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Abstract

Computational methods applied to Superconductivity and Magnetism

by

Alan Kyker

Superconductivity and magnetism are two phenomenawhere the microscope quantum

world manifestsmacroscopicvisible behavior. The methods of studying thesecondensates

generally follow a quantum mechanical (bottom up) or phenomenological(top down). In

principal, bottom up methodsaresu�cien t to describeall behavior, but in practice the cal-

culations becomeintractable. The e�ect of electronic structure on the formation of FFLO

phaseswasstudied using a modi�ed BCS formalism. Featuresof the Fermi surfaceswhich

promoted the formation of FFLO phaseswere identi�ed. Magnetically induced orbital

currents, vortex dynamics and multi-order parameter superconductorswerestudied using

the phenomenologicalformalism of Ginzburg and Landau. A new topological structure

was identi�ed in multi-order parameter superconductors with Josephsoncoupling. The

electronic structure tools the weredeveloped for studying FFLO phaseswere then applied

TiBe2. The sourceof the anomaloustemperature dependent susceptibility was identi�ed.

Classical magnetism was studied using transfer matrix methods. A method was devel-

oped for extracting the density of states for long, narrow, nearestneighbor, 2D Ising and

Edwards-Andersonspin systems.
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Chapter 1

Theory of ~q 6= 0 Pairing

Superconductivit y
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1.1 In tro duction

The work in this chapter is derived from the publication

\F ermiology and Fulde-Ferrell-Larkin-Ovchinnikov Phase Formation"; A. B. Kyker, W.

E. Pickett, and F. Gygi, Phys. Rev. B 71, 224517(2005).

Almost half a century ago Ginzburg addressedthe question of possiblesuper-

conductivit y in ferromagnetic material[1], and studied the problems posedby orbital su-

percurrents within a material with intrinsic magnetic 
ux. About a decadelater, and

armed with BCS theory[2], Fulde and Ferrell (FF)[3 ] and separately Larkin and Ovchin-

nikov (LO)[4 ] addressedthe separatequestionwith how a BCS superconductorcopeswith

an intrinsic spin splitting, which breaks the degeneracyof spin up and spin down Fermi

surfaces. Both FF and LO concluded that (neglecting orbital current e�ects) that there

is a superconducting phase(the \FFLO phase") above the usual upper critical �eld H c2

where superconductivity persists based on ~q 6= 0 (non-zero momentum) pairs and the

order parameter becomesinhomogeneous.

Since that time there has been a considerablenumber of papers exploring the

competition between,and possiblecoexistenceof, the superconducting and magnetic long

range order parameters.[5] Full treatment requires consideration of both orbital and spin

e�ects, and for the most part theories have tended to supposethat one is dominant in a

particular systemand concentrate on that one. Thus investigationshave focusedeither on

the orbital e�ects such as spontaneous vortex phases,or on the exposition of the FFLO

phase without complications from vortex behavior. Much has been accomplishedwith
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this approach, although little in a material speci�c way that would allow theories to be

carefully tested. With regard to the FFLO phase, the move has been in the opposite

direction: make the system �t the idealizations of the theorists.

Two dimensional layered organic crystals provide the primary playground. With

negligible carrier hopping betweenlayers and the magnetic �eld can be oriented nearly in-

plane, the competition betweenspin- and orbital-pairbreaking �rst studied theoretically by

Bulaevskii[6] can beprobed. If the �eld lies preciselywithin the layer, orbital pairbreaking

vanishesleaving only a small exchangesplitting (� � B B ) to inhibit superconductivity. This

setup has led to strong evidencethat a distinct high �eld, low temperature phase in � -

(BEDT-TTF) 2Cu(NCS)2 is an excellent candidate for an FFLO phase.[7] The observed

new phaseseemsconsistent with theoretical expectations,[8] and is suggestedto arise due

to a favorable Fermi surfaceshape.[7]

A less prosaic candidate, still within the quasi-two-dimensional realm, is � -

(BETS) 2FeCl4, which contains the conducting layersof BETS moleculesand layersof Fe3+

magnetic ions. At ambient pressureit undergoesa transition to an antiferromagnetic in-

sulating phasebelow 10 K. Upon application of a �eld, it undergoesan insulator-to-metal

transition at 11 T and then becomessuperconducting above 16-17T, with T c increasing

with �eld.[9 , 10] The �eld-induced superconductivity is thought to bedue to the Jaccarino-

Peter mechanism in which the applied �eld counteracts the internal exchange�eld due to

the magnetic ions, enabling singlet pairing. At the edgesof this �eld-induced supercon-

ducting phase,FFLO phasesare expectedto arise.[11] Experimental determination of the

Fermi surface[12] has becomea central part of the understanding of this system.
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An FFLO phase has been suggestedto account for a secondsuperconducting

phasedeepwithin (H < H c2) the main superconducting phasein CeCoIn5.[13] This com-

pound is a favorable casefor an FFLO phasebecauseit is extremely pure and due to its

large Maki parameter (which indicates that orbital pair-breaking is a minor e�ect). The

transition between the suggestedFFLO phaseand the normal state is �rst order. It has

alsobeenfound that the phaseboundariesdepend strongly on the direction of the applied

�eld.[14 ] Observation of a possibleFFLO phasehasalsobeenargued for UBe13[15], based

on a strong upturn in the upper critical �eld at low temperature.

Underlying the criteria for a speci�c superconducting phaseis not only the cou-

pling strength and character (anisotropy, for example), but also the characteristics of the

Fermi surface where superconductivity \liv es." It is vaguely expected , of course, that

FFLO pairing is favored by \nesting" in somesenseof the exchange-split Fermi surfaces.

Speci�cally , however, little has been establishedquantitativ ely about the importance of

the shapeof the FS, and the valueand the anisotropy of the Fermi velocity of the quasipar-

ticles. Theseaspects can be very important for superconducting properties, for example,

the symmetry of the vortex lattice can change depending on the degreeof anisotropy of

the Fermi velocity around the FS,[16] and the quasiparticle spectrum within a vortex is

sensitive to the Fermi surfacetopology.[17]

FFLO phasesare traditionally studied in the context of exchange splitting due

to applied �elds, but the samesituations arise for superconductivity in weak ferromagnets

(which waswhat FF and LO had in mind). The recent identi�cation of several examplesof

superconductivity coexisting with weak ferromagnetism(RuSr2GdCu2O8, UGe2, URhGe,
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ZrZn2) and in closeproximit y to the magneticquantum critical point (QCP), broadensthe

interest in the e�ects of exchangesplitting on pairing and superconductingphenomenology.

Certainly near the QCP where the exchange splitting goes to zero, the action depends

strongly on the Fermiology, and Sandemanet al. have modeled the metametamagnetic

behavior of UGe2 in terms of changing Fermi surfacetopology.[18] The spectrum of critical


uctuations near the QCP are also sensitive to the Fermiology, speci�cally the magnitude

and anisotropy of the Fermi velocity.[19] In ZrZn2 additional phases(di�ering at least in

magnetic properties) have recently beenobserved.[20]
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1.2 Cooper Pair

With several decadesbetweenthe discovery of superconductivity and a successful

microscopic description one can appreciate that it was a di�cult problem. This is espe-

cially true whenoneconsidersthat the dramatic nature of the superconductingphenomena

attracted a great many of the best minds of the day.

In an important development in 1956, L.N. Cooper [21] was able to show that

an arbitrarily small attractiv e potential betweentwo electronsadded to a non-interacting

Fermi seawas su�cien t to producea bound state. This was a somewhatsurprising result

since it was well known that in three dimensions a minimum attractiv e potential was

required to produce a bound state.

Taking � F � 0 and using operator notation, the Hamiltonian Cooper considered

is

HC = H0 + HP =
X

~k;�

� ~kcy
~k;�

c~k;� +
X

~k; ~k0

cy
~k0;"

cy
� ~k0;#

V~k0;~k c� ~k;#c~k;" (1.1)

where the sumsare over all statesabove the Fermi level and c~k;� is a destruction operator

for an eigenstatesof H 0. The potential V~k; ~k0 acts on spin zero pairs of eigenstatesof H 0

which form a complete set of zero momentum states. The creation �eld operator for an

eigenstateof H C and eigenstatesof H C and H0 can be written as

 y =
X

~k

a~kcy
~k;"

cy
� ~k;#

j ~k > =  yjG >

j� ~k > = cy
~k;"

cy
� ~k;#

jG > (1.2)
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where the ground state jG > is taken ot be the �lled Fermi sea. The eigenvalue problem

is solved by �rst projecting out a single � ~k :

< � ~k jHC j > = < � ~k jH0 + HP j >

a~kW = a~k2� ~k +
X

~k0

a~k0V~k0;~k

(1.3)

where W is the eigenenergy. Then solving for a~k gives

a~k =

P
~k0 a~k0V~k; ~k0

W � 2� ~k

(1.4)

In general this integral equation is not solvable, so it is customary to make the approxi-

mation that V~k; ~k0 = � V for all ~k and ~k0 in a thin energyshell ~! D above the Fermi energy

and zero otherwise. Then summing over all ~k within the energy limits gives:

X

~k

a~k =

0

@
X

~k0

a~k0

1

A
X

~k

� V
W � 2� ~k

(1.5)

Dividing by
P

~k a~k and performing the integration

1 =
X

~k

� V
W � 2� ~k

= � V
Z ~! D

0

N (� )
W � 2�

d� �
VN (0)

2
log

�
1 �

2~! D

W

�
(1.6)

where the density of states is assumedto be nearly constant over the energy range of

integration. Here one can seehow the Pauli exclusionof occupied states in the Fermi sea

createsa extensive degeneracyof the lowest available states and thereby enablesthe low

lying bound state. The binding energy is found by solving for W

W =
2~! D

1 � e2=V N (0)
� � 2~! D e� 2=N (0)V (1.7)



CHAPTER 1. THEORY OF ~Q 6= 0 PAIRING SUPERCONDUCTIVITY 8

where the approximation is valid for weak coupling, N (0)V << 1.

Pairing of non-localizedelectronsin momentum space(suggestedby F. London[22])

is attractiv e becauseit suggeststhat screeningof the strong Coulomb repulsion allows a

weak attractiv e potential to dominate. The resulting Cooper pair are non-local, but the

averagereal spaceelectron separationhasbeenestimated for reasonableparametersto be

� 1� m[23]. This is more than su�cien t for screeningto occur.

The assumption that V~k0;~k is even in ~k forcesthe pairing to spin singlets. Singlet

is not the only possiblepairing. The Fermonic super 
uid Helium forms triplet states [24]

and some\unconventional" superconductorssuch asSr2RuO4 are thought to also to form

triplets [25]. A spin zero triplet pair will have the form

 T 0 =
X

~k

a~k

0

@
cy
~k;"

cy
� ~k;#

+ cy
~k;#

cy
� ~k;"p

2

1

A (1.8)

while there are two possiblespin one triplets of the form

 T � =
X

~k

a~kcy
~k;�

cy
� ~k;�

: (1.9)
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1.3 BCS

Using the electron pairing model, J. Bardeen, L. N. Cooper, and J. R. Schri-

e�er (BCS) developed a model for superconductivity in 1957 [2] earning them the 1972

Nobel prize in physics. The model they developed assumesnon-interacting normal elec-

trons and non-interacting Cooper pairs and correctly predicted much of the experimental

observations.

The BCS (Bardeen-Cooper-Schrie�er) reducedHamiltonian with exchangesplit-

ting � � B B , in units in which � B = 1, is

H =
X

~k

� ~k (n~k" + n� ~k#)

� B
X

~k

(n~k" � n� ~k#)

� g
X

~k~k0

cy
~k0"

cy
� ~k0#

c� ~k#c~k" (1.10)

Here cy
~k�

(c~k� ) is the creation (destruction) operator for single electron states, n~k� �

cy
~k�

c~k� , and the single particle dispersion is referencedto the Fermi energy � F =0. The

attractiv e pairing strength g is positive for single particle energiesj� ~k j within a cuto�

energy � c, and zero otherwise. Use is made of the symmetry � ~� k = � ~k to write the �rst

two terms in an unconventional manner (involving n � ~k# rather than n~k#).

To accommodate the formalism to pairing with momentum ~q, the interaction
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term of the Hamiltonian is rewritten for pairing of states (~k + ~q
2) " with (� ~k + ~q

2) #,

H =
X

~k

� ~k(n~k" + n� ~k#)

� B
X

~k

(n~k" � n� ~k#)

� g
X

~k~k0

cy
~k0+ ~q

2 ;"
cy

� ~k0+ ~q
2 ;#

c� ~k+ ~q
2 ;#c~k+ ~q

2 ;" (1.11)

The ~k + ~q
2 ; " and � ~k + ~q

2 ; # indices appearing in the pairing potential can be simpli�ed in

preparation for the Bogoliubov-de Gennes(BdG) transformation:

~cy
~k�

� cy
~k+ ~q

2 ;�
; ~cy

~� k�
� cy

~� k+ ~q
2 ;�

; (1.12)

~n~k� � ~cy
~k;�

~c~k;� (1.13)

A further simpli�cation is made by making a small ~q approximation:

� ~k+ ~q
2

� � ~k +
~q
2

� ~v~k ; ~v~k � ~r � ~k (1.14)

The Fermi surface that de�nes ~v~k at ~k = ~kF is the non-spin polarized normal state

Fermi surface. With the linear approximation, the normal state Fermi surfacemarks the

superconducting state's chemical potential.

After collecting operators with common~k, the Hamiltonian for non-zeromomen-

tum becomes:

H =
X

~k

� ~k (~n~k" + ~n� ~k#)

+
X

~k

(
~q
2

� ~v~kF
� B )( ~n~k" � ~n� ~k#)

� g
X

~k~k0

~cy
~k0"

~cy
� ~k0#

~c� ~k#~c~k"

=
X

~k�

� k� ~n~k� � g
X

~k~k0

~cy
~k0"

~cy
� ~k0#

~c� ~k#~c~k" ; (1.15)
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where the spin-dependent dispersion is given by

� s� ~k� = � ~k + s� w~k ; wk �
~q
2

� ~v~kF
� B :

s" � 1; s# � � 1 (1.16)

In this form several new features can be understood. First, becauseof the convention of

associating ~k with up spin and � ~k with down spin and assuminginversion symmetry of

the Fermi surface, the pair momentum ~q 6= 0 acts so as to add another e�ective Zeeman

splitting term to the Hamiltonian. Second,the new Zeemansplitting term is a peculiar

one that varies over the Fermi surface. A central feature in the physics and in the un-

derstanding of the resulting phenomenais that for one half of the Fermi surface these

splittings (from B , and from ~q) tend to cancel, which enablesFFLO superconducting

states to arise.

1.4 Bogoliub ov-V alatin transformation

The mean �eld approximation for the superconducting state consistsof presum-

ing the appearanceof an order parameter

bk = < ~c� k#~ck" >; (1.17)

introducing the tautology

~c� k#~ck" = bk + (~c� k#~ck" � bk); (1.18)

and neglecting the product of the 
uctuations (terms in parentheses) in the interaction

term. In the casewe considerbk gives the amplitude for �nding a pair with momentum ~q
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and zerospin in the superconducting state. The \energy gap" (seebelow for clari�cation)

is given by

� = g
X

k

bk ; (1.19)

from which it is seenthat the assumptionof an isotropic coupling matrix elements g leads

to an isotropic gap. The Hamiltonian becomes:

H =
X

~k�

� k� ~n~k� �
X

~k

h
� ~cy

~k0"
~cy

� ~k0#
+ h:c:

i
: (1.20)

The resulting mean �eld Hamiltonian is diagonalized by a Bogoliubov-Valatin

(BV) transformation, leading to the Bogoliubov-de Gennesequations. In general,the BV

transformation leadsto quasiparticles that are superpositions of electronsand holeswith

both up and down spin. The Hamiltonian matrix which de�nes the quasiparticle eigen

amplitudes and eigenenergiesis
0

B
B
B
B
B
B
B
B
B
B
@

� ~k + wk 0 0 �

0 � ~k � wk � � 0

0 � � � � � � ~k � wk 0

� � 0 0 � � ~k + wk

1

C
C
C
C
C
C
C
C
C
C
A

�

0

B
B
B
B
B
B
B
B
B
B
@

C� ;~k"

C� ;� ~k#

D � ;~k"

D � ;� ~k#

1

C
C
C
C
C
C
C
C
C
C
A

= E � ;~k

0

B
B
B
B
B
B
B
B
B
B
@

C� ;~k"

C� ;� ~k#

D � ;~k"

D � ;� ~k#

1

C
C
C
C
C
C
C
C
C
C
A

(1.21)

where � is an index for the 4 possiblequasiparticle statesand C and D are the coe�cien ts

for the single particle creation and destruction operators respectively.
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The expressionof Powell, Annett, and Gyor�y [26] for more general types of

pairing (albeit only ~q=0) reducesto this form for singlet pairing. Diagonalizing the matrix,

which reducesto a pair of 2� 2 matrices, producesfour branches of quasiparticles states

with de�nite spin and eigenenergies

E �
s� ~k�

= s� w~k �
q

� 2
~k

+ � 2 (1.22)

and which obey the Fermion anti-commutator relations.

In the superconducting ground state with w~k = 0, (i.e. ~q = 0 and B = 0), all

of the negative energy states will be occupied. The positive energy states can then be

consideredquasiparticle excitations. The rest of the analysis will be in terms of these

excitations. The quasiparticle operators are:


 y
~k"

= u~k ~cy
~k"

+0 +0 � v~k ~c� ~k#


 y
� ~k#

= 0 + u~k~cy
� k# + v~k ~ck" +0


 ~k" = 0 � v~k~cy
� k# + u~k ~ck" +0


 � ~k# = v~k ~cy
~k"

+0 +0 + u~k ~c� ~k#

(1.23)

where u~k and v~k are given by

p
2 u~k =

vu
u
t 1 +

� ~kq
� 2
~k

+ � 2

p
2 v~k =

vu
u
t 1 �

� ~kq
� 2
~k

+ � 2
: (1.24)

The BCS resultsare recoveredwhenwk = 0 and ~q = 0. It is interesting that the quasiparti-

cle amplitudes u~k and v~k are independent of the Zeemansplitting. This can be understood

by noting that wk in each 2� 2 submatrix enters proportional to the identit y matrix.
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Figure 1.1. Sketch of the four branches of the quasiparticle dispersion in a magnetic

superconductor. An energy gap of 2� opensat the Fermi surfacebetweenquasiparticles

with common spin direction. The exchange splitting will reduce the opposite-spin gap,

but does not directly e�ect the superconducting parameter �. The thicknessof the line

represents the electron character of the quasiparticles.
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1.5 The Gap equation

The quantit y 2� becomesthe gap between the quasiparticle eigenenergieswith

common spin label. The actual opposite-spin gap, 2� � 2jw~k j, does not enter the gap

equation directly, and the quasiparticle energiesenter only through the Fermi occupation

functions. SeeFig. 1.1. The gap equation is given by:

� = g
X

~k

u~kv~k(1 � f (E +
~k"

) � f (E +
� ~k#

)) (1.25)

Sincethe index ~k now enters through the energy term s�
~q
2 � ~v~k as well as through � ~k , it is

no longer possibleto simply changethe ~k summation to a onedimensionalenergyintegral

scaledby the density of statesat the Fermi surface,which is the technique typically applied

when the Zeemanterm is not ~k dependent.

Introducing the integral over � -function 1 =
R

� (q̂�~v~kF
� V )dV in addition to the

usual one 1 =
R

� (� � � k )d� leadsto the form of the gap equation that we focus on:

� = N0g
Z

dVN (V; q̂)
Z � c

� � c

d�
�

2
p

� 2 + � 2

� (1 � f (E +
" ) � f (E +

# ))

= �
Z

dVN (V; q̂) K (� ; T;
1
2

qV � B ): (1.26)

N0 is the density of states evaluated at EF and we introduce the usual coupling strength

� = N0g, E (+)
� is given by Eq. 1.22 with � ~k ! � , and the variation in N (E) within � c of

the Fermi level has been neglected. This expressionreducesto BCS when j~qj = 0. The

dependenceon exchangesplitting enters only through the quasiparticle eigenenergies.In

the secondexpressionthe kernel K already includes the energy integral.
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The newfunction that hasbeenintroducedis the Fermi surfaceprojected-velocity

distribution that dependson the direction of ~q

N (V; q̂) =
1

N0

X

~k

� (� F � � ~k )� (q̂ � ~v~kF
� V )

=
1

N0


 c

(2� )3

I

f s

� (q̂ � ~v~kF
� V )

j~v~kF
j

ds; (1.27)

which is normalized as

Z
N (V; q̂)dV = 1: (1.28)

N (V; q̂) will be called the nesting density for reasonsrelated to FFLO phaseformation.

The Fermi surfacegeometryand the variation of the velocity get folded into N (V; q̂), which

incorporatesthe local density of states factor 1=j~v~kF
j. The energyintegral, K (� ; T; 1

2qV �

B ), remains independent of the details of the Fermi surface.

We will explore the solutions to the gap equation while varying the parameters

T, B , �, and q for a given dispersion relation � ~k and coupling strength � . It will also

be of interest to consider variations in the direction of the pair momentum, however we

will restrict ourselves to directions of high symmetry since these directions will provide

extrema of the functions by symmetry considerations.

1.6 BCS Phase

We�rst mention the BCS phasediagram in the T-B plane. Ignoring magnetically

induced supercurrents, any applied �eld will induce somemagnetization by due to thermal

excitations when T > 0. Band crossinginduced magnetization and ~q = 0 (BCS) pairing
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coexist in the region S' in Fig. 1.2 between T � Tc=2 and T = Tc. In this region where

jB j > � > 0, the gap between opposite-spin quasiparticles closesgiving rise to �eld

induced pair breaking at the Fermi surface while pairing occurs away from the Fermi

surface. When jB j < �, an opposite-spin gap exists over the entire Fermi surface.

Figure 1.2. The phasediagram in the T-B plane. The solid line marks the BCS to normal

phase transition. The BSC region S' between the \ B > �" and \BCS" lines has no

opposite-spin excitation gap but superconducting pairing still exist. Solutions to the gap

equation exist for B under the \Gap limit" region N', but the free energy of the normal

phaseis lower than the BCS phase.



CHAPTER 1. THEORY OF ~Q 6= 0 PAIRING SUPERCONDUCTIVITY 18

1.7 FFLO Phase

The FFLO phasetakes advantage of the Zeemanenergy due to magnetization

that ariseswhen B > �, but then usesa �nite pair momentum to enhancepairing. A

graphical way of understanding this enhancedpairing through the quasiparticle Fermi

surface is shown in Fig. 1.3. The closing of the opposite-spin gap shrinks the minorit y

spin Fermi surfacewhile expandingthe majorit y spin. The coupling of the pair momentum

to the quasiparticle eigenenergyis then usedto reopen an opposite-spingap on part of the

Fermi surface. Due to inversion symmetry of the dispersion relationship � ~k , spin splitting

on the opposite side of the Fermi surfaceis increased.This trade-o� can be energetically

favorable becausepairing is strongestnear the Fermi surface. Nesting can be said to occur

on the portions of the Fermi surfacewhere an opposite-spin gap is closedby a given ~q.
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Figure 1.3. The top graph represents occupiedBdG quasiparticle statesin ~k and � ~k space

for spin up and spin down respectively for 2D squareFermi surfaces. This non-standard

representation highlights how the pairing momentum neststhe Fermi surfacesby canceling

the magnetic induced splitting to enablepairing. The bottom graph is the electron Fermi

surfaces. In the electron picture states are not shifted by the pair momentum as in the

quasipartical picture.
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Figure 1.4. BdG quasiparticles excitations occur when the combination of the magnetic

exchangesplitting and pair momentum induced splitting are greater than �. This graph

corresponds to the separatedpart of the BdG Fermi surfacesin Fig. 1.3. The fact that

the quasiparticlesare a superposition of holesand electronsresults in the spin separation

appearing more uniformly in the electron Fermi surfacesin Fig. 1.3.
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FFLO phasesare favored when (1) enough of the Fermi surface can be paired

(nesting is strong enough) to allow for a superconducting (� 6= 0) solution to the gap

equation, (2) the FFLO free energy is lessthan the BCS free energy and normal param-

agnetic free energy. Using the form of the gap equation that includes the nesting density,

we want to understand what features of the Fermi surface favor the FFLO state. For a

given splitting and direction of q̂, the lowest FFLO free energy occurs when pairing is

maximized. Pairing is enhancedwhen 1
2qV = ~q

2 � ~v~kF
is chosen to cancel the magnetic

splitting on somepart of the Fermi surface. The value of q selectsthe range of V where

j 1
2qV � B j < � (e.g. where nesting occurs).

The e�ectiv e width of nesting in V space can be found by noting when the

quasiparticle eigenenergiesare greater than zero at the Fermi surface. Rewriting the

inequality as j 1
2q(V0 + � V ) � B j < �, we �nd

� V �
2�
q

�
�
�
�
�
V0�
B

�
�
�
� (1.29)

where V0 solves the equation j 1
2qV0 � B j = 0. In general,V0 will be optimal near a peak

in the nesting density and as large as possibleto maximize � V .

Figure 1.5 illustrates the behavior of the energy integral K (� ; T; 1
2qV � B ) for

two possiblechoicesof q which solve the equation j 1
2qV0 � B j = 0 at di�eren t values of

V0, T = 0, and �xed � < B . As long as � > B � qV , the integral will be a constant

(� 0:4 in this case). For the q = 0 case,� < B � 0V over the entire range causingpair

breaking over the entire Fermi surface. The �gure also shows two possiblevaluesof pair

momentum. Plateaus occur when � < B � qV causesboth Fermi functions to be zero at
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the Fermi surface.
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Figure 1.5. Graph of the energy integral part of the gap equation (K (� ; T; 1
2qV � B ))

as a function of V for two values of q, �xed � and T = 0. The plateau occur where

the magnitude of the exchange splitting energy is less than � since this is where both

Fermi functions are zero at the Fermi surface. The sharp drop at the edgeof the plateau

re
ects the breaking of pairs at the Fermi surface. Note how low valuesof q producewider

plateaus at higher valuesof V .
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1.8 Applications of Nesting Densit y to FFLO calculations

For the calculations, we normalize �( B = 0; T = 0) = � 0 = 1 to specify the

energy scale for the problem. The energy cuto� for the gap equation is a parameter

that is set to � c = 50� 0. In a real material the energy cuto� would be determined by

the pairing boson (phonon, spin 
uctuation, etc.). With the above parameters set, the

coupling strength � now becomesa function of � c and � 0 , given by

1
�

= sinh � 1
�

� c

� 0

�
(1.30)

In the weak coupling regime(� � Nog << 1) this reducesto the well known BCS relation

� 0 = 2� ce� 1=� . This coupling strength � � 0:2 for � c=�0 = 50 is well within the weak

coupling regime for which the equationswere derived.

The free energy competition between BCS and FFLO is a crucial factor in de-

termining whether an FFLO state will exist. Even in the best case,at T = 0 the free

energydriven transition from BCS to FFLO occurs very near the BCS critical �eld which

is proportional to the density of states at the Fermi surface. The FFLO critical �eld

calculation is more complex. A higher proportion of FFLO pairs occur in electron states

away from the Fermi surfaceand on averagepay a higher kinetic energycost. However to

�rst order the FFLO critical �eld is determined by the fraction of nesting density where

pairing occursat the Fermi surface. If the FFLO critical �eld is lessthan the BCS critical

�eld for a material, no FFLO states will exist.
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1.9 1D Fermi Surface

The simplest case is the 1D Fermi surface. The nesting density consists of �

functions at � vF . The resulting phasediagram is given in Fig. 1.6. At T = 0, solutions

to the gap equation extend to arbitrarily large B with a correspondingly large q = 2B =vF .

Free energyconstraints however limit the FFLO phaseto �nite B.

At the higher applied �elds, the pairing on one half of the Fermi surfacewill be

almost completely suppressedand not contribute to the condensate. It may be possible

that a secondcondensateform that has opposite pair momentum.
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Figure 1.6. The phase diagram of a 1D system. The presenceof a � function in the

nesting density guaranteesthat half the density of states at the Fermi surfacecan always

be paired.
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1.10 2D Fermi Surface

The nesting density of states for 2D Fermi surfaceswill tend to have van Hove

like singularities, as observed by Shimahara [27], that produce strong peaks in N (V; q)

that go as1=
p

jVpeak � V j. Thesepeaksarisewhenever V = q̂�~vF is at a local extremum.

A simple example is the circular Fermi surface. The projected velocity is V = jvF jcos(� )

where � is the angle between~vF and q̂. Figure 1.7 is the nesting density for positive V

and shows the peak causedby the extrema that occurs when q̂ is normal to the Fermi

surface. Figure 1.8 shows the phase diagram for the circular Fermi surface. From Eq.

1.29, we know that as B is raised, the width of pairing (� V ) will go down. This happens

directly through the increaseof q necessaryto maintain V0 near the peak, and indirectly

through the reduction in � causedby the decreasein pairing. This reduction in pairing

as B is raised causesthe FFLO phaseto be quenched much earlier than the 1D case.
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Figure 1.7. The nesting density of a 2D circular Fermi Surface for positive V showing

peak at V = jvF j. The optimal FFLO solution will chosea value for q such that this peak

has enhancedpairing. The nesting density is symmetric around V = 0 due to inversion

symmetry of the Fermi surface.
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Figure 1.8. The phasediagram of a 2D circular Fermi Surface. The FFLO region is reduced

from the 1D casedue to a lower percentage of statesbene�ting from the enhancedpairing.
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1.11 3D Fermi Surface

While the nesting density for 3D material may have peaks, in most casesthese

peakswill not be causedby van Hove singularities. This can be understood by noting that

any extrema in the projected velocity will usually occur at isolated points on the Fermi

surface. For example on the spherical Fermi surface, the extrema of V occur at the two

points where q̂ is normal to the Fermi surface. The nesting density for a spherical Fermi

surface is constant between �j vF j, and consequently our calculations have shown a very

small FFLO region in the phasediagram.

A 3D examplewith a strong peak in the nesting density at Vmax is simple cubic

nearest neighbor tight binding model at half �lling. With q taken in the 100 direction,

the projected velocity as a function of the position on the Fermi surfaceis given by

V = Vmax sin (kx ) (1.31)

wherethat lattice constant is assumedto be 1. V hasextrema at kx = � � =2 which occurs

along a curve de�ned by cos(ky) + cos(kz) = 0. Sinceextrema occur along a curve rather

than a point, N (V; q̂) will have integrable divergencesthat go as (jVpeak � V j) � 1=2. Figure

1.9 is the tight binding Fermi surfacewith the enhancedpairing region highlighted. The

nesting density is similar to that shown in Fig. 1.7 with slightly more weight in the peak.

Becauseof the increasedweight, the resulting phasediagram seenin Fig. 1.10 shows an

increasedFFLO region relative to the circular Fermi surfacecase.Any deviation from the

100 direction will causethe extrema in V to occur at a few isolated points.
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Figure 1.9. Tight binding Fermi surfaceat half �lling. The white region corresponds to

the part of the Fermi surface where enhancedpairing occurs for T = 0, B � 0:9, and

q̂ along the 100 direction. Becausethe pairing is suppressedon the opposite side of the

Fermi surface,it conceivable that a separatecondensatecould form with q̂ along the � 100

direction.
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Figure 1.10. Phase diagram for the 3D nearest neighbor tight binding system shows a

larger FFLO region than the circular phasediagram 1.8. This re
ects the fact that the

nesting density for the tight binding casehas more weight near Vmax .
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1.12 ZrZn2

We choseto apply our methods to Z r Z n2 since it has a relatively simple cubic

structure, and as a weak ferromagnet it is a possiblecandidate to show an FFLO phase.

A non-spin-polarized electronic structure calculation was performed using the FPLO [28]

electronic structure code. The resulting four conduction bands and Fermi surfaceshave

been presented by Singh and Mazin[29]. The nesting density for the four bands that

crossthe Fermi surfacewere combined into a single N (V; q̂) function. This represents the

caseof equal pairing on all bands, consistent with out constant � model. The preferred

direction of q̂ was found to be in the 111 direction after considering nesting properties

for the three high symmetry directions. The nesting density is shown in Fig. 1.11. Most

of the contribution to the density of states comesfrom the \cubic" shaped Fermi surface

shown in Fig. 1.12 that Singh and Mazin call band 3. The large peak in the nesting

density doesnot comefrom the nesting of the facesof the cube as one might expect but

instead comesfrom the nesting of the grooves along the edgesof the cube. The Fermi

velocity of the facesis at least twice aslarge asthe Fermi velocity of the grooves. The high

value of the Fermi velocity of the facesreducesthe contribution to the density of states,

and variations of the Fermi velocity spread out the contribution to the nesting density

over a range of V values.

The position of the largest peak gives the optimum value of V0 which in con-

junction with B can be usedto calculate the pair momentum q = 2B =V0. While this is a

substantial peak, it occursat a low value of jV j which will require a high pair momentum.
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As was illustrated in Fig. 1.5, high pair momentum reducesthe the amount of total den-

sity available for pairing. While FFLO solutions exist for the gap equation, at no point

was the free energy of thesesolutions below both the free energy for the BCS phaseand

the normal phase.

By allowing a non-uniform �, it may be possiblefor FFLO solutions to exist in

a small region above the BCS phase,however other considerationsmake this unlikely. In

the Hamiltonian we have assumed,the Zeemansplitting term B for ferromagnetsincludes

the applied �eld as well as the ferromagnetic exchangeenergy. The averageB for Z r Z n2

can be calculated as

B =
M

2N0
� 30 meV (1.32)

whereM � 0:15� B and using the Singh and Mazin calculated value N0 = 2:43 states/eV-

spin-unit cell). Sincethe Curie temperature is greater than the observed superconducting

temperature, we are not able to determine � 0 = �( T = 0; B = 0) for Z r Z n2. We can

however place a lower bound on � 0 for singlet pairing by noting that even allowing for

FFLO solutions, the maximum B will be on the order of � 0=
p

2. The resulting � 0 is

orders of magnitude to large as it would correspond to a Tc � 2� 0=3:52kB = 280K From

this we concludethat singlet pairing of either BCS or FFLO states is highly unlikely.
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Figure 1.11. Z r Z n2 nesting density. The units of V are 107 cm/sec. A small non-zero

density extends to higher valuesof V . The noiseis a function of both the �nite sampling

of the Fermi surfaceand the complexity of the electronic structure.
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Figure 1.12. Fermi surface for the cube shaped band that is responsible for the peak in

the nesting density 1.11. The white region corresponds to the part of the Fermi surface

where enhancedpairing occurs for T = 0, B � o:6, and q̂ in the 111 direction. It is

interesting that the pairing is not favored on the relatively 
at facesof the cube as one

might expect. Thesefaceshowever have a non-uniform velocity distribution which makes

them lesssuitable for non-zeromomentum pairing.
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Recent evidencehasbeenpresented that the superconductivity observed in sam-

ples of ZrZn2 is a surfacephenomenon[30], consistent with the lack of any signal in the

heat capacity. The superconductivesurfaceseemsto bea product of samplemanufacturing

and is eliminated by etching to produce a clean surface.

1.13 Conclusion

We have presented the formalism for the speci�c caseof the quasiparticle states

and eigenenergiesfor non-zeromomentum BdG quasiparticlesin an exchange�eld. These

quasiparticleswere then usedto solve the superconducting gap equation within the mean

�eld approximation. The spin polarized BdG formalism was then applied to study FFLO

stateswhich have magnetically induced spin splitting leading to pair momentum enhanced

superconducting pairing on a subset of the Fermi surface. The nesting density, which is

derived from the Fermi surface of the material being studied, was separated out and

calculated to facilitate solving the gap equation and calculating free energiesand other

observables. In addition to providing an e�cien t meansof performing calculations, the

nesting density also proved to be a useful tool for understanding what featuresof a Fermi

surfacecontribute to the formation of FFLO states.

The features of a Fermi surface which promote FFLO states are low dimen-

sionality, speci�c nesting topographies, (not necessarilylike those that drive charge-and

spin-density waves) and relatively simple Fermi surfaceswith uniform magnitude of the

Fermi velocity. The bene�ts of low dimensionality is demonstrated by circular vs. spher-
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ical Fermi surfaces. The tight binding Fermi surface illustrates the bene�ts of nesting

topographies. It is important to recognizethat the nesting topography in this caseis not

a \
at sheet" which we intuitiv ely associate with nesting. The fact that FFLO states are

enhancedby peaks in the nesting density at high values of V is in con
ict with the re-

duceddensity of statesassociated with high Fermi velocities. Variations in the magnitude

of the Fermi velocity will tend to place larger weights at small V which are lesslikely to

participate in FFLO pairing.

To simplify the calculations and analysis, we chose to consider only a uniform

exchange splitting which could arise from uniform ferromagnetic exchange �eld or from

an applied �eld. The BdG formalism doesnot depend on theseassumptionsand could be

applied to more complex situations that do not make useof a constant exchangesplitting

and linearized Fermi surfaceapproximation.

1.14 Free energy calculations

In all cases,the total energyof the systemwas taken to be relative to the ground

state of the normal metal at T = B = 0

Eg = 2
X

~k< ~kF

� ~k (1.33)

With � c = 50 and [B ; T; �] � 1 in units where � 0 � 1, excitations outside the cuto� can

be ignored. The free energy of the superconducting state when measuredrelative to the
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ground state becomes

Es � Eg =
X

j � ~k j<� c

f (� ~k + w~k )(v2
~k
f (E �

~k"
) + u2

~k
f (E +

~k"
))

+ (� ~k � w~k )(v2
~k
f (E �

~k#
) + u2

~k
f (E +

~k#
))

+ (� ~k +
q
2

V~k )(�( � ~k +
q
2

V~k ) � 1)

+ (� ~k �
q
2

V~k )(�( � ~k �
q
2

V~k ) � 1)g

� TS �
� 2

g
(1.34)

The �rst two terms account for the kinetic energyof the electronpart of the quasiparticles.

The next two terms remove the kinetic energyfor the ground state E g. The last two terms

are respectively the entropy and pairing potential energy. In doing the calculation this

way, we have ignored the a�ect of the pairing energy q
2V~k on the energy cuto� which

bounds the sum. With � c = 50 the impact is negligible, but for smaller cuto� energiesit

becomesimportant.

1.15 Numerical metho ds

The �rst step in performing thesecalculations is to produce the nesting density

of states. This is accomplishedby extracting a triangulation of the Fermi surface with

Fermi velocities from a dispersion relationship expressedon a grid. The nesting density

of states integral is converted to a sum and stored in a discrete histogram indexed by

V = q̂ � ~v~kF
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N (V; q̂) =

 c

(2� )3

X

i

Ar eai

~vF i

� �(
1
2

V� � jV � q̂ � ~v~kF i j) (1.35)

where V� is the projected velocity bin width, and i goes over all triangles. The preferred

direction for q̂ can be found by looking for largest peaksat high V in the nesting density

calculated for each of the high symmetry directions.

There is a subtle dangerassociated with usingdiscretebins for the nestingdensity

for low temperaturesand low �. The discretebins will act like � functions that will always

give a FFLO solution to the gap equation at high �elds (see1D Fermi surfacesection).

However, the temperature and � of the possiblesolutions will go asexp(� 1=N (V� )) which

will typically be on the order of e� 10.

To determine the preferred state at a given temperature and applied �eld, it is

necessaryto calculate the free energy for each possiblestate. Furthermore, the possible

superconducting states have � and q degreesof freedom. Fortunately, the constraint set

by holding g constant means that we only need to search 1D isocontours in �- q space,

which weevaluate on a discretegrid. Finding this isocontour requiresthat that weperform

the integral in Eq. 1.26 many times.

Since we have already discretized N (V; q̂), the integral over V becomesa sum.

This leaves the energy integral

Z � c

� � c

1

2
p

� 2 + � 2
(1 � f (E +

" ) � f (E +
# ))d�: (1.36)
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This is a di�cult integral to do numerically sinceit is highly peaked around � = 0

and the behavior of the Fermi functions is highly temperature dependent. We chose to

take advantage of the fact that we know how to do part of the integral analytically.

Z
1

2
p

� 2 + � 2
d� =

1
2

sinh � 1(
� b

�
) (1.37)

This allows one to write formally

Z � c

� � c

1
2

(1 � f (E +
" ) � f (E +

# ))d[sinh � 1(
�
�

)] (1.38)

This integral was discretized in a manner that allowed dealing with variations in

the Fermi functions. The numeric integral becomes

X

� i

(1 � f (E +
" ) � f (E +

# )) � (1.39)

[sinh � 1(
� i + � step

�
) � sinh � 1(

� i

�
)] (1.40)

with the variable step size

� step /
�

@
@�

(f (E +
" ) + f (E +

# )) + �
� � 1

: (1.41)

The constant � is neededto maintain a minimum step size. This variable step integration

is used in calculating contributions to the free energiesand other observablesof interest.
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2.1 In tro duction

The work in this chapter is derived from the publication

\F ermi velocity spectrum and incipient magnetism in TiBe 2"; T. Jeong,A. B. Kyker, W.

E. Pickett, Phys. Rev. B 73, 115106(2006).

The cubic Lavescompound TiBe2 wasalready shown forty yearsagoto havequite

unusual behavior of the magnetic susceptibility � (T) and the Knight shift.[31] � � 1 showed

a strong increasewith lowering temperature but a clear deviation from Curie-Weissform,

while the Knight shift was temperature dependent and negative. The magnetic properties

of TiBe2 have been controversial since Matthias et al.[32] interpreted the susceptibility

peak at 10 K in TiBe2 as itinerant antiferromagnetism (AFM) with an associated mag-

netic moment of 1.64� B , and Stewart et al. reported a transition at 2 K that seemed

characteristic of magnetic ordering.

However, a clear picture has emergedgradually after the idea of weak itinerant

antiferromagnetism had beenabandonedbecauseof the subsequent lack of experimental

evidence[33, 34]. Many experiments have shown that TiBe 2 is instead a strongly enhanced

paramagnet [35, 36, 37] and undergoesa metamagnetic transition[38, 39, 40] (�eld-driv en

ferromagnetism) around 5.5 T. Also one can seesimilarit y to the magnetic behavior of

Ni3Ga by comparing the values of the low temperature susceptibility, � = 1:65 � 10� 2

emu/mole for Ni3Ga[41] and � = 0:90 � 10� 2 emu/mole for TiBe2[32]. Based on the

magnetization data of Monod et al[36] Wohlfarth[39] suggestedthe transition at 5.5 T

should be �rst order. Wohlfarth's considerations received at least partial support from
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theoretical band-structure considerationscoupled with the de Haas-van Alphen data of

van Deursenet al[42].

Clarit y began to arise with the extensive experiments of Acker et al. who in-

terpreted their magnetization data[35] in �elds to 21T and the magnetization data of

Monod et al. [36] as evidencefor exchange-enhancedparamagnetismor spin 
uctuations

in TiBe2. They found the system TiBe2� x Cux to becomeFM at a critical concentration

xcr = 0:155. Stewart et al.[43] measuredthe speci�c heat of TiBe 2 (
 = 42 mJ/mole

K2) at low temperature in 0 and 7T and interpreted the behavior as evidenceof spin


uctuations.

The isoelectronic isostructural material ZrZn2 is considereda classicexampleof

an weakitinerant ferromagnet. Magnetic measurements �nd very small magneticmoments

(values from 0.12 to 0.23 � B )[44, 45], hencethe characterization as a weak ferromagnet.

The magnetization of ZrZn2 increasessubstantially with �eld, but unlike TiBe 2 with its

metamagnetic transition, the increasecontinues smoothly to �elds as high as 35 T. The

Curie temperature T C drops approximately linearly with pressure,from 29 K at P = 0 to

4K at P = 16 kbar, which extrapolates to a quantum critical point (QCP) at P = 18� 20

kbar. The report of superconductivity coexisting with ferromagnetismin ZrZn 2 near this

QCP[46] enlivenedboth theoretical and experimental attention, but more recently it has

been shown[30] there is no bulk superconductivity. TiBe 2, on the other hand, has been

nearly addressedonly rarely for the past twenty years.

The complex temperature-�eld behavior of TiBe 2 has led to many speculations

about the microscopic mechanisms. Of coursespin 
uctuations play a central part, and
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the highly enhancedsusceptibility suggeststhis system is near a quantum critical point

(at slightly enlarged lattice constant, say, as well as for the Cu alloying). If FM 
uc-

tuations dominate, then a metamagnetic transition (�eld-driv en FM state) around 5 T

would make sense. If AFM 
uctuations dominate, application of a �eld suppressesthe


uctuations, providing another way to interpret speci�c heat under applied �eld.[47 ] The

anomalies in the conduction electron spin resonance(CESR) linewidth[48] around 2 K

have been interpreted in terms of a thermal spontaneous magnetism,[49] and a decrease

in the resistivity is also seenat that temperature.[35] All of thesescenariosare sensitive

to the Fermi surfaceshape, velocity spectrum, and possibly the energydependenceof the

density of states near the Fermi energy, and it is these questionsthat we addressin this

paper.

Band structure intricacies by themselves also can come into play. Shimizu

showed[49] that an independent electron system with magnetic coupling can undergo

a �rst-order transition to a \sp ontaneous thermal magnetism" state (within a range

T1 < T < T2) if it is highly enhancedand if the Fermi level lies within a local minimum in

the density of states. The e�ects of magnetic 
uctuations should of coursebe added[50]

to the free energyof both the orderedand disorderedphasesto make this treatment more

realistic.

Local density approximation (LDA) energy band studies of TiBe 2 have been

reported previously [51, 52, 53]. Those studies revealed a split narrow peak in in the

density of states (DOS) N(E) near the Fermi energy (EF ), with calculated Stoner factors

I N (EF ) greater than unit y, giving the Stoner instabilit y to FM. Here I is the Stoner
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exchange interaction averagedover the Fermi surface. Thus, as for a few casesthat have

cometo light more recently,[54, 55] ferromagnetismis incorrectly predicted, indicating the

needto account for magnetic 
uctuations not included in LDA that will suppressmagnetic

ordering. By comparing the calculated value of N(E F ) with the measuredsusceptibility,

a Stoner enhancement S = [1 - I N (EF )]� 1 � 60 was obtained, making TiBe2 a more

strongly exchangeenhancedmetal than Pd.

All of these calculations, carried out 25 years ago, used shape approximations

for the density and potential, and for a detailed investigation of the weak ferromagnetism

preciseelectronic structure methods are required. In this work, the preciseself-consistent

full potential linearized-augmented-plane-wave (FLAPW) method and full potential local

orbital minimum basis band structure scheme (FPLO) are employed to investigate thor-

oughly the electronic and magnetic properties of TiBe 2 basedon the density functional

theory. We comparedand checked the calculation results of the both methods. We con-

sider the e�ect of magnetismon the band structure and Fermi surface,Fermi velocity and

comparewith experiment and previous band calculations.

2.2 Crystal Structure

TiBe2 crystallizes into a cubic LavesphaseC15 crystal structure. The C15 (AB 2

) structure is a close packed structure and the site symmetry is high for the two con-

stituents. Ti atoms occupy the positions of a diamond sublattice while the Be atoms form

a network of interconnectedtetrahedra, with two formula units per cell. Sincethe major
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contributions to N (EF ) comefrom Ti, the local environment of Ti atoms is particularly

important to keepin mind. Each Ti is surroundedby 12 Be neighbors at a distanceof 2.66

�A and tetrahedrally by four Ti neighbors a distance 2.78 �A away. The TiBe2 structure

belongs to the Fd3m spacegroup with Ti occupying the 8a site, and Be the 16d site.

The site symmetry of Ti is �43m(tetrahedral) and Be has �3m site symmetry. The atomic

positions are symmetry determined, and we used experimental lattice constant 6.426 �A

for all calculations.

2.3 Metho d of Calculations

We have applied the full-p otential nonorthogonal local-orbital minimum-basis

(FPLO) schemewithin the local density approximation (LDA).[56] In thesescalarrelativis-

tic calculations we used the exchangeand correlation potential of Perdew and Wang.[57]

Ti 3s;3p;4s;4p;3d states and Be 2s;2p;3d were included as valence states. All lower

states were treated as core states. We included the relatively extended semicore3s;3p

states of Ti as band states becauseof the considerableoverlap of thesestates on nearest

neighbors. This overlap would be otherwise neglectedin our FPLO scheme. Be 3d states

were added to increasethe quality of the basis set. The spatial extension Of the basis

orbitals, controlled by a con�ning potential (r =r0)4, was optimized to minimize the total

energy.

The self-consistent potentials were carried out on a meshof 50 k points in each

direction of the Brillouin zone,which correspondsto 3107k points in the irreducible zone.
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A careful sampling of the Brillouin zone is necessaryto account carefully for the �ne

structures in the density of states near Fermi level EF . For the more delicate numerical

integrations, band energieswereextracted from FPLO in an e�ectiv e meshof 360k points

in each direction. A separatetool was developed to extract energy isosurfaceswith gra-

dients from the scalerenergygrid. The isosurfaceswere then usedto calculate density of

states and velocity moments.

To check carefully the �ne structure that we will discuss,we also repeated sev-

eral calculations with the general potential linearized augmented plane wave (LAPW)

method,[29] as implemented in the WIEN2K code.[58] Relativistic e�ects were included

at the scalar relativistic level. However, we veri�ed that the magnetic moment with

the experimental structure is not sensitive to the inclusion of the spin-orbit interaction.

For the generalizedgradient approximation (GGA) calculations, we used the exchange-

correlation functional of Perdew, Burke, and Ernzerhof. [59] We choose the mu�n-tin

spheresRM T = 2:6 a.u. for Ti, RM T = 2:1 a.u. for Be and a basis set determined by a

plane-wave cuto� of RM T K max = 7:0, which gives good convergence.The Brillouin zone

samplingswere done using the special k point method with 1280points in the irreducible

zone.

2.4 Results and Discussions

For orientation we �rst show the full nonmagnetic band structure of TiBe 2 in

Fig. 2.1, which is consistent with earlier calculations of [51, 52, 53]. The Be 2s bands
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Figure 2.1. The full LDA band structure of non-magnetic TiBe 2 along symmetry lines

showing that there are several bands near the Fermi level (taken as the zero of energy)

with weak dispersion; they are primarily Ti 3d in character.
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Figure 2.2. Band structure of non-magnetic TiBe 2 of Fig. 2.1 on an expandedscalenear

Fermi level. The 
at bandsalong L-W-U/K-L lines (the hexagonalfaceof the fcc Brillouin

zone) give rise to the density of states structure discussedin the text.
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Figure 2.3. The total and atom-projected density of states (Ti, short dashedline; Be, the

lower, long dashed line) for non-magnetic TiBe 2 per primitiv e cell. The inset gives the

density of states for the ferromagnetic TiBe 2 showing the exchangesplitting 0.6 eV. The

peak of the DOS for the majorit y spin is entirely below the Fermi level while that of the

minorit y spin is above the Fermi level.



CHAPTER 2. FERMI VELOCITY AND INCIPIENT MAGNETISM IN TIBE 2 49

Figure 2.4. Fermi surfaces, top left: band 14, X-centered pillows; top right: band 15,

primarily X-centered jungle gym; bottom left: band 16, �-cen tered pseudocube; bottom

right: band 17, �-cen tered sphere. Fermi velocities coloreddark (red) for lowest to lighter

(blue) for highest. Magnitudes of velocities are discussedin Sec. IV.A.
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lie between-8 eV and -2 eV. Above them the bands are of mixed s;p character, centered

on the Be as well as the Ti site. Near the Fermi level there are several bands with weak

dispersion, being of primarily Ti 3d character. The bands at K and L are hybridized

strongly, while at X the s;p character is the main character. As noted also by Jarlborg

and Freeman,[51, 52] oneband at L falls extremely closeto EF (3 meV below). This band

is doubly degeneratealong �-L, and the L point forms the maximum of band 15 and a

saddlepoint for band 16. As the Fermi energy rises (for added electrons,say) the Fermi

surface sweepsthrough the L point saddle, where the band has a vanishing velocity by

symmetry. This vanishing velocity is discussedbelow. There is another doubly degenerate

band very near Ef at the W point.

The density of states (DOS) is shown near EF in Fig. 2.3. The Fermi energy

EF falls extremely closeto the edgeof a very narrow peak in the DOS. The DOS peak

arisesfrom Ti d bands hybridized with Be p states. Flat bands closeto Fermi level cen-

tered mostly in regions near the L-W-U and W-K directions, i.e. the hexagonal faces

of the Brillouin zone, causethe sharp peak. Stewart et al.[43] measuredthe linear spe-

ci�c heat coe�cien t for TiBe2 of 
 =42 mJ/K 2 mole-formula unit. The calculated value

of N (EF )=5.33 states/eV/f.u. for TiBe2 corresponds to a bare value 
 o=12.6 mJ/K 2

mole(formula unit), leading to a thermal massenhancement 1+ � =3.3, or � =2.3 arising

from phonons,magnetic 
uctuations, and Coulomb interactions.

Density functional calculations are usually reliable in calculating the instabilit y
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to ferromagnetism. The enhancedsusceptibility[60] is given by

� (T) =
� 0

1 � N (EF )I
� S� 0: (2.1)

where � 0 = � 2
B N (EF ) is the bare susceptibility obtained directly from the band structure

and I is the Stoner exchange interaction constant. Here N(E F ) refers to both spins, and

henceforward we quote susceptibility in units where � B � 1. The calculation of I is from

�xed spin moment calculations[61], in which the energyE(m) is calculated subject to the

moment being constrainedto be m. The behavior at small m is E(m) = (1=2)� � 1m2 from

which I = 0:22 eV can be extracted from Eq. 2.1. This value of I gives I N (E F ) = 1:2,

larger than unit y and very closeto that calculated earlier,[52] corresponding to a Stoner

ferromagnetic instabilit y.

As for a few other compounds, TiBe2 is incorrectly predicted by LDA to be

ferromagnetic. Sincespin-orbit coupling is small in 3d magnets,we neglect it, so the di-

rection of magnetic polarization is not coupledto the lattice. We have calculated a consis-

tent magnetic moment for TiBe2: 0:97� B /f.u.(FPLO, LDA), 1:00� B /f.u.(LAPW, LDA),

1:10� B /f.u.(LAPW, GGA). This value is considerablylarger than an earlier calculation[51]

(which also reported a much smaller value for ZrZn2 than obtained from more recent

calculations[62]). We addressthe overestimate of the tendency to magnetism below.

2.4.1 Fermi Surface and Fermi Velocit y

In Fig. 2.4 we show the nonmagnetic Fermi surfacesshadedby the Fermi veloc-

ities. The position of EF near L and W points sensitively determine the exact shape of
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someFermi surfaces. The shapes can be characterized as (a) small �-cen tered electron

spherefrom band 17, (b) large �-cen tered electron pseudocube from band 16, (c) multiply

connectedsurfacemostly enclosingholesaround the X point from band 15, which we refer

to as the jungle gym, and (d) 
at hole pillows centered at each of the three X points. The

doubly degeneratebands crossingEF along �-X and X-W guarantee touching of certain

surfacesalong theselines.

The DOS peak at and above EF is due to the band near the L point where the

cube-shaped surfacesare about to form bridging necks. Figure 2.5 shows how the Fermi

velocity spectrum (N (V ; E)) changeswith energyat the peak just above E F , at EF , and

at the �rst minimum below EF . The Fermi velocity spectrum is de�ned as

N (V ; E) =
X

~k

� (E~k � E )� (V~k � V ) (2.2)

=
Z

L (V ;E )

dL k

j~vk � r k j~vk jj
;

with normalization
R

N (V ; E)dV = N (E). Here L (V ; E) is the line of intersection of the

constant energyEk = E surfacewith the constant velocity surfacej~vk j = V . The gradient

of the velocity in the denominator makesthis distribution delicate to calculate accurately.

N (E; V ) was calculated numerically by extracting a triangulated energy isosurfacefrom

the band structure, then obtaining a velocity histogram of the states associated with the

isosurface.

The spectrum in Fig. 2.5 shows, at EF , velocities extending down to the very

low value of 2� 106 cm/s, and up to 5� 107 cm/s, a variation of a factor of 25. Roughly

half of the weight lies below 107 cm/s. At the van Hove singularity at +3 meV, the only
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Figure 2.5. Fermi velocity spectrum of TiBe 2. The low Fermi velocity states are the

primary sourceof changesto the density of states.

noticeable di�erence is additional velocities extending down to zero due to the vanishing

velocity at L (we have not worried about reproducing the V ! 0 behavior precisely). At

-25 meV, which is just below the narrow peak at EF , the strong weight in the spectrum

appears only at 7� 106 cm/s. Note that there is very little change in the high velocity

spectrum over small changesin energy.

2.5 Analysis of Velocit y Distribution and Susceptibilit y

2.5.1 Renormalization due to Spin Fluctuations

Following the work of Larson, Mazin, and Singh[63] for Pd which builds on

Moriya theory, we �rst attempted to identify the relevant band characteristics in order to
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Figure 2.6. Top panel: < 1
v(E ) > plotted versusenergy, showing the squareroot divergence

of the inversemoment of velocity near the Fermi energy. Unit conversion is: 1 eV Bohr =

8� 106 cm/s. Bottom panel: the graph of the secondmoment of velocity (with constants

included to show it asthe squareof the Drude plasmaenergy) is concave downward, which

gives rise to the negative value of the Moriya A parameter. This sign of A is veri�ed by

the calculation of � (q) at small q (seetext).
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evaluate the spin 
uctuation reduction of � in TiBe 2. For this, one beginswith the bare

susceptibility in the small q and small ! limit, given by

� 0(~q; ! ) = N (EF )[1 � A(
qa
2�

)2 + i
1
2

<
1
v

> F
!
q

]; (2.3)

while the screenedsusceptibility using the RPA approximation is given by

� � 1(~q; ! ) = � � 1
0 (~q; ! ) � I : (2.4)

The Moriya parameter A = � 1:8, expressedin dimensionlessform here,and mean inverse

Fermi velocity < 1=v > F � v� 1
F (the secondMoriya parameter,discussedbelow) arederived

from velocity moments and DOS of the band structure, and like the density of states, they

aregreatly in
uenced by the Fermi surfacetopologyand its velocity spectrum. Speci�cally ,

changesin topology which give rise to points of zero velocity in the band structure near

the Fermi surface becomean important factor. The mean inverseFermi velocity which

governs the imaginary part of � 0(~q; ! ) is given by

<
1

v(E)
> � v� 1(E) =

X

k

� ("k � E )
j~vk j

=
X

k

� ("k � E ) (2.5)

evaluated at EF . The di�erence between< v� 1 > F and 1/ < v > F is one measureof the

velocity variation of the Fermi surface. The bottom or top of a three-dimensional band

(corresponding to the appearanceor vanishingof a Fermi surface)givesonly a discontinuit y

proportional to the squareof the band mass. At a saddle point, such as the merging of

the cornersof the pseudocubeFermi surfaces,v � 1(E) undergoesa 1=
p

E � Ecr divergence

becausethe associated Fermi surfaceareadoesnot vanish. This \v an Hove singularity" in

v� 1(E) is evident for the band edge3 meV from EF in TiBe2 in Fig. 2.6. We calculated

1/ v� 1
F = 5 � 106 cm/s for TiBe2.
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For cubic structures, the parameter A in Eq. 2.3 is given by

A =
1

48� e2 (
2�
a

)2 d2
 2
p(EF )

dE2
F

(2.6)


 2
p(EF ) =

4� e2

3

X

k

~v2
k � ("k � EF )

�
4� e2

3
N (EF )v2

F :

Thus A it is proportional to the secondderivative of the square of the Drude plasma

energy 
 p (i.e. ~ is absorbed into 
 p, so 
 p here explicitly has energy units; k sums

are understood to be normalized over the zone). The secondmoment of velocity is �nite

everywhere,but its secondderivative is not (for example,for freeelectronsthis divergesas

the band edge). Derivativeshave the unfortunate property of amplifying noisein numerical

evaluations. We have addressedthe noiseissueby using a large number of k points in the

numerical integration (360� 360� 360). By �tting 
 p(E)2 with a polynomial near the

Fermi energy, we obtain the above-mentioned value A = � 1:8. The Fermi velocity was

calculated to be vF = 2:3 eV bohr = 1.8 � 107 cm/s.

2.5.2 q-dep endent Susceptibilit y

The negative value of the A parameter indicates, from Eq. 2.3, that the primary

magnetic instabilit y in TiBe2 does not lie at q=0 but rather at �nite q, so it is more

susceptibleto AF instabilit y (including possibly a spin spiral) rather than ferromagnetic.

The sign of A has been veri�ed independently by explicit calculation of the real part of

� (~q), with results shown in Fig. 2.7.

The calculation of � �;� (~q) betweenbands� and � wasperformedby an isosurface
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Figure 2.7. Intraband contribution to the real part of � (~q). The increaseat small q

con�rms the sign of Moriya A coe�cien t (seetext). Although both [110] and [111] direc-

tions have a maximum at the zoneboundary, the peak along [100] (X point of the zone)

dominates the instabilit y.
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slicing method. The susceptibility can be written, after inserting a factor 1 �
R

d� � (� �

� � ;~k+ ~q + � �; ~k ), as

� �� (~q) =
Z

d�
N �

�� (�)

�
; (2.7)

N �
�� (�) =

X

k

[f (� �; ~k) � f (� � ;~k+ ~q)]� (� � � � ;~k+ ~q + � �; ~k );

where N �
�� (�) is a susceptibility density calculated from the isosurfacede�ned by the

Fermi functions and the energy � function. The Brillouin zonewas divided into a 140�

140� 140 grid of cubes. Within each cube the � integral is calculated as a discrete sum,

using variable step sizesin � corresponding to 1/30 of the maximum di�erence in energies

� � ;~k+ ~q + � �; ~k within the cube.

The susceptibility risesequally along all three symmetry directions (as required

by cubic symmetry), but only for q̂ along the cubic axis does � (~q) continue to increase

strongly beyond the small-q region. The maximum of � o(~q) occurs at the X point, where

the intraband part has increasedby nearly 50% over its q=0 value. In such caseswhere

q=0 is not the maximum, it is necessaryto apply the extension of weak ferromagnetsto

the AF case.[64]

The band-by-band contributions to � o(q) have beenevaluated both to verify the

code and to identify the sourceof the important contributions and structures. The sphere

FS gives rise to a Lindhard type form with 2kF � � =a (but is not perfectly round). The

pillows lead to a cuspfor (qx ; 0; 0) for qx � 0:28� =a, and alongall three directions decreases

for q � � =a. For the jungle gym and the pseudocube,� increasesby a factor of two at the

zoneboundary along (qx ; 0; 0), with much lessvariation in the other two directions. The
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contributions to N(EF ) from each of the bands is: sphere,1.4%; pillows, 7%; jungle gym,

33%; pseudocube, 58%.

Away from q=0 the interband contributions to � (q) contribute, and it is known

in other transition metals and their compounds that the ~q-dependenceof matrix elements

can be important. We have calculated also the interband � (~q) for several bands around

the Fermi level, �nding that they contribute a broad maximum at intermediate jqj. It

seemsunlikely, however, that interband contributions will move the maximum away from

the X point.

Peaking of � (~q) at the zone boundary implies a short wavelength � = a AF

instabilit y (incipient, since no AF phase is observed). With the fcc lattice and two Ti

atoms in the primitiv e cell, there several possibilities for the most unstable mode, which

will involve antialignment of spins or charge density wave variation, but also may involve

noncollinear alignment of the spins. We have tried to obtain a q = 0 AF state within LDA,

with atomic moments antialigned on the bipartite Ti lattice, but the moment vanished

when this was tried. We have not investigated possible~q = X point AF states.

2.5.3 Temp erature Dep endence of Susceptibilit y

The high narrow peak in the DOS near EF suggestsan explanation of the T-

dependenceof � mentioned in the Introduction, or at least part of it. To understand what

part arisesfrom simple thermal smearing,we have evaluated

N (E; T) �
Z 1

�1
[�

@f (E � � (T))
@E

]N (E)dE; (2.8)
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where the chemical potential � (T) is adjusted at each temperature to keep the number

of electrons (occupied states) constant. The result is shown as a seriesof curves for T

ranging from zero to 300 K. It is necessaryto include the variation in � , and the value of

N (� (T); T) decreasesby 8%.

The resulting change in the physical, enhancedsusceptibility is given by

� (T) =
N (� (T); T)

1 � I N (� (T); T)
: (2.9)

Adjusting I to reproducethe peakheight (at 10K, experimentally), which requiresI=0.183

eV (S=56 at the maximum of N (� )), the resulting enhanced� (T) is comparedwith the

data in the lower panel of Fig. 2.8. It is evident that this simple temperature smearing

accounts for much of the observed temperature dependence.Additional indirect temper-

ature smearingwill comefrom phononsand from electronic and magnetic interactions as

theseexcitations are increasingly excited upon raising the temperature. We concludethat

TiBe2 contains no appreciablecontribution to the susceptibility from local moments.

2.5.4 Field Dep endence of Susceptibilit y

For an energy-dependent DOS and a highly enhanced susceptibility, a �eld-

dependent susceptibility � (H ; T = 0) � � (H ) is expected. In TiBe 2 a strong e�ect of

this kind has beenseen,which can be characterized as �eld-driv en ferromagnetism. The

di�eren tial susceptibility � d(H ) = dM (H )=dH whereM is given by the di�erence in elec-

tron occupations n � (H ). A many-body treatment shows that the spin imbalancecan be

expressed[66] in terms of the spin-dependent thermal (energy E surfaceaveraged)Green's
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Figure 2.8. The upper graph shows how the density of states near the Fermi energy

changesfrom T=0 to T=300K. The lower graph shows the experimental susceptibility[65]

comparedto theory. The Stoner I has beenadjusted slightly from the calculated value to

match the susceptibility maximum.



CHAPTER 2. FERMI VELOCITY AND INCIPIENT MAGNETISM IN TIBE 2 62

Figure 2.9. Magnetic �eld (H) dependenceof the Fermi level density of states for TiBe 2,

referred to its H=0 value, as de�ned in the text. The initial increasewith �eld indicates

an increasinginstabilit y towards ferromagnetic order.
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function

G� (E ; i! n ; H ) =
1

i! n � (E � � � � � B H ) � � � (H )
; (2.10)

n� (H ) =
Z

dEN (E)T
X

i

G� (E ; i! n ; H )ei! n � ;

here! n is the fermionic Matsubara discreteenergyvariable and � is a positive in�nitesimal.

The simplest form of (Stoner) self-energy� � = � K � B H should be appropriate (1 + K =

S).

Taking the �eld derivative of M (H ) but keeping H �nite, and using (in this

approximation)

G� (E ; i! n ; H ) = G� (E � � � B (1 + K )H ; i! n ; H = 0) (2.11)

we obtain the result at zero temperature

� d(H ) =
dM (H )
d(� B H )

(2.12)

= S
�
N (EF � S� B H ) + N (EF + S� B H )

�
:

This clearly reducesto the usual T=0 result at H=0. A slightly better treatment would

have alsosomeH-dependenceof S due to the structure in N (E) and the delicate situation

here that I N (EF ) is approaching unit y, but at this point we neglect such details.

The result for the relative correction

R =
N (EF � S� B H ) + N (EF + S� B H )

2N (EF )
(2.13)

is shown in Fig. 2.9. The e�ect on the ratio (thus on the di�eren tial susceptibility) is clear,

however even with the factor of S=60 enhancement of the energy scale(� B H ! S� B H )
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the peak occurs at a �eld one order of magnitude smaller than seenin experiment. This

di�erence seemsto indicate that the �eld in
uence on the spin 
uctuations dominates;

however the variation in N(E) will needto be accounted for in any quantitativ e explana-

tion.

2.6 Summary

The complex and sometimesconfusing data on the enhancedparamagnet were

discussedin the Introduction. It seemsclear that magnetic 
uctuations will be required to

understand the underlying mechanisms. Here we have presented a precisecalculation and

analysisof the electronic structure, especially focusing on the Fermi surfacesand velocity

spectrum at and near the Fermi level that underliesnot only the singleparticle excitations

but also the spectrum of magnetic 
uctuation in the itinerant limit, which clearly seems

to be the casein TiBe2.

Our calculations have con�rmed the sharp structure in the density of states

around the Fermi level that had beennoted earlier, and quanti�ed the tiny energy scale

that is involved: the Fermi level lies in a region of steepDOS, just 3 meV from an abrupt

van Hove singularity. This singularity is derived from a doubly degenerateband at the L

point of the zone. We have shown how to calculated the spectrum of velocities (speeds)

over the Fermi surface,and �nd the spectrum to be peaked at (the low value of) 107 cm/s,

with much of the weight below that value. Moriya theory for weak ferromagnetsrequires,

for the imaginary part of the inverse susceptibility, the moment < 1=vF > ; we have
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illustrated that 1=v(E) divergesat the van Hove singularity signaling possibleproblems

with applying Moriya theory to TiBe2.

Moriya theory for weak ferromagnets also requires the dimensionlessquantit y

A / d2
 p(E)=dE2 at the Fermi energy, where 
 p is the conventional transport Drude

energy. We �nd that this quantit y is not positive, as it must be for an incipient ferromag-

net; rather it is negative indicating the dominating (nearby) magnetic instabilit y is �nite

q: antiferromagnetic, spin wave, spin spiral, etc. Direct calculation of the generalized

susceptibility � o(q) con�rms the sign of A, and reveals the dominant instabilit y to lie at

the X point of the Brillouin zone,making TiBe 2 an incipient antiferromagnet.

We have shown that the sharp structure in N (E) has other consequences.First,

it leads to a T-dependent chemical potential. Together with the temperature broadening

of N (E) and the Stoner enhancement S � 60, this simple temperature broadening can

account for most if not all of the temperature dependenceof the susceptibility, which

someinvestigatorshad interpreted asCurie-Weiss-like. As a result, the occurrenceof local

moments in TiBe2 can be ruled out. Similarly, we have shown that this sharp structure in

N (E), again together with the large Stoner enhancement, has a substantial e�ect on the

�eld-dep endenceof the di�eren tial susceptibility. There is still the question of how much

of the measured�eld dependenceis due to this induced exchangesplitting, and how much

is due to the e�ect of the �eld on the magnetic 
uctuations.

Many of the resultswehaveobtained herearestrongly dependent on details of the

band structure and the position of the Fermi level. That theseresults re
ect realistically

the mechanismsunderlying the many fascinating observations obviously requires that the
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band structure formalism is applicable in detail to such systemsand that the calculations

are accurate. Another requirement is that of high samplequality, that the stoichiometry

is preciseand that defect concentration must be very low (simple impurit y broadening

will a�ect behavior). These questions must be addressedin deciding whether to press

onward to a more completeand more challenging explanation that includese�ects of both

magnetic 
uctuations and the energydependenceof the density of states.
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3.1 Multi Order Parameter Landau Theory

The Ginzburg-Landau theory hasbeena very successfulphenomenologicalmodel

for describingorbital e�ects of superconductors. The theory correctly capturesmany of the

observed phenomenaassociated with the superconducting state including zero-resistance,

the Meissner e�ect, the Abrik osov vortex and vortex lattice arrangement, penetration

depth, coherencelength, etc.

The Ginzburg-Landau generic theory is based on Landau's generic theory of

secondorder phasetransitions. Landau assumedthat the free energy of a system is an

analytic function which sharesthe symmetry of the Hamiltonian, and a secondorder phase

transition occurswhena symmetry of the systemis spontaneouslybroken. The freeenergy

density is written as

F = FN + FL (m) (3.1)

where FN is the normal free energydensity and FL is the condensatefree energydensity.

An order parameter is introduced which is usually indicates the condensatedensity and

how the condensatebreaks the symmetry. FL is Taylor expanded in terms of the order

parameter. In general, the order parameter has the dimension and �eld of the broken

symmetry, for brevity however I will only considering the breaking of a one dimensional

real symmetry such as a classicalIsing model with no applied �eld. Taking the �rst two

non-zeroterms, the Taylor expansionof FL becomes

FL (m) = �m 2 +
1
2

� m4 (3.2)



CHAPTER 3. MACROSCOPIC THEORY OF MULTI ORDER PARAMETER PAIRING IN SUPERCONDUCTI ITY 69

where m is the order parameter representing the magnetization. Since the sign of m is

a symmetry of the Hamiltonian, only even powers are included in the Taylor expansion.

As long as m = 0 the system state also has inversion symmetry. As soon as m takes on

a �nite value, it will have a de�nite sign and the inversion symmetry of the state will be

broken.

Assuming the axiom that the system will assumethe state that minimizes the

free energy and that the order parameter is bounded, one must assumethat � is greater

than zero. If � is also greater than zero, m = 0 minimizes FL (m). If � is lessthan zero,

the optimal value of m is found to be

m = �
r

� �
�

(3.3)

by minimizing FL (m) with respect to m2. Thus the phase transition occurs when �

changessign. � is normally taken to be a function of temperature expandedaround the

critical temperature

� = C(T � Tc) (3.4)

where C = d�=dT evaluated at Tc.

In general,a systemmay have many order parameterswhich may be coupledby

the Hamiltonian. For example consider two coupled Ising systemswith order parameters

m1 and m2 which might be used to model two magnetic domains with someinteraction.

The free energydensity is

F = FN + FL (3.5)

FL = FL 1(m1) + FL 2(m2) + FL 12(m1; m2) (3.6)
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The FL 1(m1) and FL 2(m2) contributions arestill restricted to evenpowers. The FL 12(m1; m2)

may have odd powers as long as all terms are zero when m1 and m2 are zero. I will only

consider two terms: bi-quadratic and bi-linear. The Taylor expansionbecomes

FL = � 1m2
1 +

1
2

� 1m4
1 + � 2m2

2 +
1
2

� 2m4
2

+ Dm2
1m2

2 + J m1m2 (3.7)

Initially at high temperatures when both order parameters are zero, there are

two symmetriesof the Hamiltonian to be broken. The breaking of thesesymmetriescould

result in one phasetransition, or two phasetransitions.

Assuming that Tc1 6= Tc2 and J = 0, the bi-quadratic coe�cien t D will not

change the upper critical temperature. The lower critical temperature will be raised or

lowered depending depending on the sign of D . To maintain the �nite valuesof the order

parametersat the energyminimum, D must be bounded in the negative direction by

D > �
p

� 1� 2 (3.8)

A su�cien tly large positive value of D will reducethe lower critical temperature to zero,

eliminating the secondphasetransition entirely.

Assuming that Tc1 6= Tc2 and D = 0, the bilinear coe�cien t J will always raise

the upper critical temperature. The new upper critical temperature occurs when the

following equality is satis�ed

J 2 = � 1� 2 (3.9)

with both � 1 and � 2 positive. Below the new upper critical temperature, both symmetries
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are broken in a single phasetransition.
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3.2 Ginzburg-Landau Theory

An early attempt at a phenomenologicaldescription of the interaction of mag-

netism and superconductivity was developed by F. London. The London equation [22]

~Js = �
m�

n�
se� 2

~A (3.10)

can be derived by applying the quantum mechanical current operator to a condensate

with a �xed phase and magnitude over a macroscopicregion. This �xed phase can be

thought of as breaking a phasesymmetry of the Hamiltonian. This di�ers from the non-

condensatewhere the electron phasesare uncorrelated. By assuming a speci�c gauge

for ~A, the equation captures the observed phenomenaof the Meissnere�ect including a

�nite penetration depth. It however doesnot addressthe upper critical �eld. Even more

disturbing, it only works for one choice of the ~A gauge.

The Ginzburg-Landau theory of super
uid condensates[67] assumesa complex

condensatewave function

	( ~r ) = j	( ~r )jei� (~r ) (3.11)

to be used as the order parameter in a Landau secondorder treatment. Assuming a

complex �eld for the order parameter allowed for a quantum mechanical kinetic energy

term to be added to the free energy density. This kinetic energy term has the property

of coupling the supercurrents to the ~A �eld, as in the London equation, and placing an

energy cost on the supercurrents that must be balanced by the energy lowering of the

condensate.
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Assuming that carriers are pairs and including a term for the magnetic energy,

the Ginzburg-Landau free energydensity is

F = FN + � j	 j2 +
1
2

� j	 j4 +
1

4m
j(� i~r + 2z ~A)	 j2 +

B 2

2� 0
(3.12)

wherem and z are the massand charge of an unpaired carrier. The condensatedensity is

given by j	 2j. The order parameter 	, the magnetic �eld and the condensatecoe�cien ts

may be spatially dependent. Even though the phaseof � (~r ) is not �xed, � (~r ) for a con-

nected condensateis completely de�ned by the density and current up to a global phase

factor.

The Ginzburg-Landau non-linear partial di�eren tial equations are derived by

minimizing the free energyusing the Euler-Lagrangemethod. Minimizing with respect to

the vector potential gives the di�eren tial equation

� F

� ~A(~r )
= ~RA =

iz~
2m

(	 � r 	 � 	 r 	 � ) +
2z2

m
j	 j2 ~A +

r 2 ~A � r � ~A
� 0

(3.13)

Minimizing with respect to the order parametersgives

� F
�  (~r )

= R	 = � 	 + � j	 j2	 +
1

4m
(� i~r + 2z ~A)2	 (3.14)

It is customary to assumea gaugewherer � ~A = 0, but numerically this canbeinconvenient

to maintain. In the absenceof applied currents or electric potentials, ~RA and R	 will

be zero at a local maximum or minimum of the energy. In time dependant Ginzburg

Landau theory [68][69], ~RA and R	 will be proportional to the time derivative of ~A and

	 respectively. Becausethe Ginzburg-Landau equations are non-linear, solutions are not

guaranteed to be unique. This can easily be demonstrated by noting that 	 = 0 and



CHAPTER 3. MACROSCOPIC THEORY OF MULTI ORDER PARAMETER PAIRING IN SUPERCONDUCTI ITY 74

r � r � ~A = 0 will always be a solution even when the energycan be lowered by forming

a condensate. The number of stationary points is greatly increasedwhen the possibility

of vortex trapping and pinning is considered. In the numerical simulations, ~RA and R	

will be usedas a residueand and may be modi�ed to enforceboundary conditions.

Becausethe Ginsburg-Landau equations are a phenomenologicaltheory, the co-

e�cien ts � and � are usedas material �tting parametersto match the penetration depth

(� GL ) and coherencelength (� GL ).

A magnetic �eld experiencesan exponential decay as it penetratesinto a super-

conducting half space.If oneassumesa �xed condensatedensity de�ned by the equilibrium

value ns = � � =� when � < 0, the penetration depth is found from the vector GL equation

to be

� GL =
r

m
2� 0e2ns

=

s
� � m

2� 0e2�
(3.15)

which matches the London result.

The coherencelength is characterized by a competition between the kinetic en-

ergy and potential energy as de�ned by the complex GL equation. Due to the cubic 	

term, the order parameter doesnot rise as an exponential. In the small 	 limit where it

can be treated as an exponential, the coherencelength is found to be

� GL =

r
~2

� � 4m
(3.16)

The Ginzburg-Landau parameter, � , is the ratio of penetration depth to coher-
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encelength

� =

s
2� m2

~2� 0e2 (3.17)

Type I superconductors have a � <
p

2. Most of the low Tc superconductors such the

mono-atomic superconductors fall into this category. Type I I superconductors have a

large � and include the more complex higher Tc superconductors. The Abrik osov vortex

lattice[70] occurs in type I I superconductors.

The Ginzburg-Landau theory is intended to describe secondorder phasetransi-

tions. It has beennoted that �eld induced quenching of type I superconductors is a �rst

order phase transition [71]. This �rst order transition occurs when the applied �eld is

strong enoughto causethe normal to superconducting domain wall to retreat. Ginzburg-

Landau captures this critical �eld behavior.
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3.3 Multi-Order Parameter Ginzburg-Landau Theory

Multi-order parameter Ginzburg-Landau theories have arisen in recent years to

addressmulti-gap superconductors such as MgB2 [72] [73] and the theoretical of super-

conductivit y and super
uidit y in highly compressedHydrogen [74].

The modi�ed Ginzburg-Landau free energy density consistsof a sum of kinetic

energyand uncoupledpotential energyterms that are directly from the original Ginzburg-

Landau free energyplus crosscoupling potential energy terms[75] .

F = FN +
X

�

�
� � j	 � j2 +

1
2

� � j	 � j4
�

+
X

�

�
1

4m�
j(� i~r + 2z� ~A)	 � j2

�
+

B 2

2� 0

+
1
2

X

� 6= �

�

 � � j	 � j2j	 � j2 + � � � 	 � 	 �

�

�
(3.18)

A superconducting pair is assumedto have a massof 2m � and a charge of 2z� . The cross

coupling potential includes the density-density (
 � � ) and complex Josephson(� � � = � �
�� )

coupling terms. The Josephsonterm must be equal to its complex conjugate on exchange

of indices to guarantee a real energy. Higher order terms are possible but do not add

signi�cant new behavior in a small order parameter expansion.

The Ginzburg-Landau equationsare derived by minimizing the free energyusing

the Euler-Lagrangemethod again. Minimizing with respect to ~A gives

~RA =
X

�

�
iz � ~
2m�

(	 �
� r 	 � � 	 � r 	 �

� ) +
2z2

�

m�
j	 � j2 ~A

�
+

r 2 ~A � r � ~A
� 0

(3.19)

Minimizing with respect to the order parametersgives

R� = � � 	 � + � � j	 � j2	 � +
1

4m�
(� i~r + 2z� ~A)2	 �

+
X

�

�

 � � j	 � j2	 � + � �� 	 �

�
(3.20)
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Unlike the multi-order parameter Landau equationswhich becometwo indepen-

dent condensateswhen the crosscoupling potential terms are zero, the electromagnetic

vector potential, ~A, will couple the two condensatesin the presenceof any currents or B

�elds.

A possiblerationale for the Josephsonterm is pair hopping betweencondensates.

The phaseof the Josephsonterm will only have physical signi�cance if a method exists

to couple to both order parametersthrough a Josephsonjunction or other phasesensitive

probe. The density-density term may arise due to competition between condensatesfor

available carriers.
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3.4 Solving the Ginzburg-Landau Mo del

The Ginzburg-Landau equationsare non-linear partial di�eren tial equationsthat

can only be solved analytically for special cases. It is therefore common to consider

numerical solving methods [76][77][78]. Qiang Du haswritten a good review article of these

methods [79]. I have chosena �nite element grid method and a �nite di�erence schemefor

evaluating the derivatives. The order parameter is stored in Cartesiancomponents for ease

of update and to avoid the multiple value problemsthat arisewith a polar representation.

The ~A �eld is stored as a two or three element vector depending on the spatial dimension

of the model being considered.A local applied current vector and applied scalarpotential

will also be included.

As pointed out earlier, the residues~RA and R	 from equations3.13and 3.14are

proportional to the time derivative of the ~A �eld and order parameters. This suggestsa

simple recursive method for �nding a stationary point by making small corrections to the

state variables proportional to the residues. Using the notation where jX )n refers to the

state of X at step n evaluated at all points on the grid, this method can be written as

j ~A)n+1 = j ~A)n + � A j ~RA )n

j	) n+1 = j	) n + � 	 jR )n (3.21)

The update parameters� A and � 	 must be small enoughto maintain stabilit y. If correct

time dependent behavior is desired,the ratio � A =� 	 must be a constant set by the relative

sti�ness of the ~A �eld and the order parameters. Individual update parameters may be

neededwhen multiple condensatesare considered.
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Choosing the update parameters can be di�cult. If the values are to low, the

solution takes longer than necessaryto �nd. If they are to large, the system becomes

unstable. To minimize the time it take to �nd a solution and maintain stabilit y, I usean

approximate Newton's method. The non-time dependent Newton's method can bewritten

as

jA; 	) n+1 = jA; 	) n � � J � 1
n jRA ; R	 )n (3.22)

where J � 1
n is the inverseof the Jacobian of the residues.

The size of the Jacobian makes producing its inverse impractical, however for

small jAj the coupling between RA and R	 is reducedand the Jacobian becomesdiago-

nally dominate allowing the Jacobian to be approximated by its diagonal elements. The

simpli�ed Newton's method becomes:

jA)n+1 = jA)n � � ~J � 1
A jRA )n

j	 n+1 ) = j	) n � � ~J � 1
	 jR	 )n

~JA (~r ) =
�

@RA (~r )
@A(~r )

�

~J	 (~r ) =
�

@R	 (~r )
@	( ~r )

�
(3.23)

The value of � must be lessthan one for stabilit y, and the optimal value was found to be

around 0:9. In theory, instabilit y should not occur until � > 1, but �nite sampling adds

systematic noise which can increasethe gain for high frequenciesmaking a lower value

necessary.

In any �xed gaugethe maximum of j ~Aj grows linearly with the sizeof the system.

In order to keep the o� diagonal elements of the Jacobian minimal, I use a local gauge
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transformation � 2z� ~A = ~� r 	 at each point on the grid to force ~A = 0 [77]. It is still

necessaryto maintain a global gaugeto guarantee a single value of the A �eld.

3.5 Boundary Conditions and Simulation Con trols.

The external B �eld is assumedto always be applied in the ẑ direction. In the

two dimensional simulations, this is perpendicular to the plane. In the three dimensional

simulations, this is alongan axis of the grid. The �eld could either beapplied asa constant


ux or as a constant intensity around the border of the simulation.

In the constant 
ux case,a line integral around the edgeof the simulation in a

plane perpendicular to the ẑ direction is held constant. In this case,when the supercon-

ductor expels the magnetic �eld the 
ux gets concentrated at the edgesof the simulation.

This is a useful property for determining the critical �eld neededto quench superconduc-

tivit y or insert vortices.

External currents are imposeddirectly on the vector residueRA . RA is in units

and one of its terms is equilivent to Ampre's law relating the ~A �eld to the total current.

Jtotal = �
r 2 ~A � r � ~A

� 0
(3.24)

This is not the sameas driving a current into the superconductor, but instead is a way to

apply non-uniform magnetic �elds. SeeFig. 3.1 for an example. Inhomogeneity such as

pinning sites or Josephsonjunctions were modeledby making spatially dependent adjust-

ments to the linear Taylor coe�cien t � . Applied voltagedi�erences is modeledby imposing

a small di�eren tial phaseshift at every simulation update step. This wasgenerallyapplied
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to a subsetof the simulation to investigate Josephsonjunction behavior.

Figure 3.1. This is an image from a three dimensional simulation where the iso-surface

value is taken to be 1=2 the maximum value. A large current is applied in the ẑ direction

through the center of the simulated cube. This current inducesa circular magnetic �eld

that would go as 1=r in the absenceof the superconductor. The magnetic �eld near

the current is greater than H c2 driving the order parameter to zero (indicated by the

central column). When the magnetic �eld reaches H c1, vortex rings are induced into the

superconductor. The rings will attempt to form a tight packing arrangement.
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3.6 The Vortex

The Abrik osov vortex[70] is a topologicalexcitation that is associated with multi-

valuednessof the complex order parameter. Consider any closeddirected path. If one

considersthe complex order parameter to be represented by real and imaginary parts,

then the following equality must hold

	 stop = 	 star t +
I

d~l � r 	 (3.25)

sincea closedpath must start and stop at the samepoint. If oneconsidersa polar notation

where 	 =  e(i� ) , then one �nds a weaker requirement on the phase� of 	

� stop = � star t +
I

d~l � r � + nv2� (3.26)

where the vortex or winding number nv can be any integer. Assuming the underlying

superconductor is simply connectedand nv = 1, the closedpath can be shrunk through a

continuous transformation without changing the vortex number. This implies that r � is

going up and correspondingly the contribution to the kinetic energy from r � will also be

going up. To balance this, magnitude of the order parameter,  , must go down. Figure

3.2 is from a simulation of a single vortex in a long prism shaped superconductor that

is isotropic in the long direction. The order parameter goes to zero at the center of the

vortex and becomesnon-analytic. The �nite sizegrid and �nite di�erence methods cannot

completely capture the behavior of the exact center of the vortex.

The reduction of the order parameter in the center of a vortex costsenergy. If a

vortex exists in a part of the superconductor where the magnitude of the order parameter
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hasa gradient, the vortex will experiencea force in the opposite direction of the gradient.

This e�ect is responsible for vortex pinning by defectsin superconductors.

Sincea vortex is a topological excitation, it can exist in both type I and type I I

superconductors. In type I I superconductors, the penetration depth is greater than the

coherencelength. This causesthe interactions betweenvortices and betweena vortex and

the superconductor boundary to be dominated by the magnetic �eld and kinetic energy

of the currents. The energydensity of the magnetic �eld is

EB / ( ~B1 + ~B2)2 = ~B 2
1 + ~B 2

2 + 2~B1 � ~B2 (3.27)

The force pushing the vortices apart will comefrom the dot product. The kinetic energy

from the currents is more complex since current interactions will increase the energy

density on one side of the vortex and decreaseit on the other, but the resulting force is

proportional to the samedot product. In the Abrik osov vortex lattice, the �eld associated

with each vortex points in the same direction causing them to repel each other. The

interactions will be short range due to the �nite penetration depth. If vortices are in a

disordered state, the cosine associated with the dot product causesthe interactions to

range from repulsion to attraction.

In type I superconductors, the penetration depth is less than the coherence

length. This causesthe interactions to be dominated by the magnitude of the order

parameter. In this case,the energyis minimized by overlapping the areaswhere the order

parameter is suppressed.The resulting force between vortices is attractiv e which makes

vortex arrays unstable in type I superconductors.
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Figure 3.2. A long prism shaped superconductor that is isotropic in the long direction

can be simulated as a two dimensional crosssection (grid = 120x120). The magnitude of

the order parameter in the crosssection is represented by the height of the surfacefrom

the bottom of the bounding cube. The level at the top of the cube corresponds to the

equilibrium value 	 0 =
p

� �=� . A singlevortex hasbeenplacedin the center to illustrate

the suppressionof the order parameter toward the center of the vortex. The supercurrent

is represented by arrows at the bottom of the cube. An external applied �eld induces a

Meissnercurrent that travels in the opposite direction of the vortex current. The counter

rotating currents produce a path around the vortex where no current is 
o wing.
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3.7 Flux quan tization of one order parameter

One important feature of the superconducting vortex, the quantization of the

magnetic �eld, was predicted by F. London. Referring to Fig. 3.2 again, one can seea

region around the vortex where the net current is zero. Using the quantum mechanical

current operator, the zero current condition can be written

Js =
z~
m

r � j	 j2 �
2z2

m
j	 j2 ~A = 0 (3.28)

Solving for ~A the performing a closedline integral around the vortex gives

I
d~l � ~A =

~
2z

�
I

d~l � r � =
~
2z

� 2n� (3.29)

where n is an integer. The line integral of ~A gives the enclosed
ux resulting in a 
ux

quantum de�ned by � 0 = ~� =z.

In three dimensions, it is not always possible to �nd a path where the current

goes to zero even though the 
ux per vortex is still quantized. For example, Fig. 3.3

contains two vortices which are not running parallel but are within a penetration depth

of each other. Becausethe vortices are not parallel, the currents will not exactly cancel

betweenthem. Many penetration depths away, the current is e�ectiv ely zero, therefore a

line integral in circling both vorticesbut far removed will enclosetwo 
ux quanta. Isolating

a single 
ux quanta requiresrelaxing the path requirement such that d~l � ~Js = 0. Thus the

original current equation 3.28 can be rewritten

d~l � Js = d~l �
z~
m

r � j	 j2 � d~l �
2z2

m
j	 j2 ~A = 0 (3.30)

which gives the sameresult as the ~Js = 0 condition for 
ux quantization.
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In somesituations this relaxed condition cannot be satis�ed. In the caseof a

vortex ring whoseradius is on the order of the penetration depth, there is no path through

the center of the ring that satis�es the relaxedcondition d~l � ~Js = 0. For another exampleof

failed 
ux quantization, consideragain Fig. 3.2. If there were no externally applied �eld,

and the penetration depth is on the order of the size of the superconductor, the vortex

induced supercurrents would extend all the way to the edge. When the order parameter

goes to zero outside the superconductor, ~Js goes to zero, however the requirement that

H
d~l � r � = ~

2z � 2� no longer applies. In the presenceof a current, the calculation for the

enclosed
ux includes a line integral of the current

B f lux = n� 0 �
m
z~

I
d~l � Js (3.31)

where n is the vortex number.
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Figure 3.3. A section from a three dimensional simulation containing two vortices in a

non-equilibrium con�guration (grid = 60x60x60). The surfaceis an iso-surfaceof the order

parameter at the value 	 0=2. Each tub esenclosesa vortex corewherethe order parameter

vanishes. The current vector in a plane is represented with cones. The current quickly

goesto zero away from the vortices but doesnot go to zero betweenthem. Becausethey

are not parallel, the current will have a vertical component when the X and Y components

cancel.
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3.8 Fractional 
ux quan tization with two order parameters

Even without the explicit crosscoupling terms, the order parametersare coupled

through the ~A �eld. The easiestway to understand the order parameter interactions is

by considering the topology of vortices in two dimensional systems. In the single order

parameter casewith a single isolated vortex, the magnetic �eld is maximum at the center

of the vortex and exponentially decays going away from the vortex center. Outside the

vortex core where the magnetic �eld is zero, the current is also zero. SeeFig. 3.4.
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Distance in units of penetration depth

B
vortex J

Figure 3.4. The B �eld and supercurrent along a line perpendicular to a vortex in a single

order parameter superconductor simulation The vortex core is located at the zero of the

graph, and the sign of the current indicates a current 
o wing into the page (positive)

or out of the page (negative). The current and the �eld both go to zero exponentially

quickly.
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The total supercurrent for a two order parameter superconductor is

Js =
2z2

1

m1
j	 1j2(

~
2z1

r � 1 � ~A) (3.32)

+
2z2

2

m2
j	 2j2(

~
2z2

r � 2 � ~A) (3.33)

where it is assumedthat Js = 0 in the interior of the superconductor well away from

any vortices. If both order parameters form pairs of co-axial vortices, and z1 and z2

have equal magnitudes, both contributions to the supercurrent will be zero well outside

of the vortices. The 
ux quanta for each co-axial pair will be the sameas the single order

parameter case.

	 1 with one vortex 	 2 with no vortex

Figure 3.5. Order parameter phase graphs for a patch of superconductor. The arrows

represent the phaseof the order parameter as an angle in the plane, and do not represent

any real spacedirections. Well outside the vortex core, the ~A �eld will a value that cancels

the total current.

If the vortex only exists in one of the order parameters, a kind of gauge frus-

trations results. SeeFig. 3.5. The magnetic �eld and net current both experience the
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exponential decay whenmoving outsidethe vortex core,but the individual currents asymp-

totically approach complementary valuesthat decreaseas 1=r. SeeFig. 3.6.
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Figure 3.6. The B �eld and supercurrent components along a line perpendicular to a

vortex in a two order parameter superconductor simulation. The vortex core is located

at the zero of the graph, and the sign of the current indicates a current 
o wing into the

page(positive) or out of the page(negative). While the net current and the �eld both go

to zero exponentially , the components of the individual currents decreaseas 1=r.
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This can be understood by consideringthe two order parameter current operator

when the net current is zero,and assumea gaugewhere ~A = 0 at the center of the vortex.

If the vortex exists in order parameter 1 then r � 1 / 1=r. Since order parameter 2 does

not have a vortex r � 2 = 0. The non-zero 
ux contained in the vortex implies a radially

directed ~A that also goesas 1=r. However no single ~A can individually zero out both the

contributions to the current. The total 
ux contained in the vortex is

� 1 =
2z1~�

m1
j	 1j2

2z2
1

m1
j	 1j2 + 2z2

2
m2

j	 2j2
: (3.34)

Due to the 1=r current density, the energy associated with a unpaired vortex grows log-

arithmically with the size of the system. If the system contains a vortex pair that have

beenseparateddue to thermal 
uctuations or other mechanism, the energywill grow log-

arithmically with the separation. This will producea long rangeattractiv e force that goes

as 1=r. There will also be an angle dependencethat goesas

~F / � B̂1 � B̂2 (3.35)

where B̂x is a convenient way to indicate the direction the vortex, but it is not intended

to indicate that this force is from the magnetic energy..

3.9 The bi-quadratic term

A rationalization for the bi-quadratic term, 
 � � j	 � j2j	 � j2, is a competition be-

tween the two condensatesfor carriers. One example could be two FFLO phaseswith

di�eren t pair momentum.
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It is possiblefor the bi-quadratic term to be large enough that it prevents the

coexistenceof both phases.In this casethe superconductor will phaseseparate. If one of

the condensatesis energeticallyfavorable, it will completely dominate. Sincethe dominant

order parameter would be suppressedin the center of a vortex, it is possible for the

subordinate phaseto exist in the core of a vortex. SeeFig. 3.7

Figure 3.7. From a simulation of a long prism shaped superconductor as described in

Fig. 3.2. A vortex in the energetically favorable condensate(red) suppressesthe order

parameter enabling the lessfavored condensate(blue) to exist in the vortex core.
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In the casewhere multiple order parameterscoexist, the bi-quadratic term will

provide either a local attractiv e or repulsive forcebetweenvortices in di�eren t condensates

depending on the sign of the term.

3.10 The Josephson term

A possiblerationalization for the bi-linear Josephsonterm, � � � 	 � 	 �
� , could be

hopping betweencondensates.The two gap superconductorssuch as M gB 2 may be pos-

sible candidates. The complex phaseof the coe�cien t � � � will only e�ect the preferred

relative phaseof the order parameters,so I will assumethat � � � � 0 and real, such that

matching phasesminimize the energy.

The Josephsonterm causesthe symmetry for all bi-linear coupledcondensatesto

be broken with the formation of the �rst condensate.Also, the Josephsonterm produces

a much stronger coupling betweencondensatesthan either the ~A �eld or the bi-quadratic

term. For this reason, it is di�cult to determine if a superconductor actually has two

condensates,or one condensatewith two gaps. For clarity, I will de�ne a two order

parametersuperconductor to beonewhereboth condensatescanexist when the Josephson

term is frustrated.

The strength of the coupling of the Josephsonterm can be illustrated by con-

sidering the casewere each order parameter contains a single vortex which are separated

by many coherencelengths. SeeFig. 3.8. All Josephsonenergy iso-curves passthrough

the center of the vortices. The shape of each iso-curve is �xed, but the overall scalegrows
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linearly with the separation, r , of the vortices. The energy will increaseas r 2 since it is

proportional to the area,and will quickly exceedthe short rangebi-quadratic energiesand

long range logarithmic ~A �eld coupling.

Figure 3.8. The arrows represent the phaseof two condensates,each with a single vortex.

The vortices are o� set from each other to illustrate the e�ect of relative order parameter

phases.The energy associated with the Josephsoncoupling is proportional to minus the

cosineof the di�erence in the phases.The line betweenthe vortices shows the maximum

phase di�erence and therefore the highest energy density. The curve where the energy

contribution is zero forms a circle with the vortex centers on the perimeter.
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The precedingargument assumedno charge transfer betweencondensates.This

would certainly be true for the theoretical electron and proton condensatesof hydrogen.

If it is assumedthat somechargetransfer doesoccur, such asa Josephsonhopping current

Jhopping / j	 1jj 	 2jsin (� 2 � � 1) (3.36)

the situation changesconsiderably. The 
o w of current betweencondensateswill provide

a mechanism by which the phase frustration can be reduced. Figure 3.9 is a three di-

mensional simulation of a two order parameter block of superconductor. The phase of

both condensatesis roughly equal throughout the simulation except in the spacebetween

the vortices indicated by the thin red \J-w all". Following a path around the blue vortex

but not the gold one, one expects the phase of the blue condensateto go through 2� ,

while the gold condensatewill have a phasechangeof zero. When the phaseintegration is

performed, one �nds that both condensatescollect a phasechangeof approximately � in

the region that excludesareanear the J-wall. In the region betweenthe vortices, the blue

condensatewill pick up an additional phaseof � while the gold condensatewill pick up an

cancelingphaseof � � . The energyassociated with the Josephsonterm is now con�ned to

the J-wall (whose area is proportional to r ). The energy associated with the separation

of the vortices will be proportional to r .

Well outside the vortex coresand the J-wall, the net current is zero. Since the

phasesof the condensatesare equal, the individual components of the current must also

be zero. Well outside the vortex coresbut within the J-wall, the net current is still zero,

but the components will have equal and opposite currents.
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Figure 3.9. This �gure is from a 3 dimensional simulation of a two order parameter

superconductor with a Josephsoncoupling term. The iso-surfaceof the order parameters

in gold and blue show a single vortex each. The thin red wall of phasefrustration or \J-

wall" is an iso-surfaceof the Josephsonenergycorresponding to a value of zero. Without

inter-condensatecurrents, this iso-surfacewould have a circular cross section. SeeFig.

3.8.
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3.11 J-w all excitations

In the previous section, the J-wall was bordered by either a vortex or the edge

of the superconductor. It is also topologically possiblefor J-wall excitations to exist as

closedsurfaces.For exampleconsidera spherically symmetric casewhereboth condensates

order parameters are real and positive at the origin. At somedistance which is several

coherencelengths from the origin, one order parameter goesthrough a phasechangeof �

while the other goesthrough a phasechangeof � � . Outside the region where the phases

are changing, each order parameter has a phase that is real and negative. This J-wall

forms a spherewith energyproportional to its surfacearea.

The surfaceof a J-wall is directed sinceeach condensate
o ws in de�nite direction.

For convention, assumethat the positive direction for a J-wall is the direction that adds

� to � 1. Two oppositely oriented J-walls will experiencea short range attraction and will

annihilate each other. Two J-walls oriented in samedirection will experiencea short range

repulsion.

Since the J-walls do not couple to the magnetic �eld, they will be di�cult to

induce or detect in any material in which multiple condensatesare suspected. One pos-

sibilit y for inducing J-walls would be to preferentially drive a tunneling current into only

onecondensatecausinga phaseslip betweenthe condensates.It is not clear how to detect

when this occurs however.

It may be possibleto detect a phasetransition where thermally induced J-walls

freezeout. The lowest J-Wall excitations would have a �nite energysincethe length scale
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of the smallest J-wall excitation must be on the order of the coherencelength. Below this

length scale,the order parameterscould not make a full rotation of j� j. Excitations on this

scaleare not disallowed, but they would tend to be spherical and have an energy that is

proportional to their volume. Above this minimum energy, the number of con�gurations

(states) per energy level becomeslarge since it is not longer limited to being spherical

and the energy is proportional to the area. If the low energy excitations are ignored, the

suddenrise in density of states at a �nite energyand domain wall like behavior givesrise

to the Potts model like behavior[80][81].

3.12 Not any knots

There has been interest in knots in multi component BoseEinstein models [82]

[83]. The structures consideredin these papers were beyond what my numerical model

could simulate. Small vortex knot components wereconsideredand found to be unstable.

SeeFig. 3.10 for a couple of attempts. The knot components were intended to use the

repulsion of vortices to overcomethe tendency of a vortex to minimize its length. Vortex

tension was found to be stronger than repulsion causingthe vortices to passthrough one

another.
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Twist Cross

Figure 3.10. Two attempts at building vortex knots. In all variations of the \t wist"

attempted, with naturally repelling vortices, the vortices ultimately passedthrough each

other rather than untwisting. With careful positioning, two normally repelling vortices

can be attached in a \cross" arrangement to form an unstable bond. When disturb ed,

the point of intersection will move toward the nearest normal boundary and exit the

superconductor.
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3.13 Conclusion

I have developed a fast and e�cien t numerical method for solving the Ginsburg-

Landau model of superconductivity in 2 and 3 dimensions.This method included extensive

visualization and interaction. The model was used to study the interaction of supercon-

ductivit y and magnetic �elds with particular emphasison vortex dynamics.

The model was then extended to include multiple condensateorder parameters.

This extendedmodel was used to study potentially stable vortex knots with negative re-

sults. An interesting topological excitation was found associated when a bi-linear Joseph-

son coupling term was included in the simulations.
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4.1 In tro duction

The properties of both 2D squareIsing and Edwards-Andersonspin glassmodel

have beenstudied for many years. The Ising model

H = �
X

<i;j >

Si Sj (4.1)

with nearestneighbor interactions wassolved by Onsangerusing transfer matrix methods.

The 3D model is consideredto fall into a classof NP completeproblemsthat areunsolvable

[84], and therefore must be attacked with approximate methods.

The nearestneighbor Edwards-Andersonspin glassenergy is

H = �
X

<i;j >

J ij Si Sj (4.2)

where J ij has some random distribution. The two most common distributions are the

bimodal where J = � 1 and the continuous where J has a distribution that normally is

taken to be Gaussian. These models are also unsolved, but a number of methods have

beendeveloped to study their properties. The ground state of large systems[85] can be

calculated quickly and e�cien tly making T = 0 investigationspossible.Sampling methods

such as Monti Carlo run into problems due to the slow dynamics below Tc. However

improvedmethodssuch astempering [86] havebeendevelopedwhich haveenabledprogress

in 3D investigations [87].

The numerical transfer matrix methods have also been applied to spin glasses

[88][89][90], but due to the exponential growth in the memory and simulation time with

the width of the system, the size of systemsmust be limited. As long as Moore's law
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continues to hold however, one can expect to add a site to the width of the calculation

every coupleof years. I have developed e�cien t algorithms for solving �nite sizespin glass

systemsusing the transfer matrix method and applied them to Ising an Edwards-Anderson

spin systems.

4.2 Transfer matrix applied to spin systems.

Calculating the partition function,

Z =
X

C

e� EC � (4.3)

where C goes over all con�gurations, is in principle straight forward. In practice, it is

di�cult due to the the number of con�gurations. Each spin in the system doubles the

number of terms in the sum giving a total of 2M con�gurations M is the number of spins.

The transfer matrix method as applied to spin systemsis a method for reducing

the number of additions that need to be performed to calculate Z . There is quite a bit

of 
exibilit y in de�ning a transfer matrix, therefore I will describe one implementation

while pointing out where degreesof freedom exist. Referring to �gure 4.1, the transfer

matrix T(A; B ) is de�ned such that it includesall the terms of the partition function sum

for all intra-yellow bonds and the bonds betweenthe yellow spins and the spin cuts. The

contribution from the bonds between the spins in each cut must be accounted for, but

care must be taken not to count them twice. I chooseto include the bonds in cut A in

T(A; B ), but not the bondsin cut B . The bondsin cut B will be accounted for in another

transfer matrix.
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Figure 4.1. The colored squaresrepresent spin sites. The connectionsbetween the sites

represent bonds. The spins in the cuts must completely separatethe spins on either side

of the cut such that no direct bond connectssiteson onesideof the cut to the other sideof

the cut. Sincethis systemhasonly nearestneighbor bonds, the cut needonly be onespin

wide. If however the bonds to next nearest neighbor were also included, the cut would

needto be two spins wide.

In this exampleeach cut contains four spins for a total of 16 states. The rows of

T(A; B ) are indexed by the statesof cut A while the columnsare indexed by the states of

cut B . (The exponential cost has not beencompletely eliminated but only reduced. This

is the major weaknessof the transfer matrix method and placespractical limits on the

cut size.) An entry of the transfer matrix is de�ned as

Tij (A; B ) =
X

C0

e� EC 0� (4.4)

wherethe energyonly includes the bondslisted above, the sites in cut A are in state i , the

sites in cut B are in state j , and the index C0 goesover all con�gurations of the \y ellow"

sites betweenthe two cuts.
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Now assumethat I have the matrix T(A; B ) and the matrix T(B ; C), where C

is another cut line further to the right, and I want the matrix T(A; C). Following the

standard derivation, �rst consider the matrix

R(j ) = T(A; B )jj >< j jT(B ; C) (4.5)

where j selectsa single state of B . An entry of B is

Rik (j ) =
X

C0

e� EC 0�
X

C00

e� EC 00� =
X

C0

X

C00

e(� EC 0� EC 00)� (4.6)

where the index C00goes over all con�guration of sites between cut B and cut C. The

nestedsum now goes over all con�gurations of spins between A and C with the spins of

cut B in state j . If I then sum over all all states of B , I �nd I have T(A; C) by de�nition.

Performing the sum gives

T(A; C) =
X

j

T(A; B )jj >< j jT(B ; C)

= T(A; B )
X

j

jj >< j jT(B ; C)

= T(A; B )T(B ; C) (4.7)

which is just simple matrix multiplication.

If the system is open on the ends, the last transfer matrix will need to include

the energy for the bonds in the �nal cut. The partition function is found by summing

over all the combined con�gurations of the starting cut and the ending cut. In term of

the �nal matrix, this becomes

Z =
X

i

X

j

Tij (Star t; End) = < 
 jT(Star t; End)j
 > (4.8)
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where j
 > is a vector of all 1s.

For periodic boundary conditions, the starting and ending cut are the same

and no special handling of the last matrix is necessary. After the �nal transfer matrix

multiplication, only the diagonal terms contribute. The partition function in this caseis

just given by

Z =
X

i

Tii (Star t; Star t) = Tr [T(Star t; Star t)] (4.9)

It is customary to de�ne the incremental transfer matrix to have a step of one

row with no intervening sites. This is cheaper sincecalculating all the intervening \y ellow"

spinsbecomesunnecessary. The original cost went as2M . The cost of the transfer matrix

goesas

2N � 3 � L (4.10)

Where N width of the cut and L is the length of the system.

4.3 One spin at a time

One degreeof freedom in de�ning the transfer matrix (not mentioned in the

previous section) is how the cuts are de�ned. There is no requirement that the cuts go

straight across or that they are non-overlapping. Referring to �gure 4.2, the transfer

matrix is de�ned such that only one site is added and one site is removed. The transfer

matrix still needs to include all con�gurations for each cut, but now the cuts are not

longer independent. Any entry in the new T(A; B ) that con
icts with the shared sites
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must be zero. (I have not beenable to �nd a referenceof this method of transfer matrix

calculation, bit it seemslikely to have been done before. The performancematches 2N

best caseperfromancementioned by A. P. Young)

Figure 4.2. The colored squaresrepresent spin sites. The connectionsbetween the sites

represent bonds. The spin cuts in this caseoverlap. The red site is unique to cut A, the

blue site is unique to cut B , and the pink sites are shared. Both sites meet the bond cut

requirement betweenthe greenand purple sites.



CHAPTER 4. CLASSICAL SPIN SYSTEMS 108

The new matrix is de�ned as: (1)the bonds used to calculate T(A; B ) are only

the onesthat connect to the \Red" site. (2)The con�gurations of the cut are indexed as

a binary number whereand up spin is a oneand a down spin is a zero. (3)The most most

signi�cant bit of cut A is the \Red" site.(4)The least signi�cant bit of cut B is the \Blue"

site. Assuming no external �eld, the new one step transfer matrix is

T(A; B ) =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

a b 0 0 0 0 0 0

0 0 c d 0 0 0 0

0 0 0 0 e f 0 0

0 0 0 0 0 0 g h

h g 0 0 0 0 0 0

0 0 f e 0 0 0 0

0 0 0 0 d c 0 0

0 0 0 0 0 0 b a

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(4.11)

where a � h are Boltzmann terms based on the bond energies. Becauseof the bonds

chosen and the ordering of states, there is a symmetry associated with inversion of all

spins that becomesobvious. This symmetry will causethe eigenvectors to be either odd

or even. Sinceall non-zeroentries must be positive, onewould expect an even eigenvector

to always have the largest eigenvalue. Long rangeorder however requiresthat the largest

odd and even eigen vector becomedegenerate. This paradox is resolved by noting that

long range order doesnot occur in systemswith �nite width.

This overlapping of spin cuts turns out to be a big win in the cost of calculations.
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The cost of using this sparsetransfer matrix to calculate Z goesas

2N � 2 � L � N (4.12)

Note the exponent associated with the matrix multiplications has been decreasedby N

with only an additional scaling term of N. This may not seemlike a lot, but this can be

a factor of several thousand when N starts getting big.

So far, I have only considered calculating the partition function completely.

When the system being consideredlacks long range order, as one dimensional systems

do, it may be acceptableto calculate only a few columns of the �nal transfer matrix [90].

This is equivalent to limiting the number of starting and stopping con�gurations. When

this is done, the cost of the partition function calculation goesas

2N � L � N � W (4.13)

where W is the number of rows of the transfer matrix calculated.

As noted above, the eigenvectors of the one step transfer matrix can separated

into even and odd sets. The transfer matrix doesnot mix the two sets. This createsthe

possibility of calculating the even an odd parts of the transfer matrix product separately.

The odd transfer matrix becomes

Todd(A; B ) =

0

B
B
B
B
B
B
B
B
B
B
@

a b 0 0

0 0 c d

0 0 � f � e

� h � g 0 0

1

C
C
C
C
C
C
C
C
C
C
A

(4.14)
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whereTeven(A; B ) would di�er only in that all entries would bepositive. This optimization

cuts the cost of partition function calculation in half. This optimization does not work

with any applied �eld that breaks inversion symmetry, therefore I have not used this

optimization in calculations.

4.4 Finite T computations

In the algorithm that performs the calculation, noneof the transfer matrices are

ever actually stored. The heart of the algorithm is a subroutine that takesasinput a vector

of size2N \real" 
oating point values,the bond strength and Zeemansplitting energy. It

performs the matrix multiplication and returns the result in another 2N size vector. To

calculate a column of the transfer matrix, the algorithm starts with a unit vector that

represents a single con�guration of the initial cut, then the subroutine is called once for

each spin with the appropriate bonds. This can be written as

jTj > =
Y

i

T(i )jj > (4.15)

where jTj > is a column vector representing column j of the transfer matrix product. If

the full calculation is desired, this is repeated for each con�guration in the initial cut.

The number of spinsin the spin cut is limited by computation time and computer

memory. For example,a cut of 26spinsconsumesonegiga-byte of memory and takesabout

1 secondto perform a matrix multiplication on a relative modern computer (2 giga-Hertz

and 2 giga-byte of DRAM). For each spin removed from the cut, the memory and time

required to perform a single vector update is cut by half.
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The temperature rangeto which this method can be applied is limited by the ac-

curacy of the numerical representation of real numbers. The magnitude of the entries in the

one step transfer matrix for the � 1 model range from � exp(� 1=T) to � exp(1=T) which

puts the absolute range of the terms in the partition function sum to be � exp(� M =T).

As T gets small, the terms closer to exp(+ M =T) will dominate.

The lower bound in T is determined by the observable that is being calculated.

For example, the calculation of entropy

S = ln(Z ) +
T
Z

dZ
dT

(4.16)

involves a single derivative. Finite di�erence is the obvious choice for calculating deriva-

tiv es,unfortunately this involvessubtracting two largenumbersto producea small number

greatly reducesthe usablenumber of bits of precision. Speci�c heat,

Cv = 2
T
Z 2

dZ
dT

+
T2

Z
d2Z
dT2 (4.17)

requiresa secondderivative which requiresperforming the subtraction twice. The speci�c

heat calculation on small systems,N = 10 and L = 100, seemto be valid down to T � :5

in units of J . Fortunately this is below the transition temperatures for both ordered and

glassyspin systems.

4.5 Partition function polynomial and T = 0 calculations

Another way to view the partition function is to think of it as a polynomial

Z =
X

i

A i e� E i � (4.18)
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where E i is the i th energy above the ground state. A i is the degeneracyof i th energy

level. In order to put the degeneracyon the samefooting asE� , assumeai = ln(A i ). The

partition function becomes

Z =
X

i

e(ai � E i � ) : (4.19)

For systemssuch as the ferromagnetic, antiferromagnetic or � 1 models, the number of

terms will be on the order of the number of spins in the system. The coe�cien ts ai is the

log of the density of states. There have beensomeattempts to calculate this polynomial

for small systemsusing non-transfer matrix methods [91][92] and an interesting truncated

transfer matrix method by Morgenstern and Binder[89]

Calculating the polynomial is conceptually simple if one assumesa polynomial

data type that includes the operations of poly-add and poly-scale. Poly-add adds two

polynomials to producea new polynomial. Poly scalemultiplies a polynomial by e(a� E � ) .

It is also useful to include a clipping option to only keep a �xed number of the lowest

energy terms. This new data type replacesthe real data type in the algorithm described

above. This method is not without its cost however. It takeson the order of six minutes

to calculate the full polynomial for a 10 by 10 spin systemwith this new method where it

takes only 3.5 secondsto perform a real calculation for a single T. On the other hand it

only takes8 secondsto calculate the ground state term.

There are several advantagesof this method over the \real" method. The most

obvious being that oncethe complete polynomial has beencalculated, the partition func-

tion is known for all temperatures. The T = 0 entropy is given by the log of the degeneracy
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of the ground state and approaches the approaches the published bulk value[101],0:078.

The fact the Z becomesvery large can easily be dealt with by factoring out the largest

term

Z = e(ax � E x � )
X

i

e(ai � E i � � (ax � E x � )) : (4.20)

where the xth term is the largest. Each term in the sum is now lessthan or equal to one,

and the large exponential factored out will cancelwhen an observable is calculated.

4.6 2D Ising phase transition

The 2D Ising phaseferromagnetic phasetransition has been solved and is well

understood, but it still can be enlightening to consider this casehowever.

As mentioned before, the largest contribution to the partition function comes

from the term with the largest value of (ax � Ex � ). For large systemsand �nite T, there

will be many samplesaround the largest term that also contribute. In this case, it is

reasonableto consider the casewhere a is a continuous function of E . The partition

function then becomes

Z =
X

i

e(ai � E i � ) �
1
4

Z
dEe(a(E )� E � ) (4.21)

where the 1=4 scaling is required becausethe discrete energy levels occur in stepsof four

(in units of J). The function a(E) can be thought of as a log of the density of states.

The value of E where (a(E) � E � ) is maximum for a given temperature is found by the
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standard method

d
dE

(a(E) � E � ) =
da(E)

dE
� � = 0: (4.22)

Solving for the inversetemperature gives

� =
da(E)

dE
(4.23)

where T = 1=� . As long as the second derivative of a(E) is less than zero, to �rst

approximation the energiesaround the maximum will contribute to observablecalculations

with a Gaussianweighting.

Figure 4.3 is a graph of a(E) for a 12 by 70 site ferromagnetic Ising system. For

a systemwith a smooth, convex a(E), the speci�c heat can be approximated by

Cv �
�

�
da(E )

dE

� 2

d2a(E )
dE 2

� �
�

T2 d2a(E)
dE2

� � 1

: (4.24)

Near the center of the graph, one can seehow the curvature approaches zero. This will

causethe speci�c heat to divergeindicating a secondorder phasetransition.

The speci�c heat calculated using equation 4.17 for a range of systemcon�gura-

tions is shown in �gure 4.4.
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Figure 4.3. The log of the density of states (E) for a 12 by 70 ferromagnetic Ising model.

The density of states is symmetric around E = 0 so only the states corresponding to

positive temperatures are calculated. The curvature 
atting is an indication of a second

order phasetransition.
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Figure 4.4. The speci�c heat for a range of system con�gurations showing approaching

divergenceas the geometry of the system goesfrom one dimensional to two dimensional.

The systemsrepresented by lines were produced from full partition function polynomial

calculations. The systemsrepresented by points were produced from real calculations of

one row from the transfer matrix.



CHAPTER 4. CLASSICAL SPIN SYSTEMS 117

4.7 Spin Glass

Glassysystemsin generalare characterized by taking a long time to reach ther-

modynamic equilibrium, and in most casesthis time becomesin�nite. This is is generally

attributed to the presenceof energybarriers betweenlocal energyminimum which prevent

the thermal excited exploration of con�guration space.

4.8 Trapping local energy minim um

An example without quenched disorder, consider a magnetic that is modeled

by the classical, rectangular, two dimensional, ferromagnetic Ising model with nearest

neighbor interactions. The Hamiltonian is

H = �
X

<i;j >

J ij Si Sj (4.25)

where the sum goes over all nearestneighbors, J ij = 1, and S� = � 1. The ground state

is known to be all S� = 1 or all S� = � 1. If this system is suddenly quenched from a

temperature well above Tc to a temperature well below Tc , one expects to �nd that the

magnetization is de�ned by

m =
1

M

X

i

Si = < S > (4.26)

where M is the total number of spins, to approach � 1. If one assumesone spin at a

time transitions and the absenceof system spanning domain walls, it is possiblego from

a disordered state to one of the ground states making only transitions which reduce the
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total energyor are energetically neutral. Therefore there is no energybarrier to reaching

the ground state.

To add quenched disorder, one only needsto periodically reducethe interaction

in rows and columns of connectionsto create squaresof sites with uniform intra-square

interactions of J = 1, connectedby inter-square interactions of J 0 = 1� � . As long as 0 <

� < 1, the ground state doesnot change. When this system is quenched, theseweakened

connectionscreate energy barriers to domain wall motion. This can be demonstrated by

consideringthe a squarewith m = � 1 that is surroundedby squareswith m = 1. In order

to switch the center square, the system will needto overcomea minimum energy barrier

of � =2 times the number of spins on the parameter of the square. This minimum energy

barrier is crossedby moving a diagonal phaseboundary from corner to corner.

4.9 Frustration

The other key feature of spin glassesis frustration. A closedpath of bonds is

consideredfrustrated if path product

F =
Y

ij

J ij (4.27)

is negative. The product is over all connections in the path. In any frustrated path,

there is at least one frustrated bond (not in its low energystate). In the two dimensional,

square,nearestneighbor, Edwards-Andersonmodel the minimum structurally frustrated

path is the 4 site squareor F-placket. Structurally unfrustrated plackets will be refereed

to as U-plackets [93]. The Edwards-Andersonmodel is like the Ising model except that
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J ij = � 1 with somerandom distribution.

The F-placket hassomepropertiessimilar to the winding number associated with

vortices in type I I superconductors. A positive sign of path product, F , indicates that

an even number of F-plackets are enclosedwhile a negative sign indicates that an odd

number are enclosed.This can easily be demonstrated by starting with a arbitrary path

whereF hasa de�nite sign. When the path is increasedto encloseanother placket, oneto

three edgesare removed and one to three edgesare added such that the total is 4 edges.

If the sign of F changes,then the sign of the path product for the edgesremoved must be

di�eren t from the sign of the path product of edgesadded. Therefore the path product

for the added placket must be negative indicating it is an F-placket. To complete the

argument, start with a single placket and add packets to for any arbitrary path.

This placket parit y forcesF-plackets to form pairs connectedby a path of doubly

frustrated U-plackets. While U-plackets are not structurally frustrated, they still can have

an even number of frustrated bonds. Figure 4.5 illustrates the ground state of a system

containing four F-plackets. The energy of the system is minimum when the number of

doubly frustrated U-plackets neededto connectall F-plackets in the systemis minimized.

This pair formation is also responsible for the presenceof quenched disorder in

Edwards-Andersonmodels. If the pairing had instead been horizontal in �gure 4.5 such

that the upper two F-plackets were paired and the lower two were paired, there would be

a energybarrier that would have to be crossedto transition to the ground state.
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Figure 4.5. A graphical representation of one of the ground states of a spin system con-

taining four structurally frustrated F-plackets. The red squaresrepresent F-plackets. The

blue squaresrepresent structurally unfrustrated U-plackets. The black lines are unfrus-

trated bonds. The yellow bars are frustrated bonds. In any con�guration of spins, there

will always be a path that starts in a F-placket crossesonly frustrated bonds, and ends

in an F-placket (or in the caseof open boundaries,exits that system). The total taxi cab

length of thesepaths will be minimized in the ground state.
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4.10 2D � 1 glass simulations

The spin glasstransition is not an equilibrium transition like the Ising ferromag-

netic transition. It is instead a transition from a paramagnetic state to a quenched state

where the system gets trapp ed in a local energy minimum. Below the transition temper-

ature TG , the system dynamics becomevery slow. The dynamics generally consideredto

becomelogarithmic in time re
ecting a 1=f distribution of energybarriers. The number of

energyminima grows exponentially with the sizeof the systemmaking sampling methods

such as Monti Carlo di�cult. Multi-temp erature methods have shown somesuccess[].

The transfer matrix method avoids the local trapping problems by considering

all possiblecon�gurations. So by design,it captures the equilibrium statistics that would

only be accessibleas time approaches in�nit y. The density of states function for a � 1

system does not show any 
attening that would indicate a phase transition. See�gure

4.6. The The function a(E) is much closer to an ellipse. As expected, the equilibrium

speci�c heat doesnot show a divergent behavior. See�gure 4.7
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Figure 4.6. The log of the density of states (E) for a 12 by 70 � 1 spin glassmodel. The

density of states is symmetric around E = 0 so only the states corresponding to positive

temperaturesare calculated. The graph is quite elliptical with no 
at areaassociated with

a phasetransition.
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Figure 4.7. The speci�c heat for a range of system con�gurations shows no divergence

behavior. The variations betweensimulations seemsto be due more to the the particular

disorder in the bondsthan the systemsize. The systemsrepresented by lineswereproduced

from full partition function polynomial calculations. The systemsrepresented by points

were produced from real calculations of one row from the transfer matrix.
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4.11 2D contin uous bond distribution glass simulation

When the bonds in a spin glasshave a continuous distribution, each state has a

degeneracyof 2. This causesthe partition function polynomial to have 2M � 1 unique terms

making a complete calculation intractable. One possibility to get around this limitation

is to useenergybinning to force degeneracyfor nearly degeneratestates. This has shown

somepromise, but I have yet to quantify the error.

The lack of degeneracycreates the possibility of calculating exact ground and

excited states. By �xing onespin in the system,each term of the polynomial is associated

with a unique con�guration which can be tracked. The ground state has been veri�ed

using the Spin Server provided online by the Institut fr Informatik. The ground state

and �rst three excited states for a 10 by 10 spin systemwith Gaussianbond distribution

is shown below. In the ground state, up spins are indicated by \+" and down spins by

a \ � ". In the excited states, an \=" sign indicates a ground state matching spin and

an \ � " indicates a 
ipp ed spin. The large number of 
ipp ed spins in the third excited

state illustrates how a local minimum can be a large distance (as measuredin number of

di�ering spins) from the ground state.
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Gr ound E = 0:048 E = 0:124 E = 0:163

� + � � + � � � � + ========== ========== == � � � � �� ==

� � + + � � � � � + ========== ========== == � � � � � � � =

� + + + � � + � � + == �� ====== ========== ==== � � � � � =

+ + + + + + + � ++ ========== ========== == � � � � � � ��

+ + + � � � � � ++ ========== ========== == � � � � � � ��

+ � � + � � + + � + ========== == �� ====== ==== � � � � � =

� + � � � + � � � + ========== == �� ====== ==== �� ====

+ + � + � + + � ++ ========== ========== ==========

� � � + � + + + ++ ========== ========== ==========

+ + � + � � � + �� ========== ========== ===== � � � ==

Another way to analyze is to analyze the behavior is to consider the spin-spin

correlation versesdistanceat �nite temperatures. As the transfer matrix product is created

by incorporating more spins through matrix multiplication

Tr unning =
Y

s=0 � i

Ts (4.28)

the current product matrix quickly assumesa very singular form

Tr unning = � OddjOddR >< OddL j� E ven jEvenR >< EvenL j (4.29)

with all other eigenvaluesbecomingtiny. At T = 0 it is expected that �E ven � �O dd as

the number of spinsgrows large indicating long rangeorder. At T > TSG it is expectedthat
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� E ven >> � Odd indicating no long range order. Figure 4.8 illustrates how the eigenvalues

changewith distance along a long 18 spin wide strip. The quantit y graphed,

� = log
�

� Odd

sqr t� 2
Odd + � 2

E ven

�
(4.30)

indicates how correlated a states at the start of the strip are to the states at the end

of the strip. At the highest temperature, T = 0:35, � shows a noisy but steady decline

representing an exponential loss of correlation. Between T = 0:25 and T = 0:15 , 
at

portions start appearing representing highly correlated regions. Thesecorrelated regions

are responsible for the energybarriers that causethe slow spin glassdynamics below TSG.

At T = 0:05, the graph is mostly 
at with a few noisy steps. These steps are causedby

low energy excitations that span the width of the strip. At any �nite temperature, these

excitations will causethe lossof long rangeorder. Domain spanning excitations will exist

at somedensity below any �nite energy.
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4.12 Conclusion

The exponential advancement of computers enablesthe revisiting of problems

from time to time. I have developed transfer matrix algorithms for the calculation of the

�nite T partition function and the exact polynomial partition function. I have veri�ed

thesecalculations by compairing them against published results.
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