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We develop a tight-binding model description of semi-Dirac electronic spectra, with highly
anisotropic dispersion around point Fermi surfaces, recently discovered in electronic structure cal-
culations of VO2/TiO2 nano-heterostructures. We contrast their spectral properties with the well
known Dirac points on the honeycomb lattice relevant to graphene layers and the spectra of bands
touching each other in zero-gap semiconductors. We also consider the lowest order dispersion around
one of the semi-Dirac points and calculate the resulting electronic energy levels in an external mag-
netic field. We find that these systems support apparently similar electronic structures but diverse
low-energy physics.

The ability to prepare graphene (single graphite
sheets) [1] has spurred the study of electronic behavior
of this unique system, in which a pair of Dirac points
occur at the edge of the Brillouin Zone [2]. Bands ex-
tend linearly (referred to as “massless Dirac”) both to
lower and higher energy from point Fermi surfaces. This
unusual behavior requires special symmetry and non-
bonding bands. In bilayer graphene [3], the linearly dis-
persing bands become quadratic, while retaining many
of the symmetry properties. Spin-orbit coupling in these
systems should lead to a gapped insulator in the bulk.
Gapless modes remain at the edge of the system, pro-
tected by topological properties and time-reversal sym-
metry. This new state of matter, insulating in the bulk
and metallic at the edges, has been called a topological
insulator [4, 5].

Point Fermi surfaces also arise in gapless semicon-
ductors in which the bands extend quadratically (“mas-
sively”) from a single point separating valence and con-
duction bands [6]. However, these systems are, generi-
cally, not topological insulators. It has been argued that
in HgTe quantum wells, where s and p bands overlap
each other at the Γ point as a function of well thickness,
Dirac-like spectra can also arise with exotic topological
properties. Due to the enhanced spin-orbit coupling in
these materials, a state of matter exhibiting quantum
spin Hall effect, has been predicted [7] and observed [8].

Recent developments in the synthesis of controlled
nanostructures, heterojunctions and interfaces of tran-
sition metal oxides represent one of the most promis-
ing areas of research in materials physics. While sev-
eral recent studies of oxide interfaces have focused in
large part on the polarity discontinuity that can give rise
to unexpected states between insulating bulk oxides, in-
cluding conductivity [9, 10], magnetism [11], orbital or-
der [12], even superconductivity [13], it has now become
clear that unanticipated behavior unrelated to polarity
can also arise. The VO2/TiO2 interface involves no po-
lar discontinuity, but only an open-shell charge and local
magnetic discontinuity, according to the change d1 ↔ d0

across the interface.

It was recently discovered [14] that a three unit cell
slab of VO2 confined within insulating TiO2 possesses a
unique band structure. It shows four symmetry related
point Fermi surfaces along the (1,1) directions in the 2D
Brillouin zone, in this respect appearing to be an ana-
log to graphene. The dispersion away from this point is
however different and unanticipated: a gap opens linearly
along the symmetry line, but opens quadratically along
the perpendicular direction. The descriptive picture is
that the associated (electron or hole) quasiparticles are
relativistic along the diagonal with an associated “speed
of light” vF , as they are in graphene in both directions,
but they are non-relativistic in the perpendicular direc-
tion, with an effective mass m. Seemingly the laws of
physics (energy vs. momentum) are different along the
two principal axes. The situation is neither conventional
zero-gap semiconductor-like, nor graphene-like, but has
in some sense aspects of both. This kind of spectra was
found to be robust under modest changes in the struc-
ture.

Here, we develop a tight-binding model description of
this semi-Dirac spectra. We find that a three-band model
is needed, which can be downfolded to two bands at low
energies. A variant of the model, with only two bands,
gives rise to anisotropic Dirac spectra, where one has
linearly dispersing modes around point Fermi surfaces,
with very different “speed of light” along two perpen-
dicular axes. A common feature of the various systems
discussed above are point Fermi-surfaces. From a device
point of view, for example in thinking of p-n or p-n-p
junctions, these systems may share common qualitative
features. The actual dispersion, which would give rise to
different density of states, may control more quantitative
differences. However, a more fundamental difference may
be in their topological properties. In this sense, our stud-
ies suggest that there could be systems with very similar
bulk spectra and yet quite different low energy physics.

We begin with a 3-band tight-binding model of spinless
fermions [corresponding to the half-metallic VO2 trilayer
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although the system could also be nonmagnetic (spin de-
generate)], on a square-lattice, defined by the Hamilto-
nian

H =
∑3

α=1
(
∑

i ǫαni,α +
∑

<i,j> tα(c†i,αcj,α + h.c.)) (1)

+λ1

∑
<i>,±(c†i,1ci±x̂,3 − c†i,1ci±ŷ,3 + h.c.)

+λ2

∑
<i>,±(c†i,2ci±x̂,3 − c†i,2ci±ŷ,3 + h.c.)

with ǫ3 >> ǫ1, ǫ2, so that we have two overlapping
bands 1 and 2, with no coupling between them. Instead,
they couple through the third band, by a coupling which
changes sign under rotation by 90 degrees. Such a cou-
pling can be shown to arise by symmetry between d and
s orbitals, for example. The important aspect is that the
coupling vanishes along the symmetry line, allowing the
bands to cross (they have different symmetries along the
(1,1) line). Now, since the third band is far from the
Fermi energy it can be taken as dispersionless. Further-
more, without affecting any essential physics, we take
t1 = −t2 = t and λ1 = λ2 = t′. Thus, in momentum
space the Hamiltonian becomes a 3 × 3 matrix:

H =




ε̃1k 0 Vk

0 ε̃2k Vk

Vk Vk ε3



 (2)

where the dispersions and coupling are given by

ε̃1k = ε1 + 2t(cos kx + cos ky)
ε̃2k = ε2 − 2t(cos kx + cos ky)
Vk = 2t′(cos kx − cos ky)

Using the fact that orbital 3 is distant in energy, the
three-orbital problem can be downfolded to a renormal-
ized two orbital problem which becomes (neglecting a
parallel shift of the two remaining bands)

H =

(
ε̃1k

V 2

k

ε3

V 2

k

ε3

ε̃2k

)
(3)

The eigenvalues Ek± of H as given by

Ek± =
ε̃1k + ε̃2k

2
± 1

2

√

(ε̃1k − ε̃2k)2 + 4[
V 2

k

ε3

]2 (4)

With some (not very stringent) restrictions on ε1 − ε2

to ensure that the uncoupled bands actually overlap, the
two bands touch only at the point ~ksd along the (1,1) lines
where ε̃1k = ε̃2k, otherwise the two bands lie on either
side of the touching point (the Fermi energy). When
the 2×2 Hamiltonian is expanded around the semi-Dirac
point along the (1,1) symmetry line it becomes

H =

(
ε̃1k

V 2

k

ε3

V 2

k

ε3

ε̃2k

)
→
(

vF q2 q2

1
/2m

q2

1
/2m −vF q2

)
(5)

where q2 and q1 denote the distance from ~ksd along the
(1,1) symmetry direction, and the orthogonal (1,1̄), re-
spectively. The Fermi velocity vF and effective mass m
can be related explicitly to the tight binding model pa-
rameters, and also calculated by standard ab initio tech-
niques. The dispersion relation is that found for the three
layer slab of VO2 trilayer in TiO2,

Eq± → ±
√

(q2

1
/2m)2 + (vF q2)2. (6)

For comparison, the graphene dispersion relation is
Eg

q± = ±vF

√
q2

1
+ q2

2
. A plot of the low-energy disper-

sion of the model giving rise to a semi-Dirac point in the
2D Brillouin Zone is shown in Fig. 1.

FIG. 1: On the left, the plot is showing the low energy band
eigenvalues Eq± in a region near EF for the semi-Dirac point.
On the right is the same plot for the anisotropic Dirac point.

A few observations can be made at this point. First,
if the original bands 1 and 2 were simply coupled by the
same anisotropic mixing Vk (without any third band in
the picture), then anisotropic Dirac points (rather than
semi-Dirac points) occur along the (1,1) directions. This
dispersion is also shown in Fig. 1. This type of two-
band situation should not be particularly unusual, hence
Dirac points in 2D systems are probably not as unusual
as supposed, i.e. they are not restricted to graphene nor
are they restricted to high symmetry points.

While the constant energy surfaces of our model may
appear to be elliptical (the common situation; the Dirac
point has circular FSs), they are actually quite distinct.
As E →0 the velocity is constant in one direction and
is

√
2mE in the other; the FSs vanish as needles with

their long axis perpendicular to the (1,1) direction. This
can be seen in Fig. 2, showing the constant energy sur-
faces for electron doping according to our model, show-
ing the 4 semi-Dirac points in the tetragonal kx-ky Bril-
louin zone. The density of states (DOS) n(E), which
is constant for effective mass systems and goes as |E|
for graphene, is proportional to

√
|E| at a semi-Dirac

point. When doped, the density of carriers will follow
n(EF ) ∝ |EF |3/2 behavior.
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FIG. 2: Plot showing the Fermi surfaces for electron doping
that derive from the low energy excitation spectra of the semi-
Dirac point at the Γ − M direction in the kx-ky plane of the
square Brillouin zone.

Another observation is that the same bands Eq± can
be obtained from related but distinct low-energy models,
such as

H2 =

(
vF q2 iq2

1
/2m

−iq2

1/2m −vF q2

)
(7)

and

H3 =

(
0 q2

1/2m + ivF q2

q2

1
/2m− ivF q2 0

)
. (8)

Although the bands resulting from H2 and H3 are the
same, the eigenfunctions are different and are intrinsi-
cally complex for H2 and H3 unlike for the specific semi-
Dirac point we discuss.

One of the issues of most interest to such systems is the
behavior in a magnetic field. Making the usual substitu-
tion ~q → ~p + e

c
~A with momentum operator ~p and vector

potential ~A, we find the Landau gauge ~A = B(−x2, 0, 0)
to be the most convenient here. First, however, we note
that the characteristics of the two directions, the mass
m and velocity vF , introduce a natural unit of momen-
tum po = mvF and length xo = ~/po, and of energy
εo = mv2

F /2. Introducing the atomic unit of magnetic
field B◦ such that µBB◦ = 1 Ha, and the dimension-
less field b = B/B◦, units can be scaled away from the
Hamiltonian by defining for each coordinate x

x2 = (
1

γb
)2/3x◦x̃2, (9)

and similarly for x1. Under this scaling

p1 +
e

c
A1 = p1 −

e

c
Bx2 → p◦(γb)2/3(p̃1 − x̃2) (10)

where p̃1, x̃1 are conjugate dimensionless variables, etc.
Here γ is the dimensionless ratio of the two natural en-
ergy scales: γ = µBB◦/(mv2

F /2). For the case of trilayer

VO2, γ does not differ greatly from unity [14]. Thus all
possible semi-Dirac points (all possible m and vF combi-
nations) scale to a single unique semi-Dirac point, with
the materials parameters determining only the overall en-
ergy scale. There is no limiting case in which the semi-
Dirac point becomes either a Dirac point or a conven-
tional effective mass zero-gap semiconductor.

Simplifying the notation x̃2 → u with conjugate di-
mensionless momentum p, the Hamiltonian in a field be-
comes

H = 2εo (γb)2/3 [p σz + 1

2
u2 σx] (11)

≡ 2εo (γb)2/3 h.

The energy scale is much larger than for conventional
orbits though smaller than in graphene [2], so the VO2

trilayer may display an integer quantum Hall effect at
room temperature as does graphene [15].

A scalar equation for the eigenvalues can be obtained
from h2. Introducing the operator Q = p + iu2/2, the
eigenvalues of h2 are Q†Q and QQ†, giving the mathe-
matical problem

Q†Qφn(u) ≡ (− d2

du2
+

1

4
u4 − u)φn(u) = ε2

nφn(u). (12)

The equation for QQ† has the opposite sign of the lin-
ear term, with identical eigenvalues and eigenfunctions
related by inversion. Note that every eigenfunction of h
is also an eigenfunction of h2, and that although the po-
tential is negative in the interval (0,41/3), the eigenvalues
ε2

n must be non-negative.
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FIG. 3: Potential energy function for the one-dimensional
Schrödinger equation and the resulting quantized energy lev-
els for h

2. The lowest three energy eigenvalues εn = +
√

ε2
n

are marked.

We have obtained the eigenvalues both by precise nu-
merical solution and by WKB approximation, finding
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that the latter is an excellent approximation. Initially
neglecting the linear term in the potential, the WKB
condition [16]

∫ √
2E

1

4
n

−
√

2E
1

4
n

√
En − 1

4
u4 du = (n +

1

2
)π (13)

can be solved to give the eigenvalues for the quartic po-
tential as

ǫ2n = [3

√
π

2

Γ(3

4
)

Γ(1

4
)
]4/3(n +

1

2
)

4

3 = 1.3765(n +
1

2
)

4

3 . (14)

The linear perturbation corrects the eigenvalues only to
second order, which is a small correction as verified by
direct numerical solution, which gets successively smaller
for higher eigenvalues. Therefore the semi-Dirac system
has eigenvalues in a magnetic field which scale as B2/3

and increase as (n + 1

2
)2/3 as n gets large. Both aspects

lie between the behaviors for conventional Landau levels
(linear in B, proportional the n+ 1

2
) and the Dirac point

behavior (proportional to
√

B n), as might have been
anticipated. Some low-lying eigenvalues of h2 are shown
in Fig. 3 against the potential well. Note that there is
no zero-energy solution as in the graphene problem.

The tight-binding models considered here for both the
semi-Dirac and anisotropic Dirac cases have the structure
in the two-orbital space, apart from a constant,

H = B̂σz + Ĉσx, (15)

where B̂ and Ĉ are momentum dependent variables, and
σz and σx are Pauli spin matrices. This Hamiltonian is
unitarily equivalent to one where σz is replaced by σy.
Hence, whether the tight binding model is real in mo-
mentum space (as in our case) or complex (as with a σy

replacing σz) the bulk energy-levels would be identical.
However, the models may lead to very different topolog-
ical properties [5, 17–19].

Another way in which Dirac spectra can arise on a
square-lattice can be motivated in terms of the model
of Bernevig et al. [7] for the HgTe quantum wells. In
their model the two bands crossing each other have s
and p characters respectively. Thus the interband hop-
ping term changes sign under reflection. This can lead
to a (sin kx + i sinky) coupling between the bands. Note
that in this model, only a single Dirac point can occur
and it must be at k = 0, when the two bands touch
each other at that point. In contrast, in the models dis-
cussed here, there are four symmetry related semi-Dirac
(or anisotropic Dirac) points whose location can vary con-
tinuously along the symmetry axis (1,1), with changes in
band parameters. A feature unique (so far) to the VO2

trilayer system is that point Fermi surface arises in a half

metallic ferromagnetic system where time-reversal sym-
metry is broken. Potential applications of the VO2 tri-
layer and related semi-Dirac point systems may provide
unusual spintronics characteristics and applications.

In conclusion, we have developed a tight-binding model
description of the semi-Dirac and anisotropic Dirac spec-
tra relevant to VO2-TiO2 multi-layer systems. Our tight
binding model contains nothing unconventional, indicat-
ing that semi-Dirac and anisotropic point systems are
not as rare as has been assumed. The low energy char-
acteristics of the semi-Dirac point are intermediate be-
tween those of zero-gap (massive) semiconductors and
Dirac (massless) point systems. The studies of such ox-
ide nano-heterostructures has only just begun and they
clearly promise a lot of diverse electronic structures and
novel phases of matter.
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