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Van Hove singularities and spectral smearing in high-temperature superconducting H3S
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The superconducting phase of hydrogen sulfide at Tc = 200 K observed by Drozdov and collaborators at
pressures around 200 GPa is simple bcc Im3̄m H3S from a combination of theoretical and experimental
confirmation. The various “extremes” that are involved—high pressure implying extreme reduction of volume,
extremely high H phonon energy scale around 1400 K, extremely high temperature for a superconductor—
necessitates a close look at new issues raised by these characteristics in relation to high Tc itself. First principles
methods are applied to analyze the H3S electronic structure, beginning with the effect of sulfur and then focusing
on the origin and implications of the two van Hove singularities (vHs) providing an impressive peak in the density
of states near the Fermi energy. Implications arising from strong coupling Migdal-Eliashberg theory are studied.
It becomes evident that electron spectral density smearing due to virtual phonon emission and absorption must be
accounted for in a correct understanding of this unusual material and to obtain accurate theoretical predictions.
Means for increasing Tc in H3S-like materials are noted.
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I. INTRODUCTION

The recent discovery of superconducting hydrogen sulfide
under high pressure by Drozdov and collaborators [1–3], and
remarkably predicted a year earlier by Duan et al. [4], has rein-
vigorated the quest for room temperature superconductivity.
The predicted structure has been confirmed by x-ray diffraction
studies by Einaga et al. [5] that show that sulfur lies on a bcc
sublattice; the protons cannot be seen in x-ray diffraction.
The resistivity transitions were also confirmed by Einaga
et al.. The experimental reports indicate critical temperatures
up to Tc = 203 K in the pressure range of 200 GPa, based
on the resistivity transition, the effect of magnetic field on
Tc, on a H isotope shift of the right sign and roughly the
expected magnitude [1], and the Meissner effect has been
demonstrated [2].

In a success of predictive theory in this area, the magnitude
of Tc in the 200 GPa pressure range was obtained from first
principles calculation prior to experiment [4] and confirmed
by others [6–8], so there can be little doubt that 200 K super-
conductivity has been achieved in the structurally simple com-
pound H3S, pictured in Fig. 1. The finding that H vibrations
provide the mechanism seems to confirm the suggestion of
Ashcroft that dense hydrogen should superconduct at high tem-
perature [9], however, evidence is increasing that H-rich mate-
rials [10] are substantially different and more promising than
pure hydrogen until TPa pressures can be reached. Early quan-
titative estimates [11] of Tc for metallic H were in the 250 K
range; more recent values [12] for pressures of several TPa lie
in the 500–750 K range. The phase diagram of this system is
uncertain, however, due to the quantum nature of the proton.

Although comprehensive calculations based on density
functional theory (DFT) linear response formalism and Eliash-
berg theory [13] have been reported and seem convincing, H3S
turns out to be more intricate than the initial reports suggest.
Using their self-consistent harmonic approximation, Errea
et al. [6] find substantial corrections due to anharmonicity: At
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200 GPa, anharmonicity increases the characteristic frequency
ωlog by 3%, the electron-phonon interaction (EPI) strength λ is
decreased by 30%, and the predicted value of Tc falls 22% from
250 K to 194 K. Potentially important for further understanding
is their finding that anharmonicity shifts coupling strength to
H-S bond stretch modes, from H-S bond bending (alternatively,
H-H bond stretch) modes.

Other basic questions have yet to be addressed. First, why
are the electron-phonon matrix elements as large as they are?
While the main causative property behind the high Tc is the
(understandably) high phonon frequencies that set the energy
scale for Tc, substantial electron-ion matrix elements are also
required. Second, Flores-Livas et al. [8] have investigated the
energy dependence of the spectrum around the Fermi level,
finding that it influences the theoretical predictions, which are
overly optimistic when energy dependence is neglected. Both
Akashi et al. [14] and Flores-Livas et al. have solved the gap
equations, providing theoretical predictions of the gap as well
as Tc without using the Allen-Dynes equation. The questions
posed by intricacies in the density of states (DOS) and the role

FIG. 1. Crystal structure of Im3̄m H3S. Nearest neighbor S-H
bonds are shown. At this nearest neighbor level, the structure consists
of two interleaved ReO3 sublattices, displaced relative to one another
by the body-centering vector (1,1,1)a/2.
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of zero point vibrations has stimulated work by Bianconi and
Jarlborg [15].

More fundamentally there is the question “why H3S?
why sulfur?” Several H-rich materials have been studied at
high pressure (see references in Refs. [4,6–8], and Bernstein
et al. [16]), and although some are predicted to superconduct
up to several tens of kelvins, H3S is a singular standout.
Li et al., [17] for example, studied the H2S stoichiometry
for stable compounds up to similar high pressures, finding a
maximum Tc of “only” 80 K. There is little understanding so far
of the microscopic cause of very high Tc, beyond the obvious
expectation of higher phonon frequencies at high pressure;
the origin of the large matrix elements remain obscure. Papa-
constantopoulos and collaborators [7] calculated the pressure
dependence of matrix elements, finding increasing H scattering
with increasing pressure. More basically one can ask, is there
something special about sulfur, and the underlying electronic
structure, that provides the platform for such high Tc?

It is the last of these questions we address initially in this
paper. An obvious feature for study is the strikingly sharp peak
in the density of states N (E) due to two van Hove singularities
(vHs) separated by 300 meV very near the Fermi level EF .
There is a large literature on the connection between peaks in
N (E) and high Tc in the A15 class of materials [18] and later
in the high temperature superconducting cuprates [19,20], but
their importance for H3S is unclear. van Hove singularities
near the Fermi level can enhance N(EF ) and thus the electron-
phonon coupling strength λ due to increased number of
available states to participate, but there are additional questions
to address.

The paper is organized as follows. Methods are described
in a brief Sec. II. In Sec. III the general electronic structure
and the charge density near EF are presented and discussed.
The two van-Hove singularities are identified, quantified,
and analyzed, and the relation between them is identified.
In Sec. IV we address the peak in N(E) in the light of
strong electron-phonon coupling (EPC), high frequencies,
and thermal and EPC-induced smearing. Section V presents
scenarios for further increase in coupling strength λ, and
raising of Tc toward room temperature, in this and similar
systems. A short summary is provided in Sec. VI.

II. METHODS

Density functional calculations have been carried out using
both the linearized augmented plane wave (LAPW) method
based Wien2k code [21] and the linear combination of atomic
orbitals based FPLO code [22]. The PBE implementation [23]
of the generalized gradient approximation (GGA) is used as
the exchange correlation functional. Except where noted, the
results will be those from Wien2k. The crystal structure of H3S
is Im3̄m with a lattice constant of 5.6 a.u. corresponding [7]
to a pressure of 210 GPa. All atoms lie at high symmetry sites.

To study the vHs points near the Fermi level, a very fine
k mesh containing 8094 points in the irreducible Brillouin
zone is used. Sphere radii R for H and S are 0.97 a0

and 1.81 a0 respectively, with basis set cutoff determined
by RH Kmax = 6. The results we discuss are insensitive
to these choices. The tight-binding parameters we present
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FIG. 2. DFT band structure of H3S at a = 5.6 a.u., with the Fermi
level set to zero. The darker bands in the −10 eV to +4 eV region have
more H 1s character than the others. The position of the van Hove
singularity discussed in the text is not visible along these symmetry
lines.

were obtained from projection to symmetry-adapted Wannier
functions as implemented in FPLO.

III. ELECTRONIC STRUCTURE

The calculated lattice constant [7] at 210 GPa, a = 5.6 a.u.
corresponding to a volume 58% of the zero pressure volume in
the same structure, is used in all calculations. The rather simple
band structure of H3S is shown in Fig. 2 and, up to some
differences near the Fermi level, is consistent with previous
work [4,16,24]. The very large occupied bandwidth of 26 eV
reflects both the nearly free electron aspects of the the lower
part of the valence bands, with this aspect being enhanced
by the reduced volume that increases electron density and
hopping amplitudes. Both effects increase the bandwidth: The
reduced volume increases the density and hence elevates the
Fermi energy, also the increased bandwidth reflects increased
hopping amplitudes. Several bands cross the Fermi level, with
varying velocities.

The DOS N (E) on a broad scale is presented in Fig. 3. The
occupied bandwidth is 26 eV. Over the lowest 20 eV of this
range, the DOS has a remarkably free-electron-like

√
E shape,

without significant structure. Over the lower end of this region,
the DOS is dominated by S 3s character, above which H 1s

and S 3p character enter and mix. Then, at −4 eV and +5 eV
two substantial and rather narrow peaks emerge, indicative
of very strong hybridization, presumably being bonding and
antibonding signatures. Double valleys lie at −2 eV and +2 eV,
between which a very sharp peak, related to two van Hove
singularities (vHs) 300 meV apart in energy, juts upward. The
Fermi energy EF (set to zero throughout) lies very near the
upper vHs. The vHs are discussed further in Sec. III D.

Papaconstantopoulos et al. provided [7] the orbital pro-
jected DOS for H3S. The lower peak, at −4 eV, is very strongly
S 3p in character, while the sharp peak at EF is a strong mixture
of S 3p with H 1s. The upper peak at +5 eV is a mixture
of these two characters with states of more planewave-like
character. We note that the shape of the DOS in Fig. 3 is
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FIG. 3. Density of states of H3S compared to that of H3H at the
same volume, from Wien2k calculation. The bandwidth is extremely
large due to the broadening caused by short interatomic distances.
The peak in N (E) arises from two van Hove singularities within
300 meV of each other and occurring in the region of the Fermi
energy. N (EF ) = 0.63 states/eV for H3S. The impact of H bonding
with the S 3p orbitals is evident.

significantly different than that of Duan et al., [4] in spite of
the similarity of the bands along symmetry directions.

We demonstrate in Sec. IV that for physical supercon-
ducting properties, thermal and, more importantly, dynamical
broadening makes details of N(E) fine structure unimportant
in some respects. This unimportance does not however apply
for the underlying theory based on the static lattice, where it
has serious consequences as discussed in Sec. V. Briefly, the
issue is that so much in conventional EPC theory is formulated
and evaluated in terms of the specific value of N(EF ) assuming
N(E) is slowly varying, which is not the case in H3S.

A. Importance of sulfur

As one clear means to assess the effect of H-S orbital
mixing, Fig. 3 displays N (E) also for a hypothetical material,
H3H, in which the S atom is replaced by H in the same
structure. The spectrum is very different in a wide range around
the Fermi level. Unusually, an almost perfectly linear region
of N (E) extends between two vHs 9 eV apart, on opposite
sides and far from the Fermi level. The point however is that
the strong structure in H3S in the −4 eV to +5 eV region
is missing in H3H. The hypothetical nature of H3H, which is
in fact a simple cubic lattice of hydrogen, is corroborated by
our calculation of the phonon spectrum, which results in many
imaginary frequencies signaling dynamic instability.

Returning to the H3S DOS, such strong structure in N(E)
reflects strong mixing between orbitals lying in this energy
range, which are the H 1s and S 3p valence orbitals. The orbital
projected DOS (PDOS) presented by Papaconstantopoulos
et al. [7] shows that S 3s participation is becoming small
around EF . Their PDOS helps to understand the strong DOS
structure. The peak at −4 eV is largely S 3p character with
some H 1s contribution. The peak at +5 eV has, surprisingly, a
large contribution from Bloch orbitals with d symmetry around
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FIG. 4. Density of states (per eV-f.u.) of the sequence H3X, X =
P, S, Cl, aligned at the band filling of H3S. The Fermi levels of H3P
and H3Cl (using the H3S structure, hence hypothetical) are shown
by the vertical lines at appropriate band fillings. The similarity is
striking; a rigid band (or virtual crystal) picture of alloys near H3S
holds qualitatively.

the S site, with some participation of all of the orbitals besides
S s. The peak at EF —the important one bounded by two closely
spaced vHs—is a strong mixture of H 1s with S 3p, whose
corresponding tight binding hopping parameters will have a
correspondingly large hopping amplitude.

We also compare in Fig. 4 N(E) for H3X, X = P and Cl,
to that of H3S, aligned at the H3S band filling. Despite some
variation in the on-site 3p energy and electronegativity, N(E)
is quite similar among the three. The peak in N(E) at EF is
narrower for both P and Cl, i.e. the vHs are closer together. The
strength of the peak at EF appears to decrease somewhat from
P→Cl. The distinction of S is that it places the band filling at
the peak in N(E).

To quantify H-S hybridization relative to that of H-H,
symmetry projected Wannier functions (WFs) were calculated
using the FPLO code, projecting on S 3s and 3p, and H 1s

atomic orbitals, for a total of seven WFs per primitive cell.
The WF basis provides a tight-binding representation of the
DFT bands over a 30+ eV region, although requiring hopping
parameters out to several neighbors. We denote the sulfur states
by S and P and the H orbital by s in the subscripts of the
hopping integrals. The WFs are pictured in Fig. 5, with both S
3p and H 1s WFs showing anisotropy and extension, reflecting
the strong H-S mixing.

The on-site energies and largest Slater-Koster parameters
are listed in Table I. Relative to EF = 0, the on-site energies
(compared to those reported by Bernstein et al. [16], provided
here in parentheses) are: εS = −8.0 (−8.6) eV; εs = −5.5
(−5.0) eV; εP = 0.03 (−1.3) eV. The procedures used by
Bernstein et al. are not exactly the same as ours, with
the difference indicating the level of confidence one should
assign to these site energies considering the nonuniqueness of
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FIG. 5. Left: sulfur 3pz Wannier function, showing strong mixing
with H 1s contributions above and below. Center: sulfur 3s Wannier
function, with minor hybridization to neighboring 1s orbitals. Right:
hydrogen centered Wannier function, revealing strong hybridization
of H 1s with S 3pσ above and below,, as well as mixing with
neighboring H 1s orbitals along the other two axes.

tight-binding representations. It is eye catching that our sulfur
P on-site energy is indistinguishable from EF .

The largest hopping parameters (Table I) are nearest
neighbor (n.n.) sPσ (−5.4 eV) and sSσ (−4.4 eV), the
former confirming that H-S n.n. hopping is dominant in
creating the DOS structure. We have calculated the DOS for
a single sublattice, which is ReO3-structure H3S, and it is
nothing like the full DOS. The n.n. H-H hopping ssσ , at
−2.8 eV, couples the sublattices strongly, and S-S second
neighbor hoppings, one lattice constant apart, are 1.3–1.8 eV
in magnitude. Interesting are the 4th neighbor H-H hoppings,
between atoms one lattice constant apart. The hopping through
the S atom (ssσ )4 is −1.1 eV, while through an intervening H
atom (ssσ )′4 is half that size with opposite sign.

As mentioned, the peak in N(E) reveals that the band filling
in H3S happens to be almost perfect for large response to
perturbations, with EF lying within the sharp peak. Retaining
the same band filling suggests substituting Se or Te for S.
Flores-Livas et al. [8] have done parallel calculations for H3S
and H3Se. The H3Se frequency ωlog is 10% higher but the

TABLE I. Selected tight-binding hopping amplitudes (in eV)
from the transformation to Wannier functions. The subscripts indicate
the index of the neighbor: 1≡1st neighbor, 2≡2nd neighbor, etc. For
H there are two 4th neighbors one lattice constant apart: one through
the S atom, denoted “4,” one through another H atom, denoted “4′.”
(P̃ P )1 indicates 1

4 (PPσ )1 + 3
4 (PPπ )1, which only occurs in this

combination.

εS −7.98 (sPσ )1 −5.42
εs −5.46 (PPσ )2 −1.83
εP −0.03 (SPσ )2 1.29
(sSσ )1 −4.37 (SSσ )2 0.94
(ssσ )1 −2.80 (sPσ )2 −0.93
(ssσ )4 −1.14 (P̃ P )1 0.60
(ssσ )′4 0.55 (SSσ )1 0.30

calculated value of λ is lower by 40%, with the resulting Tc

being lower by 27%. The changes of ωlog and λ indicate that
the product η = N (EF )〈I 2〉 (not reported) is lower by 20% for
the Se compound. Here 〈I 2〉 is the Fermi surface average of the
square of the electron-H ion scattering matrix element. With
H so dominant in the EPC and H modes separated from S (or
Se) modes, electron-phonon coupling and superconductivity
is dominated [7] by the H contribution

λH = N (EF )
〈
I 2
H

〉
MHω2

H

, (1)

where the matrix element refers to scattering from the
displaced H potential and ωH is a characteristic frequency
from H modes.

The other isovalent “chalogenide” is oxygen, which is quite
different from S chemically with H. We have found that
the DOS of H3O in the H3S structure differs substantially
from that of H3S. It may be relevant that H2O does not
metalize until much higher pressures than are being considered
here. Heil and Boeri [24] have considered bonding, EPC,
and Tc where sulfur is alloyed with other group VI atoms.
With alloying treated in the virtual crystal approximation
(averaging pseudopotentials), they have suggested that a more
electronegative ion will help. This leaves only oxygen in that
column, and they calculated that a strong increase in matrix
elements compensates a considerable decrease in N(EF ),
so that λ might increase somewhat. Ge et al. have also
suggested partial replacement [25] of S, with P being the most
encouraging, due to the increase in N (EF ).

While S changes the electronic system very substantially
from that of H3H and its Tc is spectacular, it may not be so
special. A variety of calculations have predicted (see Durajski
et al. [26] for references) high values of Tc (in parentheses)
for H-rich solids: SiH4(H2)2 (107 K at 250 GPa), B2H6H (147
K at 360 GPa), Si2H6 (174 K at 275 GPa), CaH6 (240 K at
150 GPa). Whether any general principles can be extracted
from these results remains to be determined.

B. Charge density within 1 eV of Fermi level

The charge density from states within 1 eV of EF is shown
in Fig. 6; it is this density whose coupling to H vibrations gives
strong coupling and the very high value of Tc. Results from
smaller energy slices are no different, indicating that the states
in this range have the same character. The density around S is
strongly distorted from spherical symmetry, having substantial
maxima in the direction of neighboring H atoms. The H density
is strongly elongated toward the two neighboring S atoms.
These shapes reflect strong covalent H 1s-S 3pσ interaction
discussed above. There remains a density minimum in the bond
center rather than a bond charge maximum. This character is
typical of strong directional bonding in metallic compounds.

C. van Hove singularities of H3S

N(E) in the energy range −1.0 eV to 0.2 eV was fit to
the following piecewise expression [27] for 3D vHs near two
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FIG. 6. Isosurface of the charge density obtained from states in
the energy range EF ±1 eV. Sulfur atoms (yellow spheres) lie at the
corners and at the body center; H atoms are denoted by small blue
spheres.

singularities at energies εlo < εhi

N (E) =
⎧⎨
⎩

a1
√|b1 − ε| + c1ε + d1 ε < εlo

a2ε + b2 εlo < ε < εhi

a3
√|ε + b3| + c3ε + d3 εhi < ε

. (2)

Energy isosurfaces at the two vHs energies are presented in
Fig. 7. The vHs points lie at either end of a line where low
velocity regions of two sheets of Fermi surface break apart at
the zone boundary and then “unzip” until they separate into
disjoint sheets. The vHs (from the FPLO bands) at −0.43 eV
occurs at (−0.42,0.21,0)π/a and symmetric points. In the
local principal axis coordinate system the effective masses
are −0.15me, 1.36me, 0.14me, giving a thermal (or DOS)
mass mth ≡ |m1m2m3|1/3 = 0.31me. The thermal mass is one
measure of the strength of the vHs. For the one at −0.11 eV, the
masses are −0.83me, −0.16me, 0.56me, and mth = 0.42me.
We return to the importance of vHs effective masses in
Sec. V.

IV. IMPACT OF DYNAMICAL ELECTRON-PHONON
INTERACTION

Thermal broadening as described by the Fermi-Dirac
distribution function has well understood consequences and is
a factor in determining (in limiting) Tc, though it is usually not
thermal broadening of the DOS, which is normally constant
over an energy range of several kBTc. The purely thermal
aspect is formalized in the gap to thermal broadening scale
ratio 2	/πkBTc ≈ 1, and is central to, but standard in,
Eliashberg theory. Specifically, it is thermally excited electron
and hole quasiparticles that overcome pairing and restores the
normal state above Tc.

However, the sharp structure in N(E) on the scale of
relevant phonon energies requires an extension of conventional
implementations of Eliashberg theory [13]. Conventionally,
a constant N(E) on the phonon energy scale is assumed,
so all scattering processes can be considered as confined to
the Fermi surface E = EF . This issue was confronted long

FIG. 7. Top: isoenergy contour from FPLO for the vHs at E =
−0.43 eV. Bottom: similarly for the vHs at E = −0.11 eV. The red
circles pinpoint two of the symmetry related vHs in each case. The red
ellipse outlines the region joined by the two van Hove singularities;
two energy surfaces are “unzipped’ as the energy increases between
the two vHs. Color denotes the velocity, which ranges from zero
(darkest tan, at the vHs) to 2.5×108 cm/s (deep blue).

ago [28,29], because of the sharp structure in N(E) in several
of the then-high-Tc A15 structure compounds, viz. Nb3Sn,
V3Si, Nb3Ge, with Tc∼20 K, and has been followed up in
related applications [30,31].

In H3S around 200 GPa, the representative frequency is

 ∼ 1300 K = 112 meV. We have chosen this value based
on the DFT-based calculations of (harmonic) ωlog frequencies
ranging from 1125 K to 1450 K. [4,6,8,14,24,25], A single
frequency moment is sufficient, since the logarithmic, first,
and second moments differ only at the 2% level; we denote
this frequency 
. Using a somewhat different value of 
 below
would not change our conclusions.

From visual examination, the sheets of the constant energy
surfaces at EF ± 
 do not differ much from the Fermi surfaces
at EF (see Fig. 7), the differences occurring in small pockets
around � (not visible) and along a line connecting the two
vHs. Inter-vHs scattering could be interesting: Although it
involves a small amount of phase (k) space, it incorporates
a disproportionate fraction of states with low to vanishing
velocity. Possible complication from inter-vHs scattering and
nonadiabatic processes lie beyond the scope of our discussion.
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A. Formalism

It has been known since the work of Engelsberg and
Schrieffer [32] and Shimojima and Ichimura [33] fifty years
ago that, for a characteristic phonon frequency 
 in an
interacting electron-phonon system, electron spectral density
is spread from its noninteracting δ-function spike at Ek up
to a few 
. The spectral density arises from the electronic
self-energy that is treated for superconducting systems by
Eliashberg theory. When N(E) is slowly varying over a scale of
a few 
 it is rare to notice the effects of such broadening except
possibly in direct measurements where phonon sidebands may
be observed in photoemission spectra. For situations as in
H3S where Bloch state character is slowly varying in energy
but N(E) varies rapidly, the normally simple electron-phonon
formalism becomes more challenging. Drozhov studied the
effects of EPC in the vicinity of a vHs where Migdal’s theorem
is violated, and found severe renormalizations [34]. If these are
confined to a very small phase space, however, the effects on
most properties may be minor.

For the case of rapidly varying N(E) but neglecting viola-
tions of Migdal’s theorem, the generalization of Eliashberg
theory has been formulated and applied to the A15 com-
pounds [29,35]. One feature that is distinctive in H3S compared
to most other EPC superconductors is that Tc is an order of
magnitude higher, because the frequencies are comparably
higher, and simple thermal broadening is correspondingly
larger and requires attention. The second factor in common,
and the important one, is that strong EPC causes an effective
smearing of the electronic spectral density due to exchange
of virtual phonons appearing in Migdal-Eliashberg theory—
excitations described by the electron Green’s function are
part electron, part phonon. This broadening is given by the
imaginary part of the interacting electronic Green’s function

G−1
k (ω) = ω − [Ek − μ(T )] − Mk(ω; T ) − i�k(ω; T ). (3)

Here Ek is the DFT band energy, μ(T ) is the chemical
potential, and M and � are the real and imaginary parts of
the phonon-induced self-energy.

The spectral density A(ω) is the interacting analog of the
band DOS N(E):

A(ω) =
∑

k

Ak(ω) = 1

π

∑
k

|ImGk(ω)| (4)

= 1

π

∑
k

�k(ω)

[ω − (Ek − μ) − Mk(ω)]2 + �k(ω)2

→
∫

dξ
�/π

(ω − ξ )2 + �2
N (ξ ).

In the last expression the Brillouin sum has been converted into
an energy integral by inserting

∫
dEδ(E − Ek)=1, assuming

that only Ek (and not wave function character, hence not M

or �) depends on k near EF , and ξk = εk − μ + M(k,ξk) is
the quasiparticle energy. This simplification is usually fine
for electron-phonon coupling in a standard Fermi liquid, as
wide-band H3S appears to be.

There is strong rearrangement of spectral density even
before this smearing effect of electron damping �. For temper-
atures and frequencies ω up to the order of the characteristic
phonon energy 
 or more, the behavior of the real part Mk

is linear dMk/dω = −λk , where λk is the EPC strength at k

whose average over the Fermi surface is λ. The equation for
ξk in the previous paragraph then gives for the quasiparticle
energy

ξk = Ek − μ

1 + λk

. (5)

This equation expresses the phonon-induced Fermi surface
mass enhancement 1 + λk , and (1 + λk)−1 is the quasiparticle
strength, i.e., the fraction of the electron’s δ-function spectral
density at ξk and whose average in H3S is 1/3 (λ ≈ 2). Two-
thirds of the spectral weight is spread from the quasiparticle
energy ξk by up to a few times 
. This is a serious redistribution
of weight that we cannot treat in any detail without explicit
solution for the Eliashberg self-energy on the real axis.

Notwithstanding the complications, in an interacting sys-
tem the thermal distribution function containing all com-
plexities can be handled formally to provide insight into
this “varying N(E)” kind of system. The interacting thermal
distribution (state occupation) function f (Ek) is defined as the
thermal expectation of the number operator nk

f (Ek) = T

∞∑
−∞

Gk(iωn)eiωnη

=
∫ ∞

−∞
dωf◦(ω)A(Ek,ω), (6)

where the Matsubara sum with positive infinitesimal η has been
converted into an integral in the last expression and f◦(E) is the
(noninteracting) Fermi-Dirac distribution. The k dependence
of Mk and �k are considered to be weak and replaced by a
Fermi surface average. The interacting distribution function
can be expressed as the noninteracting one broadened by [35]
�k(ω) as N(E) is broadened in Eq. (4).

Several thermal properties can be formulated [35] in
terms of the interacting (broadened and in principle mass
renormalized) density of states N (E). Returning to single
particle language, the spectral density at EF is approximately

N (EF ) =
∫

dE
�/π

(E − EF )2 + �2
N (E). (7)

For energies a few 
 around EF the extension EF → E to give
N (E) will be reasonable. Then, returning to the distribution
function, the total electron number can be written [35] in two
ways

Nel =
∫

dEf (E)N (E) =
∫

dωf◦(ω)N (ω), (8)

illustrating that interaction effects can be exchanged between
the distribution function and, in this instance, the interacting
and noninteracting density of states. Thus in a region around
EF the spectral density is the band density of states broadened
by a Lorentzian of halfwidth �.

B. Thermal and phonon smearing in H3S

We now estimate the impact of this spectral density
smearing for H3S using the Wien2k result for N(E). The mass
renormalization effects (from the real part of the self-energy)
in Migdal theory will be disregarded here, leaving our estimate
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as an underestimate of the effect of smearing. Investigation of
the (Migdal) self-energy equations (i.e., in the normal state)
gives the quasiparticle inverse decay rate via phonons over
most of the relevant energy range, [28,29,32] for an Einstein
model, as

� ≈ πλ

[
nB(
) + 1

2

]
. (9)

For H3S the characteristic frequency 
 is in the ballpark of

 ≈ 1300 K (see above). Since we are interested only in
relative values of quantities affected by smearing, we will not
distinguish ωlog from ω2, etc.

With the choice of μ∗ = 0.15, a value of λ = 2.17 is
necessary to give the observed Tc = 200 K, which also is in the
range that has been quoted as resulting from DFT calculations.
At 200 K, the Bose-Einstein thermal distribution nB gives a
negligible fraction of phonons excited: nB(
)∼10−4. Thus

� = π

2
λ
 = 5 × 103K = 0.38 eV, (10)

the halfwidth is proportional to the product λ
. This smearing
in Eq. (6) arises from the virtual excitation of phonons that
provides the coupling, even at low Tc where phonons are
not excited. We note that zero-point vibrations do not scatter
electrons; sharp Fermi surfaces survive strong electron-phonon
coupling, with de Haas-van Alphen oscillations remaining
visible, and the resistivity ρ(T ) → 0 at T → 0.

Figure 8 shows three curves: the calculated (Wien2k) static
lattice N(E) from Fig. 2, the thermally broadened version at
200 K, and the virtual phonon broadened DOS with halfwidth
� = 0.38 eV from above. The thermal broadening function
is the derivative −df◦(E − E′)/dE with half width of about
πkBT = 625 K = 55 meV. This thermal broadening at 200 K
is minor on the scale of interest, reducing the effective value
of N(EF ) slightly. The phonon broadening however is severe,
with the peak value of 0.70/eV-f.u. for N(E) dropping by 37%.

FIG. 8. H3S density of states without broadening (black line,
Wien2k DOS), with thermal broadening at 200 K (green line, which
is hard to distinguish from the unbroadened one), and the virtual
phonon broadened effective DOS N(E) using a Lorentzian halfwidth
of 0.38 eV (red line). Note the large drop in the value at the Fermi
energy (dashed vertical line).

The unbroadened value N(EF ) of 0.64 states/eV-f.u. is lowered
by nearly 1/3, to 0.45 states/eV-f.u. The effect of the shift of
the chemical potential is secondary when broadening is so
large.

C. Implications for the theory of H3S

The Eliashberg equations including the energy depen-
dence [28,29] of N(E) indicate that it is this 1/3 reduced value
of N(EF ) that should be used with the standard implementation
to get a good estimate of λ, the superconducting gap, and
Tc. The impact of experiment/theory agreement for H3S
is substantial and negative: the spectral function α2F (ω),
proportional to N (EF ), is reduced by 1/3 by EPC. The naive
value of λ ≈ 2.17 becomes, after reducing by 1/3, λ = 1.45.
The phonon frequency moments, which involve α2F/λ, seem
at this stage to remain unchanged; we return to this point below.

We have evaluated the magnitude of this phonon broadening
correction on Tc using the Allen-Dynes equation [36], taking
the representative values for H3S of the phonon moments to be

 = 1300 K and μ∗ = 0.15. For λ = 2.17, Tc = 200 K; for
the 1/3 reduced value λ = 1.45, Tc = 130 K. The agreement
between theory and experiment is strongly degraded. It is
worthy of note that H3S happens to be in a nearly linear
regime of Tc(λ), where a reduction of λ by 1/3 results in a
decrease of Tc by nearly 1/3. We note that the corresponding
strong coupling factor f1 in the Allen-Dynes parametrization is
1.13 (1.07); f1 is the crucial improvement of the Allen-Dynes
equation over the McMillan equation and seems sometimes
for hydrogen sulfides to have been neglected.

What this comparison implies is that theory-experiment
agreement for Tc is not as good as has seemed, since
taking phonon smearing into account, theory would only be
predicting of the order of 2/3 of the “constant N (EF )” value.
It should be noted that this 1/3 reduction factor depends on
the accurate calculation of N (E), for which we have used the
Wien2k spectrum. With the FPLO result for the DOS, N (EF )
is lower and thus the effect of smearing will be smaller.

A few papers have reported calculations of the band
structure and of N(E), and some studies have reported λ, but
little attention has been given to the value of N(EF ), which is
sensitive to method and computational procedures. At 200 GPa
(a = 5.6 a.u.) Papaconstantopoulos et al. quote 0.51/eV-f.u.;
Duan et al. obtain [37] 0.41/eV-f.u.; Bianconi and Jarlborg
report 0.50/eV-f.u. (their table numbers must be per cubic
cell). Our Wien2k and FPLO values are 0.64 (0.42)/eV-f.u.
respectively, indicating that even all-electron full potential
methods can differ.

The point is that in conventional Eliashberg theory—
constant N(E) on the phonon scale—λ is proportional to
N(EF ), and the values that have been used are sensitive to meth-
ods and cutoffs (depending on method, see above), but more
seriously they are obtained from unbroadened N(E). Because
of this, the reported values of λ and hence Tc are quantitatively
uncertain, assuming they are converged BZ integrals. And on
this point, McMahon and Ceperley [12] and Akashi et al. [14]
have discussed the various challenges in reaching convergence,
before even confronting the energy variation question. The
(unsmeared) prediction of Tc ≈ 200 K indicates that improved
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theory, by taking into account phonon broadening, would give
a substantially reduced critical temperature.

Flores-Livas et al. have recognized the issue of the variation
of N(E) on the scale of the phonon frequencies. In their im-
plementation of density functional theory for superconductors
(DFTSC), this variation is accounted for. They reported, for
their calculation of N(E) (details were not reported), taking into
account the variation resulted in a 16% decrease in Tc, from
338 K to 284 K in their calculation. Their methods also involve
calculation of μ∗ that is not treated in the Eliashberg form as
well as other methodological differences, and these differences
make direct comparison with other reports difficult. Still, the
relative effects of energy variation of N(E) are clear.

This DOS variation issue extends to the calculation
of phonon frequencies. The phonon self-energy involves
electron-phonon scattering in which a phonon is absorbed,
scattering an electron from Ek < EF to Ek + ωq > EF . Most
methods of calculating phonon frequencies do not include
effects of the density of available initial or final states in
this energy region being variable. Thus calculation of phonon
spectra will need to be re-evaluated for situations such as that
imposed by H3S, and the associated nonadiabatic corrections
considered.

V. ROUTES TO HIGHER CRITICAL TEMPERATURE

The foregoing section indicates that 200 K superconductiv-
ity has been achieved with an effective DOS around N (EF ) ≈
0.44/eV-f.u. compared to a peak value between the two vHs
around 0.7/eV-f.u. This means as mentioned above that the
theory needs refining, as already noted by Flores-Livas et al.,
to determine just how much is understood quantitatively and
what features may require more attention.

This difference in N(E) versus N (E) has larger and much
more positive implications. The fact that a reduced effective
value of N (EF ) should be used for H3S also provides the
glass-half-full viewpoint: a much larger value of N (EF ) and
therefore Tc may be achievable in this or similar systems.
Suppose that the two vHs can be moved apart, each by (say)
0.5 eV, leaving a value N(EF ) ≈0.7/eV-f.u. between. Then
the Lorentzian smearing will have much less effect. There is
also the question of increasing the magnitude of N(E) at the
peak, i.e., N(Evhs). This value depends on the effective masses
at the vHs, but also on the volume of the region in which the
quadratic effective mass representation holds. If it holds in an
ellipsoidal region defined by

∑
j

�
2k2

j

2mj

< G2
c, (11)

the DOS from this region is

N (E) ∝ m
3/2
th

[
αGc − β

|E − Evhs|
Gc

+ ...

]
, (12)

where α and β are numbers of order unity. The value N(Evhs)
at the vHs is proportional to the thermal mass and to the radius
Gc of the region of quadratic dispersion, and the decrease away
from the vHs (the second term) is inversely proportional to Gc.
There will be additional smooth contributions from outside this
region, of course. However, increasing mth and the region of

quadratic dispersion is favorable for increasing N (E) in the
vHs region, and hence increasing Tc. These observations seems
to implicate the topology of the Fermi surfaces, rather than
more conventional electronic structure characteristics such as
relative site energies and hybridization strengths.

Numerical examples are illuminating. Suppose that the
DOS peak can be widened so that N (EF ) ≈ N(EF ) =
0.70/ev-f.u. as outlined just above, rather than the reduced
effective value of 0.45 eV/f.u. that gives, experimentally,
Tc = 200 K. With 
 = 1300 K and μ∗ = 0.15 as above,
λexp = 2.17 is required to account for Tc = 200 K. For a
0.70/0.44 = 1.55 larger value of N(EF ), λ = 3.38 and we find
Tc = 277 K—room temperature in a cool room. The increase
in effective N (EF ) we have assumed is ambitious but not
outlandish, given the calculated spectrum of Im3̄m H3S. It
is clearly worthwhile to explore other H-rich compounds for
higher critical temperatures.

Of course, the increase in N (EF ) will give additional
renormalization (softening) of the phonons. However, the
modes are very stiff even with λ = 2.1, so this may not
be a major effect. Note that decreasing 
 increases λ but
decreases the energy scale prefactor in Tc, one reason why
increasing λ by decreasing frequencies is rarely a profitable
means of increasing Tc. If 
, the prefactor in the Allen-Dynes
Tc equation, is softened by 10% without change in matrix
elements, λ increases by 20% while Tc increases by only 4%.
Evidently softening of hard phonons is a minor issue when
looking for higher Tc in this range of λ. This behavior was
formalized by Allen and Dynes [36], who obtained the rigorous
strong coupling limit

Tc → 0.18
√

λ〈ω2〉 = 0.18
√

N (EF )〈I 2〉/M, (13)

where ω is expressed in kelvins. The last expression is
strictly true only for an elemental superconductor, think of
the electron-ion matrix element I and mass M as those of H
for H3S.

VI. SUMMARY

In this paper we first addressed the electronic structure and
especially the delicate van Hove singularity induced spectrum,
bonding characteristics and effect of S, and the charge density
of states near the Fermi level. The occurrence of two closely
spaced van Hove singularities is definitely a central issue for
the properties of H3S. We list some of the main points.

(i) At the most basic level, why is H3S superconducting at
200 K? It is because both λ is large but, more importantly, the
characteristic phonon frequency 
 is very high. This reminds
one of the Allen-Dynes limit for strong coupling,

Tc → 0.18
√

λ
2 → 0.18
√

N (EF )〈I 2〉/M. (14)

Though not yet in this limit, this provides the right picture—
one can check that keeping all fixed except for 
 and then
varying it, the change in Tc is minor because the change in
prefactor Tc ∝ 
 is compensated by λ ∝ 
−2.

(ii) Sulfur 3p states hybridizing with hydrogen 1s is crucial
in producing the strong large scale structure in N(E) within
±5 eV of the Fermi level, and in leaving EF at the top of a
peculiarly sharp peak between two vHs. The van Hove points
on the constant energy surfaces that define the peak in N(E)
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were identified, finding they lie on opposite ends of a line of
Fermi surface “ripping apart” with energy varying between the
two van Hove singularities. This region of very low velocity
electrons affects a significant fraction of the zone. It is unclear
how replacing S with other elements will affect the electronic
structure near EF , but small changes may have large effects.
Ge et al. have noted that alloying 7–10% of P with S moves EF

to the peak in N(E), within the virtual crystal approximation
which does not account for alloy disorder broadening. In any
case, strong coupling smearing as discussed here will nullify
this apparent gain.

(iii) The fine structure and energy variation of N (E) near the
Fermi level must be taken into account to obtain quantitative
results for α2F , λ, and Tc. The energy dependence of N(E) may
even affect calculation of phonon frequencies, though this is
untested so far.

(iv) The closely spaced van Hove singularities very near
the Fermi level have been shown to have significance, both on
the detailed theory of H3S but, as importantly, on the question
of whether Tc can be increased in related materials. Sulfur and
the specific Im3̄m structure are important for high Tc though
other elements will need to be studied to learn more about
precisely why.

(v) The prospect for increased Tc is affirmative—it will
require only evolutionary changes of the electronic structure
to achieve room temperature superconductivity, though the
road to this goal requires study, and additional insight into the
origins of van Hove singularities may be important. Increasing
the vHs effective masses, or increasing the volume within

which quadratic dispersion holds, will increase N(E) at the
vHs energy. Structural or chemical changes that affect the
electronic structure rather modestly may lead to significant
increase in the effective (broadened) density of states at EF .
Other studies have suggested that substitution of some sulfur
with chemically related elements may increase Tc. Altogether,
the prospects of achieving increased critical temperatures are
encouraging.

(vi) An issue that is almost untouched is a deeper
understanding, or rather an understanding at all, of
electron-ion matrix elements 〈I 2

H 〉—what contributes to
strong electron-H atom scattering, and what degrades this
scattering. These matrix elements are the same that determine
resistivity in the normal state; notably most of the best
superconductors have high resistivities. Further study should
address the EPC matrix elements.
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