that the pairing is not favored on the relatively at facesof the cube as one
might expect. Thesefaceshowewver have a non-uniform velocity distribution which makes

them lesssuitable for non-zeromomertum pairing.
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Recen evidencehasbeenpreserted that the superconductivity obsenedin sam-
ples of ZrZn, is a surface phenomenon[30], consistert with the lack of any signal in the
heat capacity. The superconductive surfaceseemgo bea product of samplemanufacturing

and is eliminated by etching to produce a clean surface.

1.13 Conclusion

We have preseried the formalism for the speci ¢ caseof the quasiparticle states
and eigenenergiegor non-zeromomertum BdG quasiparticlesin an excdhange eld. These
guasiparticleswere then usedto solve the superconducting gap equation within the mean
eld approximation. The spin polarized BdG formalism was then applied to study FFLO
stateswhich have magnetically induced spin splitting leadingto pair momertum enhanced
superconducting pairing on a subset of the Fermi surface. The nesting density, which is
derived from the Fermi surface of the material being studied, was separated out and
calculated to facilitate solving the gap equation and calculating free energiesand other
obsenables. In addition to providing an e cien t meansof performing calculations, the
nesting density also proved to be a usefultool for understanding what featuresof a Fermi
surfacecortribute to the formation of FFLO states.

The features of a Fermi surface which promote FFLO states are low dimen-
sionality, speci ¢ nesting topographies, (not necessarilylike those that drive charge-and
spin-density waves) and relatively simple Fermi surfaceswith uniform magnitude of the

Fermi velocity. The bene ts of low dimensionality is demonstrated by circular vs. spher-
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ical Fermi surfaces. The tight binding Fermi surface illustrates the bene ts of nesting
topographies. It is important to recognizethat the nesting topography in this caseis not
al\at sheet" which we intuitiv ely assaiate with nesting. The fact that FFLO states are
enhancedby peaksin the nesting density at high valuesof V is in conict with the re-
duceddensity of states assaiated with high Fermi velocities. Variations in the magnitude
of the Fermi velocity will tend to place larger weights at small V which are lesslikely to
participate in FFLO pairing.

To simplify the calculations and analysis, we choseto consideronly a uniform
exdhange splitting which could arise from uniform ferromagnetic exchange eld or from
an applied eld. The BdG formalism doesnot depend on theseassumptionsand could be
applied to more complex situations that do not make useof a constart excdhange splitting

and linearized Fermi surface approximation.

1.14 Free energy calculations

In all casesthe total energyof the systemwastakento berelative to the ground

state of the normal metalat T= B =0

(1.33)
R<Kg

With .= 50and [B;T; ] 1in units where ( 1, excitations outside the cuto can

be ignored. The free energy of the superconducting state when measuredrelative to the
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ground state becomes

X
Es Eg =
j Rj< ¢
f (g + W(VEF(E,) + UZf (E)

t (e WO (E,) + U2f (EL)
£ (et Vgt 2% D)

t (e (¢ V) g

2
TS — 1.34
3 (1.34)

The rst twoterms accourt for the kinetic energyof the electron part of the quasiparticles.
The next two terms remove the kinetic energyfor the ground state E 4. The last two terms
are respectively the entropy and pairing potential energy In doing the calculation this
way, we have ignored the a ect of the pairing energy %VR on the energy cuto which
boundsthe sum. With . = 50 the impact is negligible, but for smaller cuto energiesit

becomesimportant.

1.15 Numerical metho ds

The rst stepin performing these calculations is to produce the nesting density
of states. This is accomplishedby extracting a triangulation of the Fermi surface with
Fermi velocities from a dispersion relationship expressedon a grid. The nesting density

of states integral is corverted to a sum and stored in a discrete histogram indexed by
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¢ X Area
NV ey
(v IV 4w (1.35)

whereV is the projected velocity bin width, and i goesover all triangles. The preferred
direction for ¢ can be found by looking for largest peaksat high V in the nesting density
calculated for ead of the high symmetry directions.

There is a subtle dangerassaiated with usingdiscretebins for the nesting density
for low temperaturesand low . The discretebins will act like functions that will always
give a FFLO solution to the gap equation at high elds (seelD Fermi surface section).
However, the temperature and  of the possiblesolutions will goasexp( 1=N (V )) which
will typically be on the order of e 19,

To determine the preferred state at a given temperature and applied eld, it is
necessaryto calculate the free energy for ead possiblestate. Furthermore, the possible
superconducting states have  and g degreesof freedom. Fortunately, the constraint set
by holding g constart meansthat we only needto seard 1D isoconours in - Q space,
which we evaluate on a discretegrid. Finding this isocontour requiresthat that we perform
the integral in Eq. 1.26 many times.

Since we have already discretized N (V; @), the integral over V becomesa sum.
This leavesthe energyintegral

Z

¢ 1 + I
Capﬁ(l f(EX) f(E;)d: (1.36)
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This isadi cult integral to do numerically sinceit is highly peakedaround = 0
and the behavior of the Fermi functions is highly temperature dependert. We choseto

take advantage of the fact that we know how to do part of the integral analytically.

z 1 1
P4 = 5sinh 1By (1.37)

This allows one to write formally

y
%(1 f(EX) f(ES))dlsinh 1(—)] (1.38)

This integral was discretizedin a manner that allowed dealing with variations in

the Fermi functions. The numeric integral becomes

@ f(EY) f(EL) (1.39)
[sinh 1(-—Sty  ginh (-] (1.40)
with the variable step size
@ 1
wn! SUEDTED+ (1.41)

The constart  is neededto maintain a minimum step size. This variable step integration

is usedin calculating cortributions to the free energiesand other obsenables of interest.
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2.1 Intro duction

The work in this chapter is derived from the publication
\F ermi velocity spectrum and incipient magnetismin TiBey"; T. Jeong,A. B. Kyker, W.
E. Pickett, Phys. Rev. B 73, 115106(2006).

The cubic Lavescompound TiBe ; wasalready shaowvn forty yearsagoto have quite
unusual behavior of the magnetic susceptibility (T) and the Knight shift.[31]  shaved
a strong increasewith lowering temperature but a clear deviation from Curie-Weissform,
while the Knight shift wastemperature dependert and negative. The magnetic properties
of TiBe, have been controversial since Matthias et al.[32] interpreted the susceptibility
peak at 10 K in TiBe, as itinerant antiferromagnetism (AFM) with an assaiated mag-
netic momen of 1.64 g, and Stewart et al. reported a transition at 2 K that seemed
characteristic of magnetic ordering.

Howeer, a clear picture has emergedgradually after the idea of weak itinerant
antiferromagnetism had beenabandonedbecauseof the subsequen lack of experimertal
evidence[3334]. Many experimerts have shown that TiBe is instead a strongly enhanced
paramagnet[35, 36, 37] and undergoesa metamagnetic transition[38, 39, 40] ( eld-driv en
ferromagnetism) around 5.5 T. Also one can seesimilarity to the magnetic behavior of
NisGa by comparing the values of the low temperature susceptibility, = 1:65 10 2
emu/mole for NisGa[41] and = 0:90 10 2 emu/mole for TiBe,[32]. Based on the
magnetization data of Monod et al[36] Wohlfarth[39] suggestedthe transition at 5.5 T

should be rst order. Wohlfarth's considerationsreceived at least partial support from
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theoretical band-structure considerations coupled with the de Haas-\van Alphen data of
van Deursenet al[42).

Clarity beganto arise with the extensive experiments of Acker et al. who in-
terpreted their magnetization data[35] in elds to 21T and the magnetization data of
Monod et al. [36] as evidencefor exchange-enhancedaramagnetismor spin uctuations
in TiBe,. They found the systemTiBe, xCuy to becomeFM at a critical concerration
Xor = 0:155. Stewart et al.[43] measuredthe specic heat of TiBe, ( = 42 mJ/mole
K2) at low temperature in 0 and 7T and interpreted the behavior as evidence of spin
uctuations.

The isoelectronic isostructural material ZrZn, is considereda classicexample of
an weakitinerant ferromagnet. Magnetic measuremets nd very small magnetic momens
(valuesfrom 0.12to 0.23 g )[44, 45|, hencethe characterization as a weak ferromagnet.
The magnetization of ZrZn, increasessubstartially with eld, but unlike TiBe, with its
metamagnetic transition, the increasecortinues smoothly to elds as high as35T. The
Curie temperature T ¢ drops approximately linearly with pressure,from 29K at P = 0to
4K at P = 16 kbar, which extrapolatesto a quantum critical point (QCP) at P = 18 20
kbar. The report of superconductivity coexisting with ferromagnetismin ZrZn, near this
QCP[46] enlivened both theoretical and experimental attention, but more recertly it has
been shaovn[30] there is no bulk superconductivity. TiBe,, on the other hand, has been
nearly addressedonly rarely for the past twenty years.

The complex temperature- eld behavior of TiBe, hasled to many speculations

about the microscopic mectanisms. Of coursespin uctuations play a certral part, and
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the highly enhancedsusceptibility suggeststhis systemis near a quantum critical point

(at slightly enlarged lattice constart, say, as well as for the Cu alloying). If FM uc-

tuations dominate, then a metamagnetic transition (eld-driv en FM state) around 5 T

would make sense. If AFM uctuations dominate, application of a eld suppresseghe

uctuations, providing another way to interpret speci ¢ heat under applied eld.[47] The

anomaliesin the conduction electron spin resonance(CESR) linewidth[48] around 2 K

have beeninterpreted in terms of a thermal spontaneous magnetism,[49 and a decrease
in the resistivity is also seenat that temperature.[39 All of these scenariosare sensitive
to the Fermi surfaceshape, velocity spectrum, and possibly the energy dependenceof the

density of states near the Fermi energy and it is these questionsthat we addressin this

paper.

Band structure intricacies by themseles also can come into play. Shimizu
shoved[49 that an independert electron system with magnetic coupling can undergo
a rst-order transition to a \spontaneous thermal magnetism" state (within a range
T1 < T < Typ) if it is highly enhancedand if the Fermi level lies within a local minimum in
the density of states. The e ects of magnetic uctuations should of coursebe added[5(Q
to the free energyof both the ordered and disorderedphasesto make this treatment more
realistic.

Local density approximation (LDA) energy band studies of TiBe, have been
reported previously [51, 52, 53]. Those studies revealed a split narrow peak in in the
density of states (DOS) N(E) near the Fermi energy (Eg), with calculated Stoner factors

IN(Er) greater than unity, giving the Stoner instability to FM. Here | is the Stoner
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exdhange interaction averagedover the Fermi surface. Thus, as for a few casesthat have
cometo light more recertly,[54, 55] ferromagnetismis incorrectly predicted, indicating the
needto accourt for magnetic uctuations not includedin LDA that will suppressmagnetic
ordering. By comparing the calculated value of N(Eg) with the measuredsusceptibility,
a Stoner enhancemen S= [1 - IN(EF)] ' 60 was obtained, making TiBe, a more
strongly exchange enhancedmetal than Pd.

All of these calculations, carried out 25 years ago, used shape approximations
for the density and potential, and for a detailed investigation of the weak ferromagnetism
preciseelectronic structure methods are required. In this work, the preciseself-consisteh
full potential linearized-augmeied-plane-wave (FLAPW) method and full potential local
orbital minimum basis band structure scheme (FPLO) are employed to investigate thor-
oughly the electronic and magnetic properties of TiBe, basedon the density functional
theory. We comparedand cheded the calculation results of the both methods. We con-
sider the e ect of magnetismon the band structure and Fermi surface,Fermi velocity and

comparewith experiment and previous band calculations.

2.2 Crystal Structure

TiBe crystallizesinto a cubic LavesphaseC15 crystal structure. The C15 (AB »
) structure is a close padked structure and the site symmetry is high for the two con-
stituents. Ti atoms occupy the positions of a diamond sublattice while the Be atoms form

a network of interconnectedtetrahedra, with two formula units per cell. Sincethe major
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cortributions to N (Eg) comefrom Ti, the local ervironment of Ti atoms is particularly
important to keepin mind. Eadh Ti is surroundedby 12 Be neighbors at a distance of 2.66
A and tetrahedrally by four Ti neighbors a distance 2.78 A away. The TiBe, structure
belongsto the Fd3m spacegroup with Ti occupying the 8a site, and Be the 16d site.
The site symmetry of Ti is 43m(tetrahedral) and Be has 3m site symmetry. The atomic
positions are symmetry determined, and we used experimental lattice constart 6.426 A

for all calculations.

2.3 Metho d of Calculations

We have applied the full-p otential nonorthogonal local-orbital minimum-basis
(FPLO) schemewithin the local density approximation (LD A).[56] In thesescalarrelativis-
tic calculations we usedthe exchange and correlation potential of Perdew and Wang.[57
Ti 3s;3p;4s;4p;3d states and Be 2s;2p;3d were included as valence states. All lower
states were treated as core states. We included the relatively extended semicore3s; 3p
states of Ti as band states becauseof the considerableoverlap of these states on nearest
neighbors. This overlap would be otherwise neglectedin our FPLO scheme. Be 3d states
were added to increasethe quality of the basis set. The spatial extension Of the basis
orbitals, cortrolled by a con ning potential (r=rg)*, was optimized to minimize the total
energy

The self-consisteh potentials were carried out on a meshof 50 k points in eat

direction of the Brillouin zone,which correspondsto 3107k points in the irreducible zone.
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A careful sampling of the Brillouin zone is necessaryto accourt carefully for the ne
structures in the density of states near Fermi level Eg. For the more delicate numerical
integrations, band energieswere extracted from FPLO in an e ective meshof 360k points
in ead direction. A separatetool was deweloped to extract energy isosurfaceswith gra-
dients from the scalerenergygrid. The isosurfaceswere then usedto calculate density of
states and velocity momerts.

To ched carefully the ne structure that we will discuss,we also repeated sev-
eral calculations with the general potential linearized augmeried plane wave (LAPW)
method,[29] as implemented in the WIEN2K code.[5§ Relativistic e ects were included
at the scalar relativistic level. Howewver, we veried that the magnetic moment with
the experimental structure is not sensitive to the inclusion of the spin-orbit interaction.
For the generalizedgradient approximation (GGA) calculations, we usedthe excange-
correlation functional of Perdew, Burke, and Ernzerhof. [59] We choose the mu n-tin
spheresRy 1 = 2:6 a.u. for Ti, Ryt = 2:1 a.u. for Be and a basis set determined by a
plane-wave cuto of Ry 1K max = 7:0, which givesgood corvergence. The Brillouin zone
samplingswere done using the special k point method with 1280points in the irreducible

zone.

2.4 Results and Discussions

For orientation we rst show the full nhonmagnetic band structure of TiBe; in

Fig. 2.1, which is consistent with earlier calculations of [51, 52, 53]. The Be 2s bands
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Figure 2.1. The full LDA band structure of non-magnetic TiBe, along symmetry lines
showing that there are sewral bands near the Fermi level (taken as the zero of energy)

with weak dispersion; they are primarily Ti 3d in character.
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Figure 2.2. Band structure of non-magnetic TiBe, of Fig. 2.1 on an expandedscalenear
Fermi level. The at bandsalongL-W-U/K-L lines (the hexagonalfaceof the fcc Brillouin

zone) give rise to the density of states structure discussedin the text.
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Figure 2.3. The total and atom-projected density of states (Ti, short dashedline; Be, the
lower, long dashedline) for non-magnetic TiBe, per primitiv e cell. The inset gives the
density of statesfor the ferromagnetic TiBe, shawing the exchange splitting 0.6 eV. The
peak of the DOS for the majority spin is ertirely below the Fermi level while that of the

minority spin is above the Fermi level.
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Figure 2.4. Fermi surfaces,top left: band 14, X-centered pillows; top right: band 15,
primarily X-centered jungle gym; bottom left: band 16, -centered pseudaube; bottom
right: band 17, -centered sphere. Fermi velocities coloreddark (red) for lowestto lighter

(blue) for highest. Magnitudes of velocities are discussedin Sec. IV.A.
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lie between-8 eV and -2 eV. Above them the bands are of mixed s; p character, certered
on the Be aswell asthe Ti site. Near the Fermi level there are se\eral bands with weak
dispersion, being of primarily Ti 3d character. The bands at K and L are hybridized
strongly, while at X the s;p character is the main character. As noted also by Jarlborg
and Freeman,[5] 52] oneband at L falls extremely closeto Eg (3 meV below). This band
is doubly degeneratealong -L, and the L point forms the maximum of band 15 and a
saddle point for band 16. As the Fermi energyrises (for added electrons, say) the Fermi
surface sweepsthrough the L point saddle, where the band has a vanishing velocity by
symmetry. This vanishing velocity is discussedoelown. There is another doubly degenerate
band very near E; at the W point.

The density of states (DOS) is showvn near EF in Fig. 2.3. The Fermi energy
Er falls extremely closeto the edgeof a very narrow peak in the DOS. The DOS peak
arisesfrom Ti d bands hybridized with Be p states. Flat bands closeto Fermi level cen-
tered mostly in regions near the L-W-U and W-K directions, i.e. the hexagonalfaces
of the Brillouin zone, causethe sharp peak. Stewart et al.[43] measuredthe linear spe-
cic heat coe cien t for TiBe, of =42 mJ/K 2 mole-formula unit. The calculated value
of N(Eg)=5.33 states/eV/f.u. for TiBe, corresponds to a bare value ,=12.6 mJ/K ?
mole(formula unit), leading to a thermal massenhancemeh 1+ =3.3, or =2.3 arising
from phonons, magnetic uctuations, and Coulomb interactions.

Density functional calculations are usually reliable in calculating the instabilit y
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to ferromagnetism. The enhancedsusceptibility[60] is given by

— 0 .
(T) = T N(EF) S o (2.1)

where ¢ = %N (Er) is the bare susceptibility obtained directly from the band structure
and | is the Stoner exdhange interaction constart. Here N(Eg) refersto both spins, and
henceforward we quote susceptibility in units where g 1. The calculation of | is from
xed spin momert calculations[6]], in which the energy E (m) is calculated subject to the
momert being constrainedto bem. The behavior at smallm isE(m) = (1=2) m? from
which | = 0:22 eV can be extracted from Eq. 2.1. This value of | givesIN(Eg) = 1.2,
larger than unity and very closeto that calculated earlier,[52 corresponding to a Stoner
ferromagnetic instabilit y.

As for a few other compounds, TiBe» is incorrectly predicted by LDA to be
ferromagnetic. Since spin-orbit coupling is small in 3d magnets, we neglectit, sothe di-
rection of magnetic polarization is not coupledto the lattice. We have calculated a consis-
tent magnetic moment for TiBe,: 0:97 g/f.u.(FPLO, LDA), 1.00 g/f.u.(LAPW, LDA),
1:10 g/f.u.(LAPW, GGA). This valueis considerablylargerthan an earlier calculation[51]
(which also reported a much smaller value for ZrZn, than obtained from more recen

calculations[6). We addressthe overestimate of the tendency to magnetism below.

2.4.1 Fermi Surface and Fermi Velocity

In Fig. 2.4 we shov the nonmagnetic Fermi surfacesshadedby the Fermi veloc-

ities. The position of EF near L and W points sensitively determine the exact shape of
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some Fermi surfaces. The shapes can be characterized as (a) small -centered electron
spherefrom band 17, (b) large -centered electron pseudaube from band 16, (¢) multiply
connectedsurfacemostly enclosingholesaround the X point from band 15, which we refer
to asthe jungle gym, and (d) at hole pillows certered at ead of the three X points. The
doubly degeneratebands crossingEg along -X and X-W guarantee touching of certain
surfacesalong theselines.

The DOS peak at and above Er is due to the band near the L point where the
cube-shaped surfacesare about to form bridging neds. Figure 2.5 shavs how the Fermi
velocity spectrum (N (V; E)) changeswith energyat the peakjust above E¢, at Ef, and
at the rst minimum below Er. The Fermi velocity spectrum is de ned as

X

N (V;E) (E, E)(V, V) 2.2)

¢

=
dL g

LviE) Mk T kil

: .. R : : . .
with normalization N (V;E)dV = N(E). HereL(V;E) is the line of intersection of the
constart energyEy = E surfacewith the constart velocity surfacejwgj = V. The gradient
of the velocity in the denominator makesthis distribution delicate to calculate accurately.
N (E; V) was calculated numerically by extracting a triangulated energy isosurfacefrom
the band structure, then obtaining a velocity histogram of the states assaiated with the
isosurface.

The spectrum in Fig. 2.5 shaws, at Ef, velocities extending down to the very

low value of 2 10° cm/s, and up to 5 10’ cm/s, a variation of a factor of 25. Roughly

half of the weight lies belov 10’ cm/s. At the van Hove singularity at +3 meV, the only
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Figure 2.5. Fermi velocity spectrum of TiBe,. The low Fermi velocity states are the

primary sourceof changesto the density of states.

noticeable di erence is additional velocities extending down to zero due to the vanishing
velocity at L (we have not worried about reproducing the V' ! 0 behavior precisely). At
-25 meV, which is just belov the narrow peak at Eg, the strong weight in the spectrum
appearsonly at 7 10° cm/s. Note that there is very little changein the high velocity

spectrum over small changesin energy

2.5 Analysis of Velocity Distribution and Susceptibilit y

2.5.1 Renormalization due to Spin Fluctuations

Following the work of Larson, Mazin, and Singh[63] for Pd which builds on

Moriy a theory, we rst attempted to identify the relevant band characteristics in order to
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Figure 2.6. Top panel: < % > plotted versusenergy shawing the squareroot divergence
of the inversemomert of velocity near the Fermi energy Unit corversionis: 1 eV Bohr =
8 10° cm/s. Bottom panel: the graph of the secondmomert of velocity (with constarts
included to show it asthe squareof the Drude plasmaenergy)is concave downward, which

givesrise to the negative value of the Moriya A parameter. This sign of A is veried by

the calculation of (q) at small q (seetext).
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evaluate the spin uctuation reduction of in TiBe,. For this, one beginswith the bare

susceptibility in the small g and small ! limit, given by
a 11 !
o@!) = NERIL AR +i5< | >F ol (2.3)
while the screenedsusceptibility using the RPA approximation is given by
ECIDERFRCIDNNE (2.4)
The Moriya parameter A = 1.8, expressedn dimensionlessform here,and meaninverse
Fermivelocity < 1=v>¢ v ! (the secondMoriy a parameter, discussecbelow) are derived
from velocity momerts and DOS of the band structure, and like the density of states, they
are greatly in uenced by the Fermi surfacetopology and its velocity spectrum. Speci cally,
changesin topology which give rise to points of zero velocity in the band structure near

the Fermi surface becomean important factor. The mean inverse Fermi velocity which

governs the imaginary part of o(g;! ) is given by

X ('« E)_X
%]

< > v YE) = ("« E) (2.5)

V(E)

k k

evaluated at Ex. The dierence between< v ! >¢ and 1/< v > is one measureof the
velocity variation of the Fermi surface. The bottom or top of a three-dimensional band
(corresponding to the appearanceor vanishing of a Fermi surface)givesonly a discortinuity
proportional to the square of the band mass. At a saddle point, such asthe merging of
the cornersof the pseudaube Fermi surfaces,v *(E) undergoesa l=p E E, divergence
becausehe assaiated Fermi surfaceareadoesnot vanish. This \v an Hove singularity” in
v 1(E) is evidert for the band edge3 meV from Er in TiBe, in Fig. 2.6. We calculated

1Uv:t=5 10° cmis for TiBe,.
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For cubic structures, the parameter A in Eqg. 2.3 is given by

_ 1 2 2d2 [:2)(EF)
A= e P dE2 (2.6)
4 X
3(Eg) = 3 ve ("« Ef)
k
4 &

Thus A it is proportional to the secondderivative of the square of the Drude plasma
energy p (i.e. ~is absorbedinto ,, so , here explicitly has energy units; k sums
are understood to be normalized over the zone). The secondmomert of velocity is nite

everywhere, but its secondderivative is not (for example,for free electronsthis divergesas
the band edge). Derivativeshave the unfortunate property of amplifying noisein numerical
evaluations. We have addressedthe noiseissueby using a large number of k points in the
numerical integration (360 360 360). By tting IO(E)2 with a polynomial near the
Fermi energy we obtain the above-mertioned value A = 1:8. The Fermi velocity was

calculated to bevg = 2.3 eV bohr = 1.8 10’ cm/s.

2.5.2 g-dependent Susceptibilit y

The negative value of the A parameterindicates, from Eq. 2.3, that the primary
magnetic instability in TiBe, does not lie at g=0 but rather at nite q, soit is more
susceptibleto AF instability (including possibly a spin spiral) rather than ferromagnetic.
The sign of A has beenveri ed independertly by explicit calculation of the real part of

(¢), with results shown in Fig. 2.7.

The calculation of . (&) betweenbands and wasperformedby anisosurface
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Figure 2.7. Intraband contribution to the real part of (). The increaseat small g
conrms the sign of Moriya A coe cien t (seetext). Although both [110]and [111]direc-
tions have a maximum at the zone boundary, the peak along [100] (X point of the zone)

dominates the instabilit y.
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R
slicing method. The susceptibility can be written, after inserting a factor 1 d
weq T k) as
Z
N
d 0 ; (2.7)

X

(8

N () O FC el C gg* o

k
where N () is a susceptibility density calculated from the isosurfacede ned by the
Fermi functions and the energy function. The Brillouin zonewas divided into a 140
140 140grid of cubes. Within ead cubethe integral is calculated as a discrete sum,
using variable step sizesin  corresponding to 1/30 of the maximum di erence in energies

x+gq T g Within the cube.

The susceptibility risesequally along all three symmetry directions (as required
by cubic symmetry), but only for ¢ along the cubic axis does (g) corntinue to increase
strongly beyond the small-q region. The maximum of ,(g) occurs at the X point, where
the intraband part has increasedby nearly 50% over its g=0 value. In such caseswhere
g=0 is not the maximum, it is necessaryto apply the extension of weak ferromagnetsto
the AF case.[64}

The band-by-band cortributions to 4(q) have beenevaluated both to verify the
code and to identify the sourceof the important corntributions and structures. The sphere
FS givesrise to a Lindhard type form with 2kg =a (but is not perfectly round). The
pillowsleadto a cuspfor (gy; 0;0) forgc  0:28 =a, and alongall three directions decreases

for g =a For the jungle gym and the pseudaube, increasesby a factor of two at the

zoneboundary along (gy; 0; 0), with much lessvariation in the other two directions. The
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cortributions to N(Eg) from ead of the bandsis: sphere,1.4%; pillows, 7%; jungle gym,
33%; pseudaube, 58%.

Away from g=0 the interband cortributions to (q) cortribute, and it is known
in other transition metals and their compoundsthat the g-dependenceof matrix elemerts
can be important. We have calculated also the interband (¢) for sewral bands around
the Fermi level, nding that they cortribute a broad maximum at intermediate jgj. It
seemsunlikely, however, that interband cortributions will move the maximum away from
the X point.

Peaking of (¢) at the zone boundary implies a short wavelength = a AF
instability (incipient, since no AF phaseis obsened). With the fcc lattice and two Ti
atoms in the primitiv e cell, there seweral possibilities for the most unstable mode, which
will involve antialignment of spins or charge density wave variation, but also may involve
noncollinear alignment of the spins. We have tried to obtain ag= 0 AF state within LDA,
with atomic momerts antialigned on the bipartite Ti lattice, but the momert vanished

when this wastried. We have not investigated possibleg = X point AF states.

2.5.3 Temperature Dependence of Susceptibilit y

The high narrow peak in the DOS near Eg suggestsan explanation of the T-
dependenceof mertioned in the Introduction, or at least part of it. To understand what

part arisesfrom simple thermal smearing, we have evaluated

z
ve g @E )

. @& IN(E)dE; (2.8)
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where the chemical potential (T) is adjusted at ead temperature to keepthe number
of electrons (occupied states) constart. The result is shovn as a seriesof curvesfor T
ranging from zeroto 300K. It is necessaryto include the variation in , and the value of
N( (T);T) decreasesy 8%.

The resulting changein the physical, enhancedsusceptibility is given by

NC(T)T)

M= 1 INCmT)

(2.9)

Adjusting | to reproducethe peakheight (at 10K, experimentally), which requires|=0.183
eV (S=56 at the maximum of N( )), the resulting enhanced (T) is comparedwith the
data in the lower panel of Fig. 2.8. It is evidert that this simple temperature smearing
accourts for much of the obsened temperature dependence.Additional indirect temper-
ature smearingwill comefrom phononsand from electronic and magnetic interactions as
theseexcitations are increasingly excited upon raising the temperature. We concludethat

TiBe, contains no appreciable cortribution to the susceptibility from local momerts.

2.5.4 Field Dependence of Susceptibilit y

For an energy-degendent DOS and a highly enhanced susceptibility, a eld-
dependert susceptibility (H;T = 0) (H) is expected. In TiBe, a strong e ect of
this kind has beenseen,which can be characterized as eld-driv en ferromagnetism. The
di erential susceptibility 4(H) = dM (H)=dH whereM is given by the di erence in elec-
tron occupationsn (H). A many-body treatment shows that the spin imbalance can be

expressed[6pin terms of the spin-dependert thermal (energy E surfaceaveraged)Green's
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Figure 2.8. The upper graph shovs how the density of states near the Fermi energy
changesfrom T=0 to T=300K. The lower graph shows the experimertal susceptibility[65]
comparedto theory. The Stoner| hasbeenadjusted slightly from the calculated value to

match the susceptibility maximum.
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Figure 2.9. Magnetic eld (H) dependenceof the Fermi level density of states for TiBe »,

referred to its H=0 value, asde ned in the text. The initial increasewith eld indicates

an increasinginstabilit y towards ferromagnetic order.
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function

G (E;il n;H)

T, (E SH) () (2.10)
Z X _
dEN(E)T G (E;il n;H)e" " ;

n (H)

here! , isthe fermionic Matsubara discreteenergyvariable and is a positivein nitesimal.
The simplest form of (Stoner) self-energy = K gH should be appropriate (1+ K =
S).

Taking the eld derivative of M (H) but keeping H nite, and using (in this

approximation)

G (E;il n;H)=G (E s(1+ K)H:i! n;H = 0) (2.11)

we obtain the result at zerotemperature

dM (H)

a(H) a sH)

(2.12)

SN(EF S gH)+N(EF+S gH):

This clearly reducesto the usual T=0 result at H=0. A slightly better treatment would
have also someH-dependenceof S due to the structure in N (E) and the delicate situation
herethat | N (Eg) is approading unity, but at this point we neglectsud details.

The result for the relative correction

N(EF SBH)+ N(E|:+S BH)
2N (Er)

isshown in Fig. 2.9. The e ect onthe ratio (thuson the di erential susceptibility) is clear,

however even with the factor of S=60 enhancemen of the energyscale( gH'! S gH)
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the peak occursat a eld oneorder of magnitude smaller than seenin experiment. This
di erence seemsto indicate that the eld inuence on the spin uctuations dominates;
however the variation in N(E) will needto be accourted for in any quartitativ e explana-

tion.

2.6 Summary

The complex and sometimesconfusing data on the enhancedparamagnet were
discussedn the Introduction. It seemsclearthat magnetic uctuations will be required to
understand the underlying medanisms. Here we have preseried a precisecalculation and
analysis of the electronic structure, especially focusing on the Fermi surfacesand velocity
spectrum at and near the Fermi level that underliesnot only the single particle excitations
but alsothe spectrum of magnetic uctuation in the itinerant limit, which clearly seems
to be the casein TiBes.

Our calculations have con rmed the sharp structure in the density of states
around the Fermi level that had beennoted earlier, and quanti ed the tiny energy scale
that is involved: the Fermi level liesin a region of steepDOS, just 3 meV from an abrupt
van Hove singularity. This singularity is derived from a doubly degenerateband at the L
point of the zone. We have shavn how to calculated the spectrum of velocities (speeds)
over the Fermi surface,and nd the spectrum to be peaked at (the low value of) 10 cm/s,
with much of the weight below that value. Moriy a theory for weak ferromagnetsrequires,

for the imaginary part of the inverse susceptibility, the momen < 1=vg >; we have
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illustrated that 1=v(E) divergesat the van Hove singularity signaling possible problems
with applying Moriya theory to TiBes.

Moriya theory for weak ferromagnets also requires the dimensionlessquartit y
Al o p(E)=dE2 at the Fermi energy where | is the corvertional transport Drude
energy We nd that this quartity is not positive, asit must be for an incipient ferromag-
net; rather it is negative indicating the dominating (nearby) magnetic instability is nite
g: antiferromagnetic, spin wave, spin spiral, etc. Direct calculation of the generalized
susceptibility 4(g) con rms the sign of A, and revealsthe dominant instability to lie at
the X point of the Brillouin zone, making TiBe, an incipient antiferromagnet.

We have shown that the sharp structure in N (E) has other consequenceskFirst,
it leadsto a T-dependert chemical potential. Togetherwith the temperature broadening
of N(E) and the Stoner enhancemeh S 60, this simple temperature broadening can
accourt for most if not all of the temperature dependenceof the susceptibility, which
someinvestigators had interpreted as Curie-Weiss-like. As a result, the occurrenceof local
momerts in TiBe, canberuled out. Similarly, we have shown that this sharp structure in
N (E), again together with the large Stoner enhancemefy has a substartial e ect on the
eld-dep endenceof the di erential susceptibility. There is still the question of how much
of the measured eld dependenceis due to this induced exchange splitting, and how much
is due to the e ect of the eld on the magnetic uctuations.

Many of the results we have obtained hereare strongly dependert on details of the
band structure and the position of the Fermi level. That theseresults re ect realistically

the medanismsunderlying the many fascinating obsenations obviously requiresthat the
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band structure formalism is applicable in detail to suc systemsand that the calculations
are accurate. Another requiremert is that of high sample quality, that the stoichiometry
is preciseand that defect conceriration must be very low (simple impurity broadening
will a ect behavior). These questions must be addressedin deciding whether to press
onward to a more complete and more challenging explanation that includese ects of both

magnetic uctuations and the energy dependenceof the density of states.
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CHAPTER 3. MACROSCOPIC THEORY OF MULTI ORDER PARAMETER PAIRING IN SUPERCON

3.1 Multi Order Parameter Landau Theory

The Ginzburg-Landau theory hasbeena very successfuphenomenologicaimodel
for describingorbital e ects of superconductors. The theory correctly capturesmany of the
obsened phenomenaassaiated with the superconducting state including zero-resistance,
the Meissner e ect, the Abrik osos vortex and vortex lattice arrangemen, penetration
depth, coherencelength, etc.

The Ginzburg-Landau generic theory is based on Landau's generic theory of
secondorder phasetransitions. Landau assumedthat the free energy of a systemis an
analytic function which sharesthe symmetry of the Hamiltonian, and a secondorder phase
transition occurswhena symmetry of the systemis spontaneouslybroken. The free energy

density is written as
F=Fy+ FL(m) (31)

where Fy is the normal free energy density and F is the condensatefree energy density.
An order parameter is introduced which is usually indicates the condensatedensity and
how the condensatebreaks the symmetry. F| is Taylor expandedin terms of the order
parameter. In general, the order parameter has the dimension and eld of the broken
symmetry, for brevity howewver | will only consideringthe breaking of a one dimensional
real symmetry such as a classicallsing model with no applied eld. Taking the rst two

non-zeroterms, the Taylor expansionof F| becomes

1
FL(m)= m 2+ > m* (3.2)
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where m is the order parameter represerting the magnetization. Since the sign of m is
a symmetry of the Hamiltonian, only even powers are included in the Taylor expansion.
As long asm = 0 the system state also has inversion symmetry. As soon as m takeson
a nite value, it will have a de nite sign and the inversion symmetry of the state will be
broken.

Assuming the axiom that the system will assumethe state that minimizes the
free energy and that the order parameter is bounded, one must assumethat  is greater
than zero. If  is also greater than zero, m = 0 minimizes F_ (m). If is lessthan zero,

the optimal value of m is found to be
m = — (3.3)

by minimizing F_(m) with respect to m?. Thus the phase transition occurs when
changessign. is normally taken to be a function of temperature expandedaround the

critical temperature
=C(T Ty (3.4)

whereC = d =dT ewaluated at T..

In general,a systemmay have many order parameterswhich may be coupled by
the Hamiltonian. For example considertwo coupled Ising systemswith order parameters
m1 and my which might be usedto model two magnetic domains with someinteraction.

The free energy density is

T
|

Fn + FL (35)

T
-
|

FLi(my) + Fra(mz) + Friza(mg; mp) (3.6)
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The Fi1(m1) and F|2(m) cortributions are still restricted to evenpowers. The F 12(my; m>)
may have odd powers aslong as all terms are zerowhen mj; and m» are zero. | will only

considertwo terms: bi-quadratic and bi-linear. The Taylor expansionbecomes

1 1
— 2 4 2 4
F|_ - 1m1+ E 1m1+ 2m2+ E 2m2

+ DmZm3+ Jmim, (3.7)

Initially at high temperatures when both order parameters are zero, there are
two symmetries of the Hamiltonian to be broken. The breaking of thesesymmetriescould
result in one phasetransition, or two phasetransitions.

Assuming that T, 6 T, and J = 0, the bi-quadratic coe cient D will not
change the upper critical temperature. The lower critical temperature will be raised or
lowered depending depending on the sign of D. To maintain the nite valuesof the order
parametersat the energy minimum, D must be boundedin the negative direction by

D > P 1 2 (38)

A su cien tly large positive value of D will reducethe lower critical temperature to zero,
eliminating the secondphasetransition ertirely.

Assumingthat T¢1 6 T, and D = 0, the bilinear coe cient J will always raise
the upper critical temperature. The new upper critical temperature occurs when the

following equality is satis ed
Jz = 1 2 (3.9)

with both 1 and , positive. Below the new upper critical temperature, both symmetries
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are broken in a single phasetransition.
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3.2 Ginzburg-Landau Theory

An early attempt at a phenomenologicaldescription of the interaction of mag-

netism and superconductivity was dewveloped by F. London. The London equation [22]

Ty = A (3.10)

can be derived by applying the quantum medanical current operator to a condensate
with a xed phaseand magnitude over a macroscopicregion. This xed phasecan be
thought of as breaking a phasesymmetry of the Hamiltonian. This di ers from the non-
condensatewhere the electron phasesare uncorrelated. By assuminga speci ¢ gauge
for A, the equation captures the obsened phenomenaof the Meissnere ect including a
nite penetration depth. It however doesnot addressthe upper critical eld. Even more
disturbing, it only works for one choice of the A gauge.

The Ginzburg-Landau theory of super uid condensateg67] assumesa complex

condensatewave function
(B =j(nje O (3.11)

to be used as the order parameter in a Landau secondorder treatment. Assuming a
complex eld for the order parameter allowed for a quantum medanical kinetic energy
term to be addedto the free energy density. This kinetic energyterm has the property
of coupling the supercurrents to the A eld, asin the London equation, and placing an
energy cost on the supercurrents that must be balanced by the energy lowering of the

condensate.
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Assuming that carriers are pairs and including a term for the magnetic energy
the Ginzburg-Landau free energy density is

F = Fn+ | j2+}j it + ij( i~ + 2zK) j2+B—2 (3.12)
N 2 am 2 o '

wherem and z are the massand charge of an unpaired carrier. The condensatedensity is
givenby j ?j. The order parameter , the magnetic eld and the condensatecoe cien ts
may be spatially dependert. Even though the phaseof (&) is not xed, (r) for a con-
nected condensateis completely de ned by the density and current up to a global phase
factor.

The Ginzburg-Landau non-linear partial di erential equations are derived by
minimizing the free energy using the Euler-Lagrange method. Minimizing with respectto

the vector potertial givesthe di erential equation

F iz~ 272 r2K r A
=Ra=—( r r + = A+ ———— 3.13
x5 A 2m( ) el B 5 (3.13)
Minimizing with respect to the order parametersgives
F 1
=R = + |2 +-—( i~ + 2zK)? 3.14
® o am( T+ 2ZR) (3.14)

It is customaryto assumea gaugewherer A = 0, but numerically this canbeinconveniert
to maintain. In the absenceof applied currents or electric potentials, Ra and R  will
be zero at a local maximum or minimum of the energy In time dependart Ginzburg
Landau theory [68][69], Ra and R will be proportional to the time derivative of A and

respectively. Becausethe Ginzburg-Landau equations are non-linear, solutions are not

guararteed to be unique. This can easily be demonstrated by noting that = 0 and
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r r A= 0wil always be a solution even when the energy can be lowered by forming
a condensate. The number of stationary points is greatly increasedwhen the possibility
of vortex trapping and pinning is considered. In the numerical simulations, Ra and R
will be usedasa residueand and may be modi ed to enforceboundary conditions.

Becausethe Ginsburg-Landau equations are a phenomenologicaltheory, the co-
ecients and areusedasmaterial tting parametersto match the penetration depth
( eL) and coherencelength ( gL ).

A magnetic eld experiencesan exponertial decay asit penetratesinto a super-
conducting half space.If oneassumes xed condensatedensity de ned by the equilibrium
valueng = = when < 0, the penetration depth is found from the vector GL equation

to be

_ m _ m

(3.15)

which matchesthe London result.

The coherencelength is characterized by a competition betweenthe kinetic en-
ergy and potential energy as de ned by the complex GL equation. Due to the cubic
term, the order parameter does not rise as an exponertial. In the small limit whereit

can be treated as an exponential, the coherencelength is found to be

r
",

= 3.16

GL am (3.16)

The Ginzburg-Landau parameter, , is the ratio of penetration depth to coher-
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encelength

= (3.17)

Type | superconductorshave a < p?. Most of the low T; superconductors such the
mono-atomic superconductors fall into this category Type Il superconductors have a
large and include the more complex higher T, superconductors. The Abrik osos vortex
lattice[70] occursin type Il superconductors.

The Ginzburg-Landau theory is intended to describe secondorder phasetransi-
tions. It hasbeennoted that eld induced quending of type | superconductorsis a rst
order phasetransition [71]. This rst order transition occurs when the applied eld is
strong enoughto causethe normal to superconducting domain wall to retreat. Ginzburg-

Landau capturesthis critical eld behavior.
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3.3 Multi-Order Parameter Ginzburg-Landau Theory

Multi-order parameter Ginzburg-Landau theories have arisenin recert yearsto
addressmulti-gap superconductorssuch as MgB» [72] [73] and the theoretical of super-
conductivity and super uidit y in highly compressedHydrogen [74].

The modi ed Ginzburg-Landau free energy density consistsof a sum of kinetic
energyand uncoupledpotential energyterms that are directly from the original Ginzburg-

Landau free energy plus crosscoupling potential energyterms[79 .

F = F +X TENCIE Y +X 1 i( i~ +22K) 2+ B®
= Fn ot s 0 am ) j 74
1 X P
3 | I I (3.18)

A superconducting pair is assumedto have a massof 2m and a chargeof 2z . The cross
coupling potential includesthe density-density () and complex Josephson( = )
coupling terms. The Josephsonterm must be equalto its complex conjugate on exchange
of indices to guarartee a real energy Higher order terms are possiblebut do not add
signi cant new behavior in a small order parameter expansion.

The Ginzburg-Landau equationsare derived by minimizing the free energyusing
the Euler-Lagrange method again. Minimizing with respectto A gives

X iz~ 272 res r A

Ra = — + = PR+ — " A
A o (T )+ , (3.19)
Minimizing with respect to the order parametersgives
R = + P+ i( i~ + 2z A)?
4m

+ i j2 o+ (3.20)
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Unlik e the multi-order parameter Landau equationswhich becometwo indepen-
dent condensateswhen the crosscoupling potential terms are zero, the electromagnetic
vector potertial, A, will couple the two condensatesn the presenceof any currents or B
elds.

A possiblerationale for the Josephsorterm is pair hopping betweencondensates.
The phaseof the Josephsonterm will only have physical signi cance if a method exists
to coupleto both order parametersthrough a Josephsonjunction or other phasesensitive
probe. The density-density term may arise due to competition between condensatesfor

available carriers.
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3.4 Solving the Ginzburg-Landau Mo del

The Ginzburg-Landau equationsare non-linear partial di erential equationsthat
can only be solved analytically for special cases. It is therefore common to consider
numerical solving methods [76][77][78]. Qiang Du haswritten a good review article of these
methods [79]. | have chosena nite elemert grid method and a nite di erence schemefor
evaluating the derivatives. The order parameteris stored in Cartesian componerts for ease
of update and to avoid the multiple value problemsthat arise with a polar represenation.
The A eld is stored asa two or three elemeri vector depending on the spatial dimension
of the model being considered. A local applied current vector and applied scalar potential
will alsobe included.

As pointed out earlier, the residuesRp and R from equations3.13and 3.14 are
proportional to the time derivative of the A eld and order parameters. This suggestsa
simple recursive method for nding a stationary point by making small correctionsto the
state variables proportional to the residues. Using the notation wherejX ), refersto the

state of X at step n evaluated at all points on the grid, this method can be written as

JA)n+1 iA)n+ AjRA)N

J) n+1 J) nt jR )n (3-21)

The update parameters o and  must be small enoughto maintain stability. If correct
time dependert behavior is desired,the ratio o= must be a constart setby the relative
stiness of the A eld and the order parameters. Individual update parameters may be

neededwhen multiple condensatesare considered.
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Choosing the update parameterscan be di cult.  If the valuesare to low, the
solution takes longer than necessaryto nd. If they are to large, the system becomes
unstable. To minimize the time it take to nd a solution and maintain stability, | usean
approximate Newton's method. The non-time dependert Newton's method can be written

as
JA)) a1 = A ) 0 JpYiRaSR n (3.22)

where J,, 1 is the inverseof the Jacobian of the residues.

The size of the Jacobian makes producing its inverseimpractical, howewver for
small jAj the coupling betweenRA and R is reducedand the Jacobian becomesdiago-
nally dominate allowing the Jacobianto be approximated by its diagonal elemerts. The

simplied Newton's method becomes:

A+t = JA JAljRA)n

J ne1) = 1) on IljR )n
_ @a(®
Y
_ @R (M
J(r) = a o (3.23)

The value of must be lessthan onefor stability, and the optimal value was found to be
around 0:9. In theory, instability should not occur until > 1, but nite sampling adds
systematic noise which can increasethe gain for high frequenciesmaking a lower value
necessary

In any xed gaugethe maximum of jAj grows linearly with the sizeof the system.

In order to keepthe o diagonal elemers of the Jacobian minimal, | use a local gauge
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transformation 2z A = ~r  at ead point on the grid to force A = 0 [77]. It is still

necessaryto maintain a global gaugeto guarantee a single value of the A eld.

3.5 Boundary Conditions and Simulation Controls.

The external B eld is assumedto always be applied in the 2 direction. In the
two dimensional simulations, this is perpendicular to the plane. In the three dimensional
simulations, this is along an axis of the grid. The eld could either be applied asa constart
ux or asa constart intensity around the border of the simulation.

In the constart ux case,a line integral around the edgeof the simulation in a
plane perpendicular to the 2 direction is held constart. In this case,when the supercon-
ductor expelsthe magnetic eld the ux getsconcertrated at the edgesof the simulation.
This is a useful property for determining the critical eld neededto quend superconduc-
tivit y or insert vortices.

External currents are imposeddirectly on the vector residueRa. Ra isin units

and one of its terms is equilivent to Ampre's law relating the A eld to the total current.

res r A
Jiotal = — (3.24)

This is not the sameasdriving a current into the superconductor, but instead is a way to
apply non-uniform magnetic elds. SeeFig. 3.1 for an example. Inhomogeneily suc as
pinning sites or Josephsonjunctions were modeled by making spatially dependert adjust-
merts to the linear Taylor coe cient . Applied voltage di erences is modeledby imposing

a small di erential phaseshift at every simulation update step. This wasgenerally applied
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to a subsetof the simulation to investigate Josephsonjunction behavior.

Figure 3.1. This is an image from a three dimensional simulation where the iso-surface
value is taken to be 1=2 the maximum value. A large current is applied in the 2 direction
through the certer of the simulated cube. This current inducesa circular magnetic eld
that would go as 1=r in the absenceof the superconductor. The magnetic eld near
the current is greater than H¢, driving the order parameter to zero (indicated by the
certral column). When the magnetic eld reatesH ¢, vortex rings are induced into the

superconductor. The rings will attempt to form a tight padking arrangemer.



CHAPTER 3. MACROSCOPIC THEORY OF MULTI ORDER PARAMETER PAIRING IN SUPERCON

3.6 The Vortex

The Abrik osor vortex[70] is a topological excitation that is assaiated with multi-
valuednessof the complex order parameter. Consider any closeddirected path. If one
considersthe complex order parameter to be represened by real and imaginary parts,

then the following equality must hold

stop = startt dr (3.25)

sincea closedpath must start and stop at the samepoint. If oneconsidersa polar notation

where = €(l), then one nds a wealer requiremert on the phase of

I

stop = startt dr +n,2 (3.26)
where the vortex or winding number n, can be any integer. Assuming the underlying
superconductor is simply connectedand n, = 1, the closedpath can be shrunk through a
continuous transformation without changing the vortex number. This implies that r s
going up and correspondingly the cortribution to the kinetic energyfrom r  will alsobe
going up. To balancethis, magnitude of the order parameter, , must go down. Figure
3.2 is from a simulation of a single vortex in a long prism shaped superconductor that
is isotropic in the long direction. The order parameter goesto zero at the certer of the
vortex and becomeson-analytic. The nite sizegrid and nite di erence methods cannot

completely capture the behavior of the exact certer of the vortex.
The reduction of the order parameter in the certer of a vortex costsenergy If a

vortex existsin a part of the superconductor where the magnitude of the order parameter
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hasa gradiert, the vortex will experiencea forcein the opposite direction of the gradiert.
This e ect is responsible for vortex pinning by defectsin superconductors.

Sincea vortex is a topological excitation, it can exist in both type | and type Il
superconductors. In type Il superconductors, the penetration depth is greater than the
coherencdength. This causeshe interactions betweenvortices and betweena vortex and
the superconductor boundary to be dominated by the magnetic eld and kinetic energy

of the currents. The energydensity of the magnetic eld is
Eg/ (B1+ B2)2=B?+ B3+ 2B; B> (3.27)

The force pushing the vortices apart will comefrom the dot product. The kinetic energy
from the currents is more complex since current interactions will increasethe energy
density on one side of the vortex and decreaseit on the other, but the resulting force is
proportional to the samedot product. In the Abrik osos vortex lattice, the eld assaiated
with ead vortex points in the same direction causing them to repel ead other. The
interactions will be short range due to the nite penetration depth. If vortices are in a
disordered state, the cosine ass&iated with the dot product causesthe interactions to
range from repulsion to attraction.

In type | superconductors, the penetration depth is lessthan the coherence
length. This causesthe interactions to be dominated by the magnitude of the order
parameter. In this case,the energyis minimized by overlapping the areaswherethe order
parameter is suppressed. The resulting force between vortices is attractiv e which makes

vortex arrays unstable in type | superconductors.
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Figure 3.2. A long prism shaped superconductor that is isotropic in the long direction
can be simulated as a two dimensional crosssection (grid = 120x120). The magnitude of
the order parameter in the crosssectionis represened by the height of the surfacefrom
the bottom of the bounding cube. The level at the top of the cube corresponds to the
equilibrium value ¢ = P - = . A singlevortex hasbeenplacedin the certer to illustrate
the suppressionof the order parameter toward the certer of the vortex. The supercurrent
is represerted by arrows at the bottom of the cube. An external applied eld inducesa
Meissnercurrent that travelsin the opposite direction of the vortex current. The counter

rotating currents produce a path around the vortex where no current is o wing.
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3.7 Flux quantization of one order parameter

One important feature of the superconducting vortex, the quartization of the
magnetic eld, was predicted by F. London. Referring to Fig. 3.2 again, one can seea
region around the vortex where the net current is zero. Using the quantum medanical
current operator, the zero current condition can be written

z~ ., 222
Joo= —r jj

i i2A =
p el °A=0 (3.28)

Solving for A the performing a closedline integral around the vortex gives
a A = — drrzzl 2n (3.29)

where n is an integer. The line integral of A givesthe enclosed ux resulting in a ux
quantum dened by o=~ =z

In three dimensions,it is not always possibleto nd a path where the current
goes to zero even though the ux per vortex is still quantized. For example, Fig. 3.3
contains two vortices which are not running parallel but are within a penetration depth
of eath other. Becausethe vortices are not parallel, the currents will not exactly cancel
betweenthem. Many penetration depths away, the current is e ectiv ely zero, therefore a
line integral in circling both vortices but far removed will enclosewo ux quanta. Isolating
a single ux quanta requiresrelaxing the path requiremert such that di* Js = 0. Thusthe
original current equation 3.28 can be rewritten

~ 2
ar Js = dr %r P2 Zjpa=o (3.30)

m ]

which givesthe sameresult asthe J; = 0 condition for ux quantization.
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In somesituations this relaxed condition cannot be satis ed. In the caseof a
vortex ring whoseradius is on the order of the penetration depth, there is no path through
the certer of the ring that satis es the relaxed condition dI" Js = 0. For another exampleof
failed ux quartization, consideragain Fig. 3.2. If there were no externally applied eld,
and the penetration depth is on the order of the size of the superconductor, the vortex
induced supercurrents would extend all the way to the edge. When the order parameter
goesto zero outside the superconductor, Js goesto zero, however the requiremert that

dr r = 5 2 nolongerapplies. In the presenceof a current, the calculation for the

enclosed ux includesa line integral of the current
I
m
Bf|ux =N o — dr Js (331)

where n is the vortex number.
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Figure 3.3. A section from a three dimensional simulation corntaining two vortices in a
non-equilibrium con guration (grid = 60x60x60). The surfaceis an iso-surfaceof the order
parameter at the value (=2. Eadh tub esencloses vortex corewherethe order parameter
vanishes. The current vector in a plane is represerted with cones. The current quickly
goesto zeroaway from the vortices but doesnot go to zero betweenthem. Becausethey
are not parallel, the current will have a vertical componernt whenthe X and Y componers

cancel.
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3.8 Fractional ux quantization with two order parameters

Evenwithout the explicit crosscoupling terms, the order parametersare coupled
through the A eld. The easiestway to understand the order parameter interactions is
by considering the topology of vortices in two dimensional systems. In the single order
parameter casewith a single isolated vortex, the magnetic eld is maximum at the certer
of the vortex and exponertially decays going away from the vortex certer. Outside the

vortex core where the magnetic eld is zero, the current is also zero. SeeFig. 3.4.

3 S —
2L vortex J ;
1L ]
oL — ]
1t 1
2t 1
-3

8 6 4 -2 0 2 4 6 8
Distance in units of penetration depth

Figure 3.4. The B eld and supercurrent along a line perpendicular to a vortex in a single
order parameter superconductor simulation The vortex core is located at the zero of the
graph, and the sign of the current indicates a current owing into the page (positive)
or out of the page (hegative). The current and the eld both go to zero exponertially

quickly.
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The total supercurrent for a two order parameter superconductor is

Js = m—ll 11'2(2—21r 1 A) (3.32)
22%. .2 -~
—= — A .
+ mZJ ] (222r > K) (3.33)

where it is assumedthat Js = 0 in the interior of the superconductor well away from
any vortices. If both order parameters form pairs of co-axial vortices, and z; and z,
have equal magnitudes, both contributions to the supercurrent will be zero well outside
of the vortices. The ux quanta for ead co-axial pair will be the sameasthe single order

parameter case.

1 with one vortex 2 with no vortex

Figure 3.5. Order parameter phase graphs for a patch of superconductor. The arrows
represen the phaseof the order parameter as an anglein the plane, and do not represen
any real spacedirections. Well outside the vortex core,the A eld will avaluethat cancels

the total current.

If the vortex only exists in one of the order parameters, a kind of gauge frus-

trations results. SeeFig. 3.5. The magnetic eld and net current both experiencethe
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exponertial decay whenmoving outsidethe vortex core,but the individual currents asymp-

totically approach complemenary valuesthat decreaseas 1=r. SeeFig. 3.6.

3 T
B — —
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1 I m
O I m
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2+ |
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Distance in units of penetration depth

Figure 3.6. The B eld and supercurrent componerts along a line perpendicular to a
vortex in a two order parameter superconductor simulation. The vortex core is located
at the zero of the graph, and the sign of the current indicates a current o wing into the
page (positive) or out of the page (negative). While the net current and the eld both go

to zero exponentially, the componerts of the individual currents decreaseas 1=r.
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This can be understood by consideringthe two order parameter current operator
when the net current is zero, and assumea gaugewhere A = 0 at the certer of the vortex.
If the vortex existsin order parameter 1 thenr 1/ 1=r. Sinceorder parameter 2 does
not have a vortex r » = 0. The non-zero ux cortained in the vortex implies a radially
directed A that also goesas 1=r. Howewer no single A can individually zeroout both the

contributions to the current. The total ux contained in the vortex is

e p 2

—_ 1 .

L x D B (3.34)
L gj2+ 22 g2

Due to the 1=r current density, the energy assaiated with a unpaired vortex grows log-
arithmically with the size of the system. If the system contains a vortex pair that have
beenseparateddue to thermal uctuations or other medtanism, the energywill grow log-
arithmically with the separation. This will producea long range attractiv e force that goes

as 1=r. There will alsobe an angle dependencethat goesas
F/ B B, (3.35)

where B\X is a cornveniert way to indicate the direction the vortex, but it is not intended

to indicate that this force is from the magnetic energy.

3.9 The bi-quadratic term

A rationalization for the bi-quadratic term, i j%4 j? is a competition be-
tween the two condensatesfor carriers. One example could be two FFLO phaseswith

di erent pair momertum.
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It is possiblefor the bi-quadratic term to be large enoughthat it prevents the
coexistenceof both phases.In this casethe superconductor will phaseseparate. If one of
the condensateds energeticallyfavorable, it will completely dominate. Sincethe dominant
order parameter would be suppressedin the certer of a vortex, it is possible for the

subordinate phaseto exist in the core of a vortex. SeeFig. 3.7

Figure 3.7. From a simulation of a long prism shaped superconductor as described in
Fig. 3.2. A vortex in the energetically favorable condensate(red) suppresseghe order

parameter enabling the lessfavored condensate(blue) to exist in the vortex core.
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In the casewhere multiple order parameters coexist, the bi-quadratic term will
provide either a local attractiv e or repulsive force betweenvortices in di erent condensates

depending on the sign of the term.

3.10 The Josephson term

A possiblerationalization for the bi-linear Josephsonterm, , could be
hopping betweencondensates.The two gap superconductorssud as M gB, may be pos-
sible candidates. The complex phase of the coe cien t will only e ect the preferred
relative phaseof the order parameters,so | will assumethat 0 and real, such that
matching phasesminimize the energy

The Josephsonterm causeshe symmetry for all bi-linear coupled condensatedo
be broken with the formation of the rst condensate.Also, the Josephsonterm produces
a much stronger coupling betweencondensateghan either the A eld or the bi-quadratic
term. For this reason,it is dicult to determine if a superconductor actually has two
condensates,or one condensatewith two gaps. For clarity, | will dene a two order
parameter superconductorto be onewhereboth condensatesan exist whenthe Josephson
term is frustrated.

The strength of the coupling of the Josephsonterm can be illustrated by con-
sidering the casewere ead order parameter cortains a single vortex which are separated
by many coherencelengths. SeeFig. 3.8. All Josephsonenergy iso-curves passthrough

the certer of the vortices. The shape of ead iso-curve is xed, but the overall scalegrows
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linearly with the separation, r, of the vortices. The energy will increaseasr ? sinceit is
proportional to the area, and will quickly exceedthe short range bi-quadratic energiesand

long range logarithmic A eld coupling.

Figure 3.8. The arrows represett the phaseof two condensatesgad with a single vortex.
The vortices are 0 setfrom ead other to illustrate the e ect of relative order parameter
phases. The energy assaiated with the Josephsoncoupling is proportional to minus the
cosineof the di erence in the phases.The line betweenthe vortices shavs the maximum
phasedi erence and therefore the highest energy density. The curve where the energy

cortribution is zeroforms a circle with the vortex certers on the perimeter.
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The precedingargument assumedno charge transfer between condensates.This
would certainly be true for the theoretical electron and proton condensatesof hydrogen.

If it is assumedthat somechargetransfer doesoccur, such asa Josephsorhopping current

Jhopping/ J lJJ ZjSin( 2 l) (3-36)

the situation changesconsiderably The ow of current between condensateswill provide
a medianism by which the phase frustration can be reduced. Figure 3.9 is a three di-
mensional simulation of a two order parameter block of superconductor. The phase of
both condensateds roughly equal throughout the simulation exceptin the spacebetween
the vortices indicated by the thin red \J-wall". Following a path around the blue vortex
but not the gold one, one expects the phase of the blue condensateto go through 2 ,
while the gold condensatewill have a phasechangeof zero. When the phaseintegration is
performed, one nds that both condensatescollect a phasechange of approximately in
the region that excludesareanearthe J-wall. In the region betweenthe vortices, the blue
condensatewill pick up an additional phaseof while the gold condensatewill pick up an
cancelingphaseof . The energyassaiated with the Josephsonterm is now con ned to
the J-wall (whose area is proportional to r). The energy assaiated with the separation
of the vortices will be proportional to r.

Well outside the vortex coresand the J-wall, the net current is zero. Sincethe
phasesof the condensatesare equal, the individual componerts of the current must also
be zero. Well outside the vortex coresbut within the J-wall, the net current is still zero,

but the componenrts will have equal and opposite currents.
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Figure 3.9. This gure is from a 3 dimensional simulation of a two order parameter
superconductor with a Josephsoncoupling term. The iso-surfaceof the order parameters
in gold and blue shaw a single vortex ead. The thin red wall of phasefrustration or \J-
wall" is an iso-surfaceof the Josephsonenergy corresponding to a value of zero. Without
inter-condensate currents, this iso-surfacewould have a circular crosssection. SeeFig.

3.8.
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3.11 J-wall excitations

In the previous section, the J-wall was bordered by either a vortex or the edge
of the superconductor. It is also topologically possiblefor J-wall excitations to exist as
closedsurfaces.For exampleconsidera spherically symmetric casewhereboth condensates
order parameters are real and positive at the origin. At somedistance which is seweral
coherenceengths from the origin, one order parameter goesthrough a phasechange of
while the other goesthrough a phasechangeof . Outside the region where the phases
are changing, ead order parameter has a phasethat is real and negative. This J-wall
forms a spherewith energy proportional to its surfacearea.

The surfaceof a J-wall is directed sinceead condensate o wsin de nite direction.
For corvention, assumethat the positive direction for a J-wall is the direction that adds

to 1. Two oppositely oriented J-walls will experiencea short range attraction and will
annihilate eat other. Two J-walls oriented in samedirection will experiencea short range
repulsion.

Since the J-walls do not couple to the magnetic eld, they will be dicult to
induce or detect in any material in which multiple condensatesare suspected. One pos-
sibility for inducing J-walls would be to preferertially drive a tunneling current into only
one condensatecausinga phaseslip betweenthe condensates.lt is not clear how to detect
when this occurs however.

It may be possibleto detect a phasetransition where thermally induced J-walls

freezeout. The lowest J-Wall excitations would have a nite energysincethe length scale
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of the smallestJ-wall excitation must be on the order of the coherencdength. Below this
length scale,the order parameterscould not make a full rotation of j j. Excitations on this
scaleare not disallowed, but they would tend to be spherical and have an energythat is
proportional to their volume. Above this minimum energy the number of con gurations
(states) per energy level becomeslarge since it is not longer limited to being spherical
and the energyis proportional to the area. If the low energy excitations are ignored, the
suddenrise in density of statesat a nite energyand domain wall like behavior givesrise

to the Potts model like behavior[80][81].

3.12 Not any knots

There has beeninterest in knots in multi componert Bose Einstein models [82]
[83]. The structures consideredin these papers were beyond what my numerical model
could simulate. Small vortex knot componerts were consideredand found to be unstable.
SeeFig. 3.10for a couple of attempts. The knot componerts were intended to use the
repulsion of vortices to overcomethe tendency of a vortex to minimize its length. Vortex
tension was found to be stronger than repulsion causingthe vortices to passthrough one

another.
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Twist Cross
Figure 3.10. Two attempts at building vortex knots. In all variations of the \t wist"

attempted, with naturally repelling vortices, the vortices ultimately passedthrough eadh
other rather than untwisting. With careful positioning, two normally repelling vortices
can be attached in a \cross" arrangemen to form an unstable bond. When disturb ed,
the point of intersection will move toward the nearest normal boundary and exit the

superconductor.
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3.13 Conclusion

| have dewveloped a fast and e cien t numerical method for solving the Ginsburg-
Landau model of superconductivity in 2 and 3 dimensions. This method included extensive
visualization and interaction. The model was usedto study the interaction of supercon-
ductivit y and magnetic elds with particular emphasison vortex dynamics.

The model was then extendedto include multiple condensateorder parameters.
This extended model was usedto study potentially stable vortex knots with negative re-
sults. An interesting topological excitation was found assaiated when a bi-linear Joseph-

son coupling term was included in the simulations.

IN SUPERCON
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4.1 Intro duction

The properties of both 2D squarelsing and Edwards-Andersonspin glassmodel
have beenstudied for many years. The Ising model

X
H = SiS; (4.1)

<ij >
with nearestneighbor interactions was solved by Onsangerusing transfer matrix methods.
The 3D modelis consideredto fall into a classof NP completeproblemsthat are unsolvable
[84], and therefore must be attacked with approximate methods.
The nearestneighbor Edwards-Andersonspin glassenergyis
X
H = Ji SiS (4.2)
<ij >
where Jj; has some random distribution. The two most common distributions are the
bimodal whereJ = 1 and the corntinuous where J has a distribution that normally is
taken to be Gaussian. These models are also unsolved, but a number of methods have
beendeweloped to study their properties. The ground state of large systems[85] can be
calculated quickly and e cien tly making T = 0 investigationspossible. Sampling methods
such as Monti Carlo run into problems due to the slow dynamics belov T.. Howewer
improved methods such astempering [86] have beendeveloped which have enabledprogress
in 3D investigations [87].
The numerical transfer matrix methods have also been applied to spin glasses

[88][89][90], but due to the exponertial growth in the memory and simulation time with

the width of the system, the size of systemsmust be limited. As long as Moore's law
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continuesto hold howewver, one can expect to add a site to the width of the calculation
every couple of years. | have developed e cien t algorithms for solving nite sizespin glass
systemsusing the transfer matrix method and applied them to Ising an Edwards-Anderson

spin systems.

4.2 Transfer matrix applied to spin systems.
Calculating the partition function,
Z= efc (4.3)

where C goes over all con gurations, is in principle straight forward. In practice, it is
dicult due to the the number of con gurations. Eadh spin in the system doubles the
number of terms in the sum giving a total of 2¥ con gurations M is the number of spins.

The transfer matrix method as applied to spin systemsis a method for reducing
the number of additions that needto be performed to calculate Z. There is quite a bit
of exibilit y in de ning a transfer matrix, therefore | will describe one implementation
while pointing out where degreesof freedom exist. Referring to gure 4.1, the transfer
matrix T (A; B) is de ned sud that it includesall the terms of the partition function sum
for all intra-yellow bonds and the bonds betweenthe yellow spins and the spin cuts. The
contribution from the bonds between the spins in ead cut must be accourted for, but
care must be taken not to court them twice. | chooseto include the bondsin cut A in
T(A; B), but not the bondsin cut B. The bondsin cut B will be accourted for in another

transfer matrix.
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Figure 4.1. The colored squaresrepresern spin sites. The connectionsbetweenthe sites
represen bonds. The spinsin the cuts must completely separatethe spins on either side
of the cut sud that no direct bond connectssites on oneside of the cut to the other side of
the cut. Sincethis systemhasonly nearestneighbor bonds, the cut needonly be one spin
wide. If howewer the bonds to next nearestneighbor were also included, the cut would

needto be two spinswide.

In this exampleead cut corntains four spinsfor a total of 16 states. The rows of
T(A; B) areindexed by the states of cut A while the columnsare indexed by the states of
cut B. (The exponertial cost hasnot beencompletely eliminated but only reduced. This
is the major weaknessof the transfer matrix method and places practical limits on the
cut size.) An entry of the transfer matrix is de ned as
X
Tij (A;B)= e Eco (4.4)
co
wherethe energyonly includesthe bondslisted above, the sitesin cut A arein state i, the

sitesin cut B arein state j, and the index C°goesover all con gurations of the \y ellow"

sites betweenthe two cuts.
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Now assumethat | have the matrix T(A; B) and the matrix T(B;C), whereC
is another cut line further to the right, and I want the matrix T(A; C). Following the

standard derivation, rst considerthe matrix
R() = T(A;B)jj >< JjT(B;C) (4.5)

where|j selectsa single state of B. An ertry of B is
X X X X

Rik()= e Eco e Eco = gl Eco Ecod (4.6)
CO COO CO COO

where the index C%goes over all con guration of sites betweencut B and cut C. The
nested sum now goesover all con gurations of spins between A and C with the spins of
cut B in state j. If | then sum over all all statesof B, | nd | have T(A; C) by de nition.

Performing the sum gives

T(A;C)

T(A; B)jj >< |JT(B;C)
j X
T(A;B) jj >< jjT(B;C)
j
T(A;B)T(B;C) 4.7)

which is just simple matrix multiplication.

If the systemis open on the ends, the last transfer matrix will needto include
the energy for the bondsin the nal cut. The partition function is found by summing
over all the conmbined con gurations of the starting cut and the ending cut. In term of
the nal matrix, this becomes

X X

Z= Tj (Start; End) =< jT(Start; End)] > (4.8)
i
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wherej > is a vector of all 1s.

For periodic boundary conditions, the starting and ending cut are the same
and no special handling of the last matrix is necessary After the nal transfer matrix
multiplication, only the diagonal terms cortribute. The partition function in this caseis
just given by

X
Z = Tii (Start; Start) = Tr[T(Start; Start)] (4.9)

i

It is customary to de ne the incremertal transfer matrix to have a step of one
row with no intervening sites. This is cheaper sincecalculating all the intervening\y ellow"
spins becomesunnecessary The original costwent as2M . The cost of the transfer matrix

goesas
N3 L (4.10)

Where N width of the cut and L is the length of the system.

4.3 One spin at atime

One degreeof freedomin de ning the transfer matrix (not mertioned in the
previous section) is how the cuts are de ned. There is no requiremert that the cuts go
straight acrossor that they are non-overlapping. Referring to gure 4.2, the transfer
matrix is de ned such that only one site is added and one site is removed. The transfer
matrix still needsto include all con gurations for ead cut, but now the cuts are not

longer independert. Any eritry in the new T(A; B) that conicts with the shared sites
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must be zero. (I have not beenableto nd a referenceof this method of transfer matrix
calculation, bit it seemslikely to have been done before. The performance matches 2N

best caseperfromancementioned by A. P. Young)

Figure 4.2. The colored squaresrepresett spin sites. The connectionsbetweenthe sites
represert bonds. The spin cuts in this caseoverlap. The red site is unique to cut A, the
blue site is unique to cut B, and the pink sites are shared. Both sites meet the bond cut

requiremert betweenthe greenand purple sites.
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The new matrix is de ned as: (1)the bonds usedto calculate T(A; B) are only
the onesthat connectto the \Red" site. (2)The con gurations of the cut are indexed as
a binary number where and up spin is a one and a down spin is a zero. (3)The most most
signi cant bit of cut A is the \Red" site.(4)The least signi cant bit of cut B is the \Blue"

site. Assuming no external eld, the new one step transfer matrix is
0 1

a b 0oO0OO0OOOO

0 0OcdOOO OO

T(A;B) = (4.11)

0O 00O 0O0OOOVUDba
where a h are Boltzmann terms basedon the bond energies. Becauseof the bonds
chosenand the ordering of states, there is a symmetry assaiated with inversion of all
spinsthat becomesobvious. This symmetry will causethe eigenvectorsto be either odd
or even. Sinceall non-zeroertries must be positive, one would expect an even eigenvector
to always have the largest eigenvalue. Long range order however requiresthat the largest
odd and ewven eigen vector becomedegenerate. This paradax is resolved by noting that
long range order doesnot occur in systemswith nite width.

This overlapping of spin cuts turns out to be a big win in the cost of calculations.
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The cost of using this sparsetransfer matrix to calculate Z goesas
N2 L N (4.12)

Note the exponert assaiated with the matrix multiplications has beendecreasedby N
with only an additional scaling term of N. This may not seemlike a lot, but this can be
a factor of seeral thousand when N starts getting big.

So far, | have only considered calculating the partition function completely.
When the system being consideredlacks long range order, as one dimensional systems
do, it may be acceptableto calculate only a few columns of the nal transfer matrix [90].
This is equivalent to limiting the number of starting and stopping con gurations. When

this is done, the cost of the partition function calculation goesas
N LN W (4.13)

where W is the number of rows of the transfer matrix calculated.

As noted above, the eigenvectors of the one step transfer matrix can separated
into even and odd sets. The transfer matrix doesnot mix the two sets. This createsthe
possibility of calculating the even an odd parts of the transfer matrix product separately

The odd transfer matrix becomes

0 1
a b 0 0
0O O c d
Todd(A; B) = (4.14)
0O O f e
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whereTeven(A; B) would di er only in that all entries would be positive. This optimization
cuts the cost of partition function calculation in half. This optimization does not work
with any applied eld that breaks inversion symmetry, therefore | have not used this

optimization in calculations.

4.4 Finite T computations

In the algorithm that performsthe calculation, none of the transfer matrices are
ewver actually stored. The heart of the algorithm is a subroutine that takesasinput a vector
of size2\ \real" oating point values,the bond strength and Zeemansplitting energy It
performs the matrix multiplication and returns the result in another 2N size vector. To
calculate a column of the transfer matrix, the algorithm starts with a unit vector that
represerts a single con guration of the initial cut, then the subroutine is called once for
eadt spin with the appropriate bonds. This can be written as

Y
Ty >= T(®)jj > (4.15)
i
where jT; > is a column vector represering column j of the transfer matrix product. If
the full calculation is desired,this is repeated for eat con guration in the initial cut.

The number of spinsin the spin cut is limited by computation time and computer
memory. For example,a cut of 26 spinsconsumenegiga-byte of memory and takesabout
1 secondto perform a matrix multiplication on a relative modern computer (2 giga-Hertz

and 2 giga-byte of DRAM). For ead spin removed from the cut, the memory and time

required to perform a single vector update is cut by half.
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The temperature rangeto which this method can be applied is limited by the ac-
curacy of the numerical represenation of real numbers. The magnitude of the entries in the
one step transfer matrix for the 1 modelrangefrom exp( 1=T) to exp(1=T) which
puts the absolute range of the terms in the partition function sumto be exp( M=T).
As T getssmall, the terms closerto exp(+ M =T) will dominate.

The lower bound in T is determined by the obsenable that is being calculated.
For example, the calculation of entropy

Tdz

S=In@)+ >4 (4.16)

involves a single derivative. Finite di erence is the obvious choice for calculating deriva-
tives,unfortunately this involvessubtracting two large numbersto producea small number
greatly reducesthe usable number of bits of precision. Speci ¢ heat,

Tdz T2z

Cv= 2?ﬁ + — 472 (4.17)

requiresa secondderivative which requires performing the subtraction twice. The specic
heat calculation on small systems,N = 10and L = 100,seemto bevalid downto T :5
in units of J. Fortunately this is below the transition temperatures for both ordered and

glassyspin systems.

4.5 Partition function polynomial and T = O calculations

Another way to view the partition function is to think of it asa polynomial

X
Z= AefF (4.18)
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where E; is the ith energy above the ground state. A; is the degeneracyof ith energy
level. In order to put the degeneracyon the samefooting asE , assumea; = In(A;). The
partition function becomes
X
z= @ Ei) (4.19)
i
For systemssuch as the ferromagnetic, antiferromagnetic or 1 models, the number of
terms will be on the order of the number of spinsin the system. The coe cien ts a; is the
log of the density of states. There have beensomeattempts to calculate this polynomial
for small systemsusing non-transfer matrix methods [91][92] and an interesting truncated
transfer matrix method by Morgenstern and Binder[89]

Calculating the polynomial is conceptually simple if one assumesa polynomial
data type that includes the operations of poly-add and poly-scale. Poly-add adds two
polynomials to produce a new polynomial. Poly scalemultiplies a polynomial by e(@ E ).
It is also useful to include a clipping option to only keepa xed number of the lowest
energyterms. This new data type replacesthe real data type in the algorithm described
above. This method is not without its cost however. It takeson the order of six minutes
to calculate the full polynomial for a 10 by 10 spin systemwith this new method where it
takesonly 3.5 secondsto perform a real calculation for a single T. On the other hand it
only takes 8 secondsto calculate the ground state term.

There are seeral advantages of this method over the \real" method. The most
obvious being that oncethe complete polynomial has beencalculated, the partition func-

tion is known for all temperatures. The T = 0 ertropy is given by the log of the degeneracy
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of the ground state and approades the approadcesthe published bulk value[103,0:078.
The fact the Z becomesvery large can easily be dealt with by factoring out the largest

term

X
7 = el@x Ex ) gl Ei  (ax Ex ). (4.20)

i
wherethe xth term is the largest. Each term in the sum is now lessthan or equalto one,

and the large exponertial factored out will cancelwhen an obsenable is calculated.

4.6 2D Ising phase transition

The 2D Ising phaseferromagnetic phasetransition has beensolved and is well
understood, but it still can be enlightening to considerthis casehowever.

As merntioned before, the largest contribution to the partition function comes
from the term with the largestvalue of (ax Ex ). For large systemsand nite T, there
will be many samplesaround the largest term that also cortribute. In this case,it is
reasonableto consider the casewhere a is a continuous function of E. The partition

function then becomes

z
X
z= €& E) % dee@E) E ) (4.21)

i
where the 1=4 scaling is required becausethe discrete energy levels occur in steps of four
(in units of J). The function a(E) can be thought of as a log of the density of states.

The value of E where (a(E) E ) is maximum for a given temperature is found by the



CHAPTER 4. CLASSICAL SPIN SYSTEMS 114

standard method

d _ da(E) .
—dE(a(E) E )= iE =0 (4.22)
Solving for the inversetemperature gives
_da(E)
= “E (4.23)

where T = 1= . As long as the secondderivative of a(E) is lessthan zero, to rst
approximation the energiesaround the maximum will contribute to obsenable calculations
with a Gaussianweighting.

Figure 4.3 is a graph of a(E) for a 12 by 70 site ferromagnetic Ising system. For

a systemwith a smooth, corvex a(E), the speci c heat can be approximated by

== dRa(E) *
2 .
Cv ?a(E) T —3E? (4.24)
dE2

Near the certer of the graph, one can seehow the curvature approades zero. This will
causethe speci ¢ heat to divergeindicating a secondorder phasetransition.
The speci ¢ heat calculated using equation 4.17 for a range of system con gura-

tions is showvn in gure 4.4.
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Figure 4.3. The log of the density of states (E) for a 12 by 70 ferromagnetic Ising model.

The density of states is symmetric around E = 0 so only the states corresponding to

positive temperatures are calculated. The curvature atting is an indication of a second

order phasetransition.
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FM Ising Specific Heat
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Figure 4.4. The speci c heat for a range of system con gurations shawving approading
divergenceas the geometry of the system goesfrom one dimensionalto two dimensional.
The systemsrepreserted by lines were produced from full partition function polynomial
calculations. The systemsrepreserted by points were produced from real calculations of

onerow from the transfer matrix.
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4.7 Spin Glass

Glassy systemsin generalare characterized by taking a long time to reac ther-
modynamic equilibrium, and in most casesthis time becomesn nite. This is is generally
attributed to the presenceof energybarriers betweenlocal energyminimum which prevent

the thermal excited exploration of con guration space.

4.8 Trapping local energy minim um

An example without quended disorder, consider a magnetic that is modeled
by the classical, rectangular, two dimensional, ferromagnetic Ising model with nearest

neighbor interactions. The Hamiltonian is

X
H= Jij Si S (4.25)
<ij >
where the sum goesover all nearestneighbors, Jj = 1,and S = 1. The ground state
isknownto beall S = 1lorall S = 1. If this systemis suddenly quended from a

temperature well above T; to a temperature well belov T , one expectsto nd that the

magnetization is de ned by

[
where M is the total number of spins, to approadh 1. If one assumesone spin at a
time transitions and the absenceof system spanning domain walls, it is possiblego from

a disordered state to one of the ground states making only transitions which reducethe
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total energyor are energetically neutral. Therefore there is no energy barrier to reacing
the ground state.

To add quended disorder, one only needsto periodically reducethe interaction
in rows and columns of connectionsto create squaresof sites with uniform intra-square
interactions of J = 1, connectedby inter-squareinteractions of J°= 1 . Aslongas0<

< 1, the ground state doesnot change. When this systemis quendied, these weakened
connectionscreate energy barriers to domain wall motion. This can be demonstrated by
consideringthe a squarewith m = 1 that is surroundedby squareswith m = 1. In order
to switch the certer square,the systemwill needto overcomea minimum energy barrier
of =2 times the number of spins on the parameter of the square. This minimum energy

barrier is crossedby moving a diagonal phaseboundary from corner to corner.

4.9 Frustration

The other key feature of spin glassesis frustration. A closedpath of bonds is

consideredfrustrated if path product

is negative. The product is over all connectionsin the path. In any frustrated path,
there is at least onefrustrated bond (not in its low energystate). In the two dimensional,
square, nearestneighbor, Edwards-Andersonmodel the minimum structurally frustrated
path is the 4 site squareor F-placket. Structurally unfrustrated plackets will be refereed

to as U-plackets [93]. The Edwards-Andersonmodel is like the Ising model except that
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Jij = 1 with somerandom distribution.

The F-placket hassomeproperties similar to the winding number assaiated with
vortices in type Il superconductors. A positive sign of path product, F, indicates that
an even number of F-plackets are enclosedwhile a negative sign indicates that an odd
number are enclosed. This can easily be demonstrated by starting with a arbitrary path
whereF hasa de nite sign. When the path is increasedto encloseanother placket, oneto
three edgesare removed and oneto three edgesare added suc that the total is 4 edges.
If the sign of F changes,then the sign of the path product for the edgesremoved must be
di erent from the sign of the path product of edgesadded. Therefore the path product
for the added placket must be negative indicating it is an F-placket. To complete the
argumert, start with a single placket and add padkets to for any arbitrary path.

This placket parity forcesF-plackets to form pairs connectedby a path of doubly
frustrated U-plackets. While U-plackets are not structurally frustrated, they still canhave
an even number of frustrated bonds. Figure 4.5 illustrates the ground state of a system
containing four F-plackets. The energy of the systemis minimum when the number of
doubly frustrated U-plackets neededto connectall F-plackets in the systemis minimized.

This pair formation is also responsible for the presenceof quended disorder in
Edwards-Andersonmodels. If the pairing had instead beenhorizontal in gure 4.5 such
that the upper two F-plackets were paired and the lower two were paired, there would be

a energy barrier that would have to be crossedto transition to the ground state.
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Figure 4.5. A graphical represenation of one of the ground states of a spin system con-
taining four structurally frustrated F-plackets. The red squaresrepresen F-plackets. The
blue squaresrepresen structurally unfrustrated U-plackets. The black lines are unfrus-
trated bonds. The yellow bars are frustrated bonds. In any con guration of spins, there
will always be a path that starts in a F-placket crossesonly frustrated bonds, and ends
in an F-placket (or in the caseof open boundaries, exits that system). The total taxi cab

length of these paths will be minimized in the ground state.
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410 2D 1 glass simulations

The spin glasstransition is not an equilibrium transition like the Ising ferromag-
netic transition. It is instead a transition from a paramagnetic state to a quended state
where the system getstrapp edin a local energy minimum. Below the transition temper-
ature Tg, the systemdynamics becomevery slow. The dynamics generally consideredto
becomelogarithmic in time re ecting a 1=f distribution of energybarriers. The number of
energy minima grows exponertially with the sizeof the system making sampling methods
such as Monti Carlo di cult. Multi-temp erature methods have shovn somesuccesq].

The transfer matrix method avoids the local trapping problems by considering
all possiblecon gurations. So by design,it capturesthe equilibrium statistics that would
only be accessibleas time approadiesin nit y. The density of states function for a 1
system does not showv any attening that would indicate a phasetransition. See gure
4.6. The The function a(E) is much closerto an ellipse. As expected, the equilibrium

speci ¢ heat doesnot show a divergert behavior. See gure 4.7
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a(E) vs E for 12x70 Spin Glass
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Figure 4.6. The log of the density of states (E) for a 12 by 70 1 spin glassmodel. The

density of statesis symmetric around E = 0 soonly the states corresponding to positive
temperaturesare calculated. The graph is quite elliptical with no at areaassaiated with

a phasetransition.
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Spin Glass Specific Heat
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Figure 4.7. The specic heat for a range of system con gurations shows no divergence
behavior. The variations betweensimulations seemsto be due more to the the particular
disorderin the bondsthan the systemsize. The systemsrepreserted by lineswereproduced
from full partition function polynomial calculations. The systemsrepresetted by points

were produced from real calculations of one row from the transfer matrix.
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4.11 2D contin uous bond distribution glass simulation

When the bondsin a spin glasshave a corntinuous distribution, ead state hasa
degeneracyof 2. This causeghe partition function polynomial to have 2M 1 unique terms
making a complete calculation intractable. One possibility to get around this limitation
is to useenergy binning to force degeneracyfor nearly degeneratestates. This has shovn
somepromise, but | have yet to quantify the error.

The lack of degeneracycreatesthe possibility of calculating exact ground and
excited states. By xing onespin in the system, ead term of the polynomial is assaiated
with a unique con guration which can be tracked. The ground state has been veri ed
using the Spin Serer provided online by the Institut fr Informatik. The ground state
and rst three excited states for a 10 by 10 spin systemwith Gaussianbond distribution
is showvn belowv. In the ground state, up spins are indicated by \+" and down spins by
a\ ". In the excited states, an \=" sign indicates a ground state matching spin and
an\ " indicates a ipp ed spin. The large number of ipp ed spinsin the third excited

state illustrates how a local minimum can be a large distance (as measuredin number of

di ering spins) from the ground state.
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Ground E = 0:048 E = 0124 E = 0:163
+ + + —========= === == ==
+ + + —========= === == =
+ + + + + == ====== ========== ==== =
+++++++ ++ =====mmm== ========== ==
+ + + ++ _—========= _========c ==
+ + ++ + ========== == ====== ==== =
+ + + ========== == ====== ==== ====
+ + + + + ++ _—========= _========c ===
+ + + + ++ ========== ========== ==========
+ + + + —_========= === _==== ==

Another way to analyzeis to analyze the behavior is to considerthe spin-spin
correlation versesdistanceat nite temperatures. As the transfer matrix product is created
by incorporating more spins through matrix multiplication

Y
Ty unning — Ts (4.28)
s=0 i

the current product matrix quickly assumesa very singular form

Trunning = 0ddjOddr >< Odd_j evenjEVeng >< Even | (4.29)

with all other eigervaluesbecomingtiny. At T = 0 it is expectedthat E ven O dd as

the number of spinsgrows large indicating long rangeorder. At T > Tgg it is expectedthat
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Even >> 0dq indicating no long range order. Figure 4.8 illustrates how the eigervalues

changewith distance along a long 18 spin wide strip. The quantity graphed,

= log Odd (4.30)
Sqrt 20dd+ %ven

indicates how correlated a states at the start of the strip are to the states at the end
of the strip. At the highest temperature, T = 0:35, shaws a noisy but steady decline
represerting an exponertial loss of correlation. BetweenT = 0:25and T = 0:15, at

portions start appearing represeting highly correlated regions. These correlated regions
are responsible for the energybarriers that causethe slow spin glassdynamics below Tsg.
At T = 0:05, the graph is mostly at with a few noisy steps. These steps are causedby
low energy excitations that spanthe width of the strip. At any nite temperature, these
excitations will causethe lossof long range order. Domain spanning excitations will exist

at somedensity below any nite energy
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Correlation in 18 wide Gaussian spin strip

.....................

-20

Log of odd projection

— — — -
o000

-25

_30 | | | |
0 50 100 150 200 250

Row of spin glass strip

Figure 4.8. This graph indicates how change as a function of the length of an open

endedstrip and the temperature
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4.12 Conclusion

The exponertial advancemen of computers enablesthe revisiting of problems
from time to time. | have deweloped transfer matrix algorithms for the calculation of the
nite T partition function and the exact polynomial partition function. | have veried

these calculations by compairing them against published results.
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