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Abstract. To gain insight into the mechanism of charge-ordering transitions, which

conventionally are pictured as a disproportionation of an ion M as 2Mn+ → M(n+1)+ +

M(n−1)+, we (1) review and reconsider the charge state (or oxidation number) picture

itself, (2) introduce new results for the putative charge ordering compound AgNiO2

and the dual charge state insulator AgO, and (3) analyze cationic occupations of

actual (not formal) charge, and work to reconcile the conundrums that arise. We

establish that several of the clearest cases of charge ordering transitions involve no

disproportion (no charge transfer between the cations, hence no charge transfer), and

that the experimental data used to support charge ordering can be accounted for within

density functional based calculations that contain no charge transfer between cations.

We propose that the charge state picture retains meaning and importance, at least

in many cases, if one focuses on Wannier functions rather than atomic orbitals. The

challenge of modeling charge ordering transitions with model Hamiltonians is discussed.



1. Introduction to the Issues

As the momentous transition between conducting and insulating states by making a

simple change (temperature, pressure, electron concentration, disorder), the metal-

insulator transition (MIT) has assumed extraordinary importance in condensed matter

physics research and plays a role in actual and anticipated applications. Established

mechanisms include (1) interelectronic repulsion of electrons at low density (Wigner

transition), (2) intraatomic repulsion and resulting correlation (Mott transition), (3)

disorder leading to incoherence and localization (Anderson transition), (4) coupling

to lattice, thereby opening new band gaps (Peierls transition), and (5) interatomic

repulsion leading to charge ordering (“Verwey transition?”). The latter mechanism is

distinguished by a breaking of symmetry on a sublattice of cations having partially

filled, correlated (viz. 3d) electronic shells.

The mechanism for the Verwey MIT in magnetite Fe3O4 from the time of its

discovery[1] was speculated to involve ordering to two charge states Fe3+ and Fe2+

on one Fe sublattice, making it the earliest example of a charge order transition,

one that evidently would explain the MIT. A related charge order mechanism arises

from disproportionation occurring at, and driving, the transition, which might also be

envisioned as the mechanism in magnetite: 2Fe2.5+→ Fe2+ + Fe3+. The former is a

disorder-order (charge disorder - charge order) transition in which the “symmetric”

metallic phase contains two space- and time-fluctuating charge states, the second is

a disproportionation-driven transition in which every site in the metallic phase is

equivalent even on a short time scale[2] (rather than only in time-averaged diffraction).

In this paper we extend our earlier work[3] on analyzing the connection between

putative charge order driven MITs and the cation charge states that are involved. This

study brings the concept, and the specification, of charge state or (formal) oxidation

state or formal valence to the fore. We noted that the physical cation charge – the 3d

occupation – can be identified from electronic structure calculations, by giving up the

usual approach of integrating the density over some volume and instead simply looking

at the cation charge density in the vicinity of the peak in the radial density 4πr2ρ(r)

where only 3d density resides. Differences in 3d occupation, which are our current

interest, are particularly easy to identify and quantify. Several examples of differing

charge states were shown to contain equal 3d occupations; actual charge is effectively

divorced from “charge state” in some of those examples.

In Sec. II the original chemist’s concept of “oxidation number” [or (formal)

oxidation state] is discussed briefly, noting that it metamorphosed into a more physical

picture of “charge state” for materials physicists. A brief poor man’s description of what

is used to specify the charge state of an ion is provided in Sec. III. Some theoretical

aspects, relating both to charge order transitions and to oxidation states, are discussed in

Sec. IV. In Sec. V we begin by recounting one illustrative example of competing charge

states in a compound, and proceed to review and extend slightly our previous examples

of charge ordering materials where it was established that no 3d occupation difference
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between differing charge states exists. We proceed to an unconventional case – metallic

with second order transition – “charge ordering” compound AgNiO2 in Sec. VI, and in

Sec. VII look into the charge states of Ag in stable, untransforming, insulating AgO.

Our discussion in Sec. VIII pulls together some of our thoughts on understanding and

modeling structural and electronic transitions in the types of systems we have discussed.

2. Oxidation Number

Chemists introduced the oxidation number (sometimes, oxidation state) of an atom in

a molecule almost entirely on the basis of structure and electronegativity. With its high

electronegativity, oxygen has oxidation number -2 except in very unusual geometries,

and halides are -1, in both cases filling a shell. Electropositive ions (alkalis, alkaline

earths, rare earths) in oxides and halides donate the electrons in their outer s and p

shells, giving obvious positive oxidation numbers denoted early on and occasionally still

by Roman numerals: viz. LiI , CaII , LaIII . Most of the complications arise when, after

nature has completed its bonding, an open d shell remains. For example, vanadium

oxides may have VII , VIII , VIV , and VV , and combinations thereof.

The chemistry literature[4, 5, 6, 7] contains numerous disclaimers that these

oxidation states “have nothing to do with actual charge” and some strive to maintain

distinctions between the different terms in covalent molecules and molecular complexes.

In the current materials physics literature there is no discernible distinction. Oxidation

states are assigned from the structure (coordination and distance of neighbors of

known valence), becoming formalized[8] in the valence bond sum that derives a

formal valence (or ‘bond order’) directly from bondlengths. Sometimes the magnetic

moment is involved, giving different ionic radii for high spin versus low spin ion.

Nevertheless oxidation numbers (formal valences) have come to be connected with the

number of actively-occupied local orbitals; through size – higher oxidation state means

fewer electrons and a smaller ion; through symmetry – a Jahn-Teller (JT) distorted

coordination shell reflects specific orbital occupations; through magnetic moment, which

requires specific unpaired spin-orbitals.

These oxidation numbers smelled a lot like charges to later scientists (especially

material physicists), and they necessarily sum to zero like real charges. Already in

1939, fourteen years after the naissance of quantum mechanics, Verwey was discussing

the metal-to-insulator (MIT) transition in magnetite (Fe3O4) – the Verwey transition at

120 K – in terms of charge ordering of Fe2+ and Fe3+ ions on one of the iron sublattices.

Note that the notation had already begun to shift Fe(II)→ Fe2+ etc. The meaning

was clearly physical charges as opposed to puerile oxidation states: to account for the

transition from itinerant conductor to charge-localized insulator, actual charges were

ordering, getting stuck to ions, becoming localized, and so forth – that seemed to be

the problem to solve.
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3. Assigning Charge States of d Ions

Ionic radii and high/low spin designations differ with coordination,[9] due in large part

to the difference in crystal field. Unless noted, we use language applying to octahedral

coordination for our comments.

Size. The ionic radius characterization of charge states has organized a great deal

of structural information. The organization of all the structural data culminated in the

table of Shannon ionic radii compiled by Shannon and Prewitt that have provided the

standard for more than four decades.[9] For d ions in 6-fold coordination, the average

cation-oxygen distance together with the O2− radius of ∼1.40-1.42Å specifies the ionic

radius, the Shannon values being the best fit for a given presumed charge state to a

large set of compounds. Note that the ionic radius contains no input from the actual

size of the electronic cloud of the ion. Also, ionic radii differ for different coordinations,

whereas the charge density is virtually invariant. The charge density is not used, as it is

never measured with sufficient precision to be useful in this context (and the chemists

insist it is irrelevant anyway).

Symmetry. Distortions from symmetric coordination – Jahn-Teller distortions –

are assigned to occupation of specific, directional orbitals. Such assignments have been

borne out by electronic structure calculations in a great number of cases. The La2VCuO6

example will be discussed in Sec. V, where it will be seen that spin-orbital occupations

can be confusing.

Magnetic moment. A Curie-Weiss moment, or ordered moment, reflects “unpaired”

occupation, i.e. distinct orbitals are occupied by one spin only. Cations of a given charge

state can sometimes occur in both high spin and low spin (often zero) configurations.

Interestingly, the two spin states that arise in several ions have been assigned to different

ionic radii, with the high spin configuration typically 0.04 Å larger than low spin of a

given charge state.[9] Spin polarization actually changes the 3d occupation and the radial

density (real ionic size) by a negligible amount. Spin polarization does however create a

spin splitting so that up and down spin electrons hybridize differently with the O ions,

and there is an interorbital Hund’s rule energy.

4. Theoretical Notions

4.1. Modeling of charge order transitions

Tight binding modeling of charge ordering transitions typically invokes, beyond the

hopping term HK , direct intersite repulsion between charges on neighboring cations in

addition to intrasite repulsion:

HU + HCO = U
∑

j

nj,snj,−s +
∑

<ij>,ss′
Vijni,snj,s′ , (1)

where U is the Hubbard on-site repulsion and Vij is an intersite repulsive energy, where

< ij > indicates neighboring sites and s, s′ are spin indices. The second term alone,

which is pictured as the driving force, would minimize the energy by forcing as much
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charge as possible onto as few distant sites as possible. The Hubbard term provides

the necessary, and physical, energy that opposes excessive inhomogeneity. Pietig et

al.[10] and Hellberg[11] have shown, for example, that this Hamiltonian alone, on a

two-dimensional cluster with periodic boundary conditions, shows a range of re-entrant

(with temperature) charge order transitions in a certain range of V/U (with U set equal

to the bandwidth), similar to the popular interpretation of behavior observed in some

manganites.

Other Hamiltonian terms are included in more general models than the single-band

case just mentioned: very often Jahn-Teller distortion energies HJT for multiorbital

systems, and sometimes magnetic Hund’s rule energy (on-site spin-spin) HHR as well as

distance dependent kinetic hopping H ′

K . This type of extension (without Hund’s rule)

has been applied by Mishra et al.[12] to model behavior observed in manganites. In a

two band model for eg electrons in perovskite nickelates (which we discuss below), Lee

and coworkers[13] applied a Hamiltonian HK + HU + HHR (notably without HV ) and

obtained charge order-like phases driven by Fermi surface nesting. These nickelates do

not show JT distortions as anticipated of an e1
g system, prompting Mazin et al.[14] to

suggest avoidance of JT distortion can be accomplished in certain regimes by charge

ordering instead. They suggested the form of Hamiltonian mentioned above, minus the

HV term, should provide the relevant energies. Interestingly also, when performing a

thorough mean field study of ordered states in ANiO2 (A = Na, Li, Ag, the latter of

which we address in Sec. VI), Uchigaito et al. also chose not to use the HV intersite

repulsion term, although several other interactions were included. Amongst the many

possible phases uncovered for a selection of independent interaction strengths in the

Hamiltonian were phases of charge ordered type.[15]

4.2. Identification of charge states / oxidation states

It is commonly stated and generally accepted that dividing the crystalline density into

atomic contributions is so subjective as to be useless for specifying a charge state. This

statement contains a lot of truth but is not entirely correct. Creating disjoint volumes

associated with ions is indeed subjective and ambiguous. However, the general question

is more subtle than dividing up space, so it is worthwhile to digress briefly.

4.2.1. From pseudoatoms to the enatom Almost four decades ago Ball demonstrated,[16]

using small displacements of nuclei, how the charge density of a collection of atoms can

be decomposed uniquely into contributions from each atom (“pseudoatoms”). In the

process he also identified a charge backflow field associated with each atom when it is

displaced slightly. Subsequently he qualified[17] this result, which does indeed apply to

any finite system and to non-polar solids where the pseudoatoms are necessarily neutral.

Polar solids, however, provide additional challenges closely related to the difficulties of

treating polarization in such solids, where much progress has been made in the past two

decades.[18, 19] The fact that the Born effective charge for a charged ion is a tensor
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provides insight: the (Born) effective charge is not a simple scalar, but depends on the

direction of displacement. Ball’s prescription has so far been applied only to simple

metals,[20] where it may be useful for understanding lattice dynamics and, applying

the same prescription to the potential, electron-phonon coupling.[21] Because the name

pseudoatom has been used in so many different contexts, the designation enatom has

been suggested for Ball’s pseudoatom.[20]

It remains the case that trying to divide space into regions in which the charge

density is assigned to a particular atom is a subjective enterprise. Ball’s approach

differs, by deriving overlapping atomic densities extending perhaps to a few shells of

neighbors. This observation conforms well to our finding,[3] discussed at more length

below, that the d occupation often does not vary at all between different charge states.

If a rather small sphere were chosen to specify the charge, different charge states would

have identical charges (in those regions). Where the charge state picture clearly works

– which is very often – the electronic spectrum is a central property: occupied bands

corresponding to occupied local spin-orbitals can be identified, and the sum of the orbital

occupations determines the charge state. These have conventionally been pictured as

atomic orbitals, but the development and use of Wannier functions (WFs) over the past

decade provides an alternative viewpoint that we return to below.

A well specified division of space into regions associated with atoms is provided

by the Bader prescription.[22] The “zero flux” (of density) surface is defined as that

surface for which the density is a minimum over (small) distances perpendicular to the

surface, thus it depends solely on the density ρ(~r). While probably the most reasonable

“division into atom-based regions” of space, it has evident peculiarities, at least in

details. Consider a density comprised simply of overlapping neutral-atom densities, so

each atom is neutral by supposition. The resulting Bader charge will not be zero and

will depend on the distance between atoms (i.e. on the environment). Values of Bader

charge have not been reported extensively in the solid state literature (more so for

molecules), however the capability has been implemented in some electronic structure

codes, and we provide Bader charge values in Sec. 8 for some of the charge ordering

systems we discuss in this paper.

4.2.2. Calculation of the oxidation state. Two proposals for the definition and

calculation of “oxidation states” (both used this terminology rather than charge states)

have appeared recently. With molecular complexes in mind, Sit et al. suggested[23]

projecting the occupied states onto atomic (3d, say) orbitals to obtain the spin-orbital

occupation matrix as is done in the LDA+U method, diagonalize this matrix, and

the number of eigenvalues representing full occupancy provide the number of occupied

physical orbitals and hence the oxidation state. Smaller occupations are ignored. For

the transition metal complexes they provided as examples, the procedure was relatively

clear. However, possible ambiguities could be imagined: in one of the examples 0.93

needed to be interpreted as occupied, 0.63 as not occupied. More testing of these ideas

should prove instructive.
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Another proposal, by Jiang, Levchenko, and Rappe,[24] applying specifically to

periodic systems, employed developments in the theory of polarization in crystals to

formulate their definition of oxidation number as the integral of (viz. average of) the

Born effective charge as the ion’s sublattice is displaced adiabatically by one direct lattice

vector. The material must remain insulating but otherwise the result is independent

of the path in configuration space. This procedure does not identify an ion’s charge

density or necessarily even entail a true charge, but does provide the interpretation of

the change in polarization as being due to the transport of a number of unit charges

equal to the oxidation state through a displacement corresponding to the lattice vector.

As in the case of the enatom mentioned earlier, this definition also does not make

the oxidation state a property of the static reference state – displacement is required.

Because the path is periodic (it can be repeated), any point can be considered as the

starting (reference) point, with the same oxidation state (same integral). Thus the ion

retains one fixed oxidation state along the path in configuration space. Considering that

the Born effective charge is anisotropic, it seems possible that the oxidation state by this

definition in an anisotropic insulator also depends – as does the Born effective charge

– on the direction of the direct lattice vector that connects the end points.[25] Further

applications of this proposal will be enlightening, as will the fact that displacement is

required to specify what is normally envisioned as a property of the static system.

4.2.3. Oxidation states from Wannier functions In the survey in this paper of charge

ordering transition involving different charge states, and hence of the specification of

charge states more generally, we will begin to explore the viability of abandoning atomic

orbitals, whose occupation often does not change at the ‘charge ordering’ transition, in

favor of Wannier orbitals. The basic idea is: calculate atomic-like Wannier functions

for the relevant states and explore whether these orbitals support the charge state

viewpoint. Ideas along these lines have been implicit in discussing specific materials,

and for some symmetric and therefore more straightforward cases this picture has been

stated explicitly, most recently by Haverkort et al.[26] Wannier functions have been

integrated into the electronic structure calculations in various ways, so this change from

atomic to Wannier orbitals becomes transformational when applied to ‘charge ordering’

transitions. Without any change in actual (3d) charge on the open-shell cation, what

are the relevant degrees of freedom to consider? We return to some of these general

issues in the Discussion in Sec. VIII, but we begin by considering a simple and nearly

transparent case illustrating the idea.

In the double perovskite compound Ba2NaOsO6, osmium is formally a heptavalent

Os7+ 5d1 ion – a very high oxidation state. Calculating the 5d charge in the ion, though

one cannot arrive at a precise value as noted above, corresponds to occupation by

around 4.5 (not 1.0) 5d electrons.[27] Cases of large differences between actual charge and

oxidation state are common knowledge in the electronic structure community. Does this

signal the breakdown of the charge state picture for high valence state ions? It doesn’t:

calculations[28, 29] indicate one electron in the otherwise unoccupied “5d bands,” spin
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half of course, and if the 5d occupation is not tied to the charge state (which it isn’t)

then the formal valence picture survives in robust fashion.

Analysis shows that the occupied 5d orbital (i.e. the Wannier function) is a strongly

hybridized mixture of 50% Os 5d state and 50% O 2p contributions distributed around

the neighboring oxygen ions. The other four electrons making up the total 5d occupation

of 4.5 are hybridized into (and thereby vanish into) the 6 atoms × 3 orbitals = 18

occupied O “2p bands.” Transformation from atomic orbitals to Wannier orbitals would

presumably lead to 18 occupied O-centered orbitals of p symmetry with tails of Os 5d

states, and one occupied Os 5d-derived orbital with tails composed of O 2p orbitals. So

although several 5d electrons vanish into the O 2p bands, all five “5d orbitals” survive

by recovering charge from the 2p orbitals. Understanding that strong metal-oxygen

hybridization implies the efficacy of generalized (Wannier) orbitals has been around for

a while; for example, it provided a simple picture explaining why second Cu-Cu neighbor

coupling along a chain dominated over near neighbor coupling in the Cu-O magnetic

chain compound Li2CuO2.[30]

Another example illustrates an apparent connection between WFs and formal

valence. Volja et al.[31] have calculated eg WFs for the two charge states in a charge

ordered manganite La1/2Ca1/2MnO3, finding a substantial difference in the extent of

the tails, the “Mn4+” WF being more localized. Concerns about specifying charge

states with WFs include (1) a computational issue: the gauge freedom means WFs

are far from unique, so subjective choices may lead to different conclusions, and (2) a

conceptual issue: the choice of projections – the orientations, for example – themselves

are not objective. At one extreme are maximally localized WFs[32, 33] that may not be

centered on an ion and may be unsymmetrical, therefore complicating if not destroying

any utility in representing physical orbitals. Atom orbital- and symmetry-projected

WFs[34] (“maximally projected”) provide an alternative approach, one that should

provide a more physical representation, and the projection issue may present less of

a non-uniqueness ambiguity. This viewpoint remains to be tested seriously.

5. 3d Transition Metal Charge States: Illustrative Examples

In oxides containing two transition metals, one of the first tasks in understanding them

is to categorize the charge states of the ions. The sum is known from oxygen and the

simpler ions, but a number of competing factors (which are not well understood and are

likely to be material-specific) determine the balance. The double perovskite structure

is simple and provides our first example.

5.1. Competing Charge States of La2VCuO6

The computational methods we have used were described previously.[3, 35, 36] In our

earlier work[37] on La2VCuO6, using the LDA+U method[38, 39] as is necessary for such

oxides, it was found that the two configurations V5+Cu1+, a standard closed shell band
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insulator, and V4+Cu2+, a spin-compensated ferrimagnetic correlated insulator with

a very small gap, are practically degenerate in energy after full structural relaxation.

These charge state assignments fit in all respects. Structurally, the mean V-O distances

are 1.84 Å and 1.88 Å respectively for the two configurations, differing by the difference

in the corresponding V ionic radii (0.04 Å). The mean Cu-O distances are 2.02 Å and

1.98 Å, respectively, again differing by their ionic radii (0.04 Å also). The Jahn-Teller

distortion magnitude for the magnetic configuration (long bond minus short bond) is

0.11 Å for both ions, an unambiguous JT distortion. Magnetically, V and Cu have one

electron and one hole, respectively, as judged by the moment (reduced somewhat by

hybridization) and by their respective filled and empty bands. These two configurations

are “poster kids” for the charge state picture – nothing could be clearer. The spin density

is pictured in Fig. 1 and supports the charge state description of the spin compensated

Mott insulating phase.

Table 1. Spin-orbital inscribed atomic sphere occupation numbers from GGA+U

calculations for the two charge states of La2VCuO6. The difference in the Total (last

column) for the two charge states of both V and Cu arise from oxygen tail contributions,

since the 3d occupations are identical for the two charge states. Values for the active

Jahn-Teller orbitals are emphasized in boldface.

Atom xy xz yz x2 − y2 3z2 − r2 Total

V4+ : d1 up 0.77 0.11 0.11 0.26 0.18 1.40

V4+ : d1 dn 0.07 0.10 0.10 0.26 0.18 0.68

V4+ : d1 diff 0.70 0.01 0.01 0.00 0.00 0.72

V4+ : d1 sum 0.84 0.20 0.20 0.51 0.36 2.11

V5+ : d0 0.30 0.30 0.30 0.57 0.57 2.04

Cu2+ : d9 up 0.94 0.92 0.92 0.95 0.29 4.03

Cu2+ : d9 dn 0.94 0.92 0.92 0.95 0.97 4.70

Cu2+ : d9 diff 0.00 0.00 0.00 0.00 -0.68 -0.68

Cu2+ : d9 sum 1.88 1.84 1.84 1.90 1.26 8.72

Cu+ : d10 1.75 1.75 1.75 1.86 1.86 8.97

What our earlier work[3] also established is that the total 3d occupation in both

charge states of V, and also of Cu, are identical (by this we mean 0.5% difference or less

– no physically meaningful difference). It has occasionally been noted in the literature

of electronic structure calculations (including our own) that atomic charges in different

charge states “differ rather little” in charge. In this case, and in the few others that we

have checked so far (see below), the difference is negligible.

In Table 1 we display the spin-orbital occupation numbers for V and Cu in both

charge states to illustrate some complexities that arise. They are not troublesome in this

straightforward system, but are instructive in that they differ considerably from what

the ideal picture would suggest. These values are 3d spin-orbital occupations inside

9



Figure 1. Isosurface plot of the spin density of the JT distorted, spin-compensated

magnetic state of La2VCuO6. The red spin up (say) density in the center of the

figure arises from the V dxy orbital, while the blue spin down density comes from the

unoccupied Cu dx2
−y2 orbital. The O ions carry a small spin down contribution due to

the pdσ (anti)bonding with Cu. La atoms are denoted by the gray spheres. We note:

the 3d charge densities, unlike these spin densities, are not nearly so anisotropic. For

Cu this is understandable because (ideally) only one of ten orbitals is unoccupied. For

V, it is because there is additional, primarily eg charge occupied which does not arise

in the simple formal picture.

the LAPW spheres, which contain tails of neighboring oxygen ions and do not include

the tails; all of these tails are in fact ill defined. The “total” charge difference in the

sphere is typical of what is mentioned in the literature: the differences arise from tails

of O 2p orbitals originating at different distances. For the closed shell, band insulator

state with cubic site symmetry, the eg occupations for Cu are 6% larger than for t2g, a

difference allowed by cubic symmetry and revealing a density that is mildly deformed

from spherical. For V however, this difference is nearly a factor of two, reflecting the

bonding of eg states with O pσ states, much of which becomes hidden in the lower part

of the O 2p bands and has little consequence unless considering the actual charge.

The magnetic, JT distorted configurations are more enlightening. Although the

charges are distributed over spin-orbitals in somewhat unexpected ways as reflected in

Table 1, the magnetic moment arises, as the textbook picture would suggest, entirely

from the JT-active orbitals, dxy in V and dx2
−y2 in Cu. The moment on both V and Cu

is reduced by hybridization with 2p states: the majority charge is less that the formal

charge picture suggests, the minority charge is greater, and each moment has magnitude

about 30% smaller than the ideal spin-half value of 1 µB.

The charge state designation means many things, but it does not mean at all what

the name seems to imply: atomic charge (and spin). A “charge state” designation that

does not specify a specific charge seems to classify it as an oxymoron, yet charge state

very often is an essential concept in conveying the character of the ion and its environs

(“which local spin-orbitals are occupied”). Using the term “oxidation state” instead of
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“charge state” obscures the issue rather than clarifying it. It is this conundrum that

we will expand on in the following sections. Note at this point that we have tried not

to say ‘what atomic orbitals are occupied’ but instead what local orbitals are occupied.

We provide most of our discussion that follows, with one exception, in the context of

materials with “charge ordering transitions.”

5.2. Rare earth Nickelates

The structural and metal-insulator transition[40, 41] in the rare earth nickelates RNiO3

has been discussed for two decades as a charge order transition, with experimental

data being analyzed in considerable detail for YNiO3 and several others in terms of a

fractional charge transfer 2Ni3+→ Ni3+δ + Ni3−δ, with the latest analysis[42] pointing

to δ ≈ 0.3 for YNiO3. The high temperature diffraction-determined structure has a

single Ni site in the distorted GdFeO3-type cell containing four formula units with a

single Ni site, while two separate sites Ni1 and Ni2 appear in the low temperature,

symmetry broken (charge ordered) phase. The Ni-O octahedra remain nearly regular

(i.e. without JT distortion), with the Ni1-O and Ni2-O mean distances being 2.02

Å and 1.92 Å, respectively. A simple breathing mode mediates the transition. The

large Ni-O separation differences are consistent with the Ni2+ and Ni4+ charge state

picture, except for δ=1 rather than δ=0.3. There are, however, several questions about

the current interpretation that we now discuss.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Radius (a0 )

−5

0

5

10

15

20

4π
r2

ρ
(r
)

Ni2+ Ni3.5+

Ni(3−δ) +

Ni(3+δ) +

AgNiO2  (Ni2+ )

AgNiO2  (Ni3.5+ )

YNiO3  (Ni3−δ )

YNiO3  (Ni3+δ )

Figure 2. Plot (dashed line) of the radial density of the so-called “Ni2+” ion (Ni1)

in AgNiO2, together with the percentage differences (with this ion as the reference) of

the other Ni sites noted in the legend. In the region of the peak the differences are

0.5%, even between different compounds. The differences that become large in the tail

region illustrate the sensitivity in this region to the environment of O 2p orbital tails.

Our investigation into mechanisms of “charge ordering” transitions was spurred by

noticing[3] that the Ni1 and Ni2 sites have identical 3d charge, being also the same as in

the high symmetry phase with a single Ni site. In Fig. 2 a different type of presentation

is provided. A single “Ni2+” radial density is plotted, that of one of the sites in AgNiO2
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(see below); the other Ni ions in this figure, even those with different charge states, are

indistinguishable on this scale in the region of the 3d peak. With this “Ni2+” site as the

reference, the relative differences (expressed in percent) for “Ni(3−δ)+” (Ni1 in YNiO2),

“Ni(3+δ)+” (Ni2 in YNiO3), and “Ni3.5+” (Ni1 in AgNiO2) are plotted. In the region of

the peak in density r=0.6a0, the differences are of the order of one-half percent. The

shapes of the density (viz. 3d orbital) become slightly different around 1a0, and the

effects of oxygen tails at different distances become evident beyond 1.4a0. Note that the

“Ni3−δ” density is the nearer to the “Ni2+” density than are the other two.

Table 2. Eigenvalues of the spin-orbital occupation matrices for the Ni1 (1.35 µB)

and Ni2 (0.55 µB) sites in “charge ordered” YNiO3, from a ferromagnetic LDA+U

calculation. Values for “non-filled orbitals” are emphasized in boldface. Notice the

absence of appreciable Jahn-Teller splitting (difference between occupations of x2 − y2

and 3z2 − r2).

Eigenvalue xy zx yz x2 − y2 3z2 − r2 Total

Ni1 up 0.91 0.92 0.92 0.85 0.83 4.43

Ni1 dn 0.91 0.91 0.91 0.19 0.17 3.08

Ni2 up 0.92 0.92 0.92 0.64 0.58 3.98

Ni2 dn 0.92 0.92 0.92 0.36 0.32 3.44

Since the NiO6 octahedra are somewhat distorted in this system, it is the eigenvalues

of the occupation matrices for the two spins for (ferromagnetic) YNiO3 that we present

in Table 2. These values can be used to evaluate the oxidation state prescription of Sit

et al.[23] Their prescription gives Ni2+ and Ni4+ oxidation states as long as one identifies

0.83 and 0.85 as ‘fully occupied’ (the other fully occupied states have eigenvalue 0.91-

0.92), and 0.58 and 0.64 as not fully occupied and thus unoccupied. To make the issue

more apparent, it is useful to think of scaling the maximum occupation for this sphere

size, 0.92, up to 1.00. Then 0.84→0.91 must be “fully occupied” and 0.64→0.70 must

be treated as “not fully occupied” to give the mentioned oxidation states. The atomic

moments are calculated as 1.35 µB and 0.54 µB versus the idealized values of 2 and 0

µB respectively.

The atomic-orbital projected density of states (PDOS), presented earlier,[3, 14]

is reproduced in Fig. 3. The larger moment on Ni1 arises almost equally from more

majority states centered at -0.5 eV (an expected difference, near EF ) and less minority

states near -5 eV (an unexpected change in the strongly bound part of the spectrum).

The amount of unoccupied 3d spectral density does not differ much between Ni1 and

Ni2, unlike the formal picture would suggest (a factor of two) but it is consistent with

our finding of no difference of 3d occupation. The difference lies in the spin and energetic

distribution. The “charge state” picture thus is murky: the ionic radii are consistent

with full disproportionation δ=1 whereas other data (see below) are used to justify

δ=0.3 as the best value. The spin-orbital occupation eigenvalues and the PDOS are
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hardly definitive.

Very often the contrasting core level energies of different sites are used to identify

and specify charge states, and this has been done for a few nickelates. In our earlier

paper[3] we pointed out that these on-site energies are given well by DFT calculations,

and thus are due to the differing environments rather than to any difference in local

charge.

5.2.1. Charge order versus Jahn-Teller distortion In charge order transformation

phenomenology, or more broadly for the specification of the oxidation state, the real

cation charge – the 3d occupancy – is a peripheral, many say irrelevant as mentioned

above, issue, and our specification of 3d occupation reinforces that picture. However,

the charge state language invites – in essence, requires – an interpretation of selected

spin-orbitals to account for differences in the different sites. The ordered state of

RNiO3, which contains roughly symmetric NiO6 octahedra of substantially different size,

cannot be understood in terms of an e1
g ion which should have strong JT tendencies,

hence the conventional “charge order” designation. This picture would have the driving

mechanism, the entropy frozen out at the transition, be due to charges hopping amongst

disordered Ni2+ and Ni4+ sites.

Mazin et al.[14] observed that a fully disproportionated “high spin e2
g, no spin

e0
g” picture accounts for (1) the lack of JT distortion and (2) the large and small Ni

moments. They confined their attention to the ordered phase (ground state). The large

and small octahedra, expected on the basis of differences in ionic radii for distinct charge

states, does not have any quantitative explanation – in any picture – for ions of identical

charge and radial extent. They further suggested that the Hund’s rule magnetic energy

is important in producing these configurations. Our earlier work established that there

is negligible actual 3d occupation difference between Ni1 and Ni2, which seems to leave

the search for the true microscopic driving force between the charge transfer energy,

Hund’s rule energy, and electron-lattice coupling, and the change in kinetic energy that

results from the latter two and modulated by the former.

5.2.2. Disorder-order scenario X-ray absorption spectra for nickelates suggests a very

different view of the transition. Spectral signatures of the two distinct Ni sites are found

in the high temperature, symmetric phase[43, 44] as well as beyond the phase transition

under pressure.[45] The interpretation must be that the Ni1 and Ni2 sites are already

different above the transition, but are disordered and fluctuating in both space and time.

The ionic radii are not a good fit for the perovskite structure, and the structure adjusts

by distorting to large and small octahedra. Without structural coherence, carriers can

hop – the material is conducting although only as a very bad metal. The entropy is due

to fluctuating local breathing modes that freeze in at the transition.

In the ordered phase, the coherent alternation of distortions – a nonzero amplitude

of the zone boundary breathing mode, to use common language – opens a gap in the

band structure and the material becomes a (correlated) insulator. The transition can be
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Figure 3. Projected DOS for eg (above) and t2g (below) orbitals for both Ni1 and Ni2

sites in ordered YNiO3. Majority is plotted upward, minority downward. The spectral

origin of the larger Ni1 moment (1.4 versus 0.7 µB for Ni2), which is entirely from

eg states, is indicated by the hatched regions. Horizontal arrows indicate exchange

splittings, Ni1 in green, Ni2 in purple.

approached from the opposite direction: the ordered phase is a small-gap Mott insulator

as long as the structural distortion is coherent, but loss of the coherence smears the

gap and leads to a very bad metal but conducting phase. From either viewpoint, the

transition is at the most basic level an order-disorder transition, rendered more complex

than most by the electronic correlation effects.

The breathing distortion modulates the Ni 3d on-site energy, and hence modulates

the charge transfer energy between the O subsystem and each Ni site. JT distortions,

on the other hand, retain the mean Ni-O distance and do not modulate the 3d on-site

energy significantly.

5.3. Results for Other Charge Order Systems

In our previous report[3] we noted two additional charge-order systems for which there

is no difference in 3d occupation of the “charge ordered” cations.

CaFeO3. This ferrate is isostructural with the RNiO3 class and displays a similar

MIT and structural change. The proposed disproportionation[46] invokes the unusually

high oxidation state Fe5+ in addition to the charge-balancing Fe3+ state. The 3d

occupations, determined from the radial charge densities, in the charge ordered states

for the two Fe sites are identical. It seems plausible that the disorder-order scenario

proposed for RNiO3 applies to CaFeO3 as well, though there is much less data to validate
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it. Yang and collaborators[47] noted from their DFT calculations that no meaningful

(i.e. discernible) difference in real Fe 3d charge (which they identified as around 5.1

electrons) could be obtained, which led them to categorize the ordered state in terms

of ligand holes, d5 + d5L2 rather than as Fe3+ + Fe5+. The difference in Fe-O distance

changes the hybridization considerably, and the resulting difference in hyperfine field

that they calculated agreed well with the experimental data.

V4O7. Vanadates of many stoichiometries display MITs accompanied by structural

transitions, and the intricacies of the structures complicate identification of the

mechanism underlying the transitions. The low temperature, ordered phase of V4O7

has been characterized[48, 49] in terms of two distinct V3+ sites and two V4+ sites.

Comparing the radial densities from DFT based calculations,[49] it became clear that

all four of the V sites have the same 3d occupation, as for the various other systems we

have surveyed and discuss in this paper. The difference in deep core levels for the two

Fe sites is 0.9-1.2 eV, similar to the calculated and measured values for the nickelates

and CaFeO3, and used to substantiate “charge order.”

6. Charge Order Transition in AgNiO2

The structural transition at 365 K in this triangular lattice compound is not first

order but instead continuous, and moreover it is not a MIT but rather a (semi)metal

to (semi)metal transition, so AgNiO2 belongs to a separate class from the systems

discussed above. It has nevertheless been characterized in some detail as a charge

order system possessing other distinctions. It has been studied also for its unusual

low temperature magnetic behavior and ordering, which are not our primary concern.

The high temperature phase, while conducting, has a resistivity of 2-3 mΩ cm, thus

classifying it as a very bad metal or, more realistically, as a semimetal. Decreasing

the temperature from the symmetric phase, the resistivity increases slightly but sharply

below the transition before leveling off around 40 degrees below the transition and again

resuming a positive (metallic) temperature derivative. This transport behavior is at a

second order structural transition, where the freezing out of lattice fluctuations upon

ordering normally leads to a decrease in resistivity.

The charge state in the symmetric high temperature phase, to the extent that one

applies in a conductor, must be Ni3+ e1
g, so the triangular lattice of Ni sites provides

a platform for frustration of orbital order as well as for potential magnetic order. The

transition is to a
√

3 ×
√

3 increase of the cell caused by oxygen displacement radially

outward (within its basal plane) from one Ni, denoted Ni1, creating a large Ni1O6

octahedron and two smaller octahedra Ni2O6 and Ni3O6. Ni2 and Ni3 sites differ only

due to the stacking sequence of NiO2 slabs, and while this distinction is identifiable in

some quantities, the difference is too small to be of interest here. At low temperature

Ni1 has a moment of ∼1.5µB while the moments on Ni2 and Ni3 are difficult to quantify,

but suggested to be perhaps 0.1µB. The Curie-Weiss moment, both above and for a

wide temperature range below Ts, is roughly consistent with either a moment of 0.7-
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0.8µB on each Ni (the high T phase value), or 1.5µB on 1/3 of the Ni ions (the low T

phase values). The data and the analysis is not precise enough to distinguish between

these two possibilities, or something intermediate.
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Figure 4. Projected DOS for eg and t2g orbitals for Ni1, Ni2, and Ni3 sites in ordered

AgNiO2. Majority is plotted upward, minority downward. The spectral distributions

of Ni2 and Ni3, with calculated moments of 0.28 and 0.27 µB, respectively, show no

discernible differences. The Ni1 moment of 1.27 µB is accompanied by the 2 eV eg

spin splitting, shown at top.

Wawrzynska et al. pointed out[50, 51] that DFT calculations indicate that the

Ni1 eg bands are split ∼ 1 eV above and below EF (Fig. 4), giving it an S=1 (Ni2+)

“Mott insulator” configuration (even though no strong correlation corrections need to be

used in the DFT calculations), with moment reduced by hybridization to be consistent

with the observed value. Ni2 and Ni3 are only weakly magnetic, with their eg bands

crossing EF (Fig. 4) consistent with an unpolarized “Ni3.5+” designation for both ions,

necessitated by charge neutrality. The O displacement amplitude at low temperature

is 0.06 Å, giving a change in Ni-O distances due to the distortion of ∼0.04 Å. This

amount is perhaps reasonable for oxidation states differing by 1/2, but Shannon’s Ni2+

- Ni3+ difference is 0.11 Å, suggesting that a Ni2+-Ni3.5+ difference should be around

0.15 Å rather than 0.04 Å.

As we found for the other compounds which are said to display different charge

states, we find that the 3d occupations in “charge ordered” AgNiO2, from the radial

charge densities of the three Ni sites near their peaks, are indistinguishable – the 3d

charge on each is the same. More detailed results on AgNiO2, including energetics and

magnetic moments during oxygen displacement, the Fermi surfaces in the paramagnetic

state, comparison with available experimental data, will be published elsewhere.
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7. Charge States in AgO

Copper with its various charge states has been well studied because of its central

importance in the high temperature superconductors. The isovalent 4d sister Ag rarely

displays correlated behavior in ionic compounds or departs from its monovalent, closed

shell configuration. The behaviour observed in AgO which we now review puts it in an

unusual borderline class of materials containing group IB cations.

Figure 5. Top panel: crystal structure of AgO, illustrating how the two Ag2O4 squares

in the center are interconnected by the Ag2O4 squares at the top and bottom of the

figure. An O-Ag2-O trimer also connects Ag1O4 squares in a different direction. There

is a single O site, connecting two squares and a trimer. Bottom panel: contour plot

for AgO of the density of unoccupied states in the 0-2 eV region above EF , through a

plane containing Ag1O4 squares on the left and right sides, connected by an O-Ag2-O

trimer that lies in the center of this plot. White spheres are Ag atoms, red spheres

are oxygen. The cross sections of O give two views of its strong anisotropy, resulting

from directional bonding. The dx2
−y2 “holes” on Ag1 in the square are evident. More

surprising the lesser amount, but still very noticeable, Ag2 “holes” of dz2 symmetry in

Ag1, which is formally a d10 closed shell ion.

AgO does not display any charge order or other transition, being insulating and

diamagnetic at all temperatures. It has however been characterized as displaying both

Ag+ and Ag3+ charge states. The crystal structure, pictured in Fig. 5, is monoclinic

P21/c (space group no. 14),[52, 53] a=5.86 Å, b= 3.48 Å, c=5.50 Å, β = 107.5, with two

inequivalent Ag sites, as pictured in Fig. 5. The Ag1 (Wyckoff site 2d) sits at the center

of a slightly distorted square, Ag2 (site 2a) forms a linear O-Ag2-O trimer of length

4.34 Å, and the O ion sits at the Wyckoff 4e site. The average Ag1-O bond length is

2.03 Å, while the Ag2-O separation 2.17 Å, consistent with a lower charge state and its

lower coordination. Each O (only one crystallographic site) connects two AgO4 squares

which are almost perpendicular and one O-Ag-O trimer. GGA and hybrid functional

calculations by Allen et al. were interpreted to support the two charge state picture: an

unoccupied band is Ag1 derived (one band per Ag1), while all of the Ag2 4d bands are

occupied.[54, 55]

To check the 4d occupation and do some further analysis, we carried out LDA+U

(U=5 eV, J=0.68 eV) calculations using experimental structure. The atom-projected
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Figure 6. Orbital projected densities of states for Ag1 and Ag2 ions AgO, in the

natural local coordinate systems of the Ag1O4 square and the O-Ag2-O trimer. The

Ag1 PDOS is distinguished by the strong bonding/antibonding ligand field splitting of

nearly 8 eV (second panel from top). The Ag2 PDOS has much of its weight in a 2.5

eV wide peak centered at -2.5 eV, but is distinguished by the dz2 band lying just below

the gap (top panel). The oxygen PDOS (not pictured) indicates strong hybridization

with both Ag1 and Ag2 throughout the spectrum.

DOS (pDOS) is plotted in Fig. 6. The Ag1 pDOS dominates in the strongly bound

region, from -7.5 eV to -3.5 eV, is smaller than that of Ag2 in the -3.5 eV to -1.5 eV,

then is nearly negligible (“gapped”) from -1.5 eV through the bandgap. The unoccupied

Ag1-derived band (one band per Ag1 ion) is however roughly half O 2p character, an

occurrence that is sometimes characterized as “O 2p holes.” This latter picture would

then assign the charge configuration Ag2+L, where L is a ligand (oxygen) hole, instead

of Ag3+. Such a viewpoint becomes difficult to sustain, however, because the seemingly

apparent Ag+ charge state requires it to be surrounded by O2− ions, and there is only
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the single O ion coordinating with both Ag1 and Ag2.

The Ag2 pDOS is contained primarily in a 4 eV wide peak centered at -2.5 eV, plus

the band just below the gap that is half O 2p in character. The O 2p pDOS is spread

relatively evenly through the range of the 4d bands, mixing strongly with both Ag1 and

Ag2 except for some Ag2 bands in the -2 eV to -3.5 eV range.

As in the several cases mentioned above, we find negligible difference in the 4d

occupation of actual charge (the radial charge densities are nearly identical near the

peak). This negligible difference in 4d charge, as well as the extreme similarity to the

Ag+ ion density in AgNiO2, is illustrated in Fig. 8.

The oxidation state specification of Sit et al. can be tested here, using the natural

local coordinate system where the orbital occupation matrix is nearly diagonal. For Ag2,

four orbitals have occupation very near 0.80, i.e. nominal full occupation, since ∼20%

of the charge extends out of the LAPW sphere. The other, dz2 , is 0.75. Supposing that

94% also corresponds to a filled orbital, Ag2 is indeed d10, Ag+. For Ag1 in the square,

four orbitals have ∼0.82 occupation, while the dx2
−y2 orbital has occupation 0.54, about

68% full. Sit et al.’s prescription would be to ignore this, obtaining d8, Ag3+.
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Figure 7. Ag1 (left) and Ag2 (right) fatbands. The unfilled “Ag1 band” (actually half

Ag1, half O, invites the 3+ charge state designation of Ag1. See text for discussion.

A more illustrative picture is provided by the Ag1- and Ag2-projected fatbands

plotted in Fig. 7, which illustrate several characteristics. Much of the weight of the Ag1

atom lies in the lower regions of the 4d bands, which are mixed strongly with O 2p

states. A strong ligand field splitting separates one orbital – the dx2
−y2 member that

antibonds strongly with the neighboring O 2p orbitals. The Ag2 1+ ion in the trimer

has most of its weight from -4 eV to -1 eV, with a just split off antibonding dz2 − pz

combination forming a 1 eV narrow band below the gap.
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Figure 8. Radial charge density 4πr2ρ(r) of the Ag1 and Ag2 ions in AgO, and of

the Ag+ ion in AgNiO+2 as a reference density(see text). Unlike our other examples

in “charge ordering” materials, there is an appreciable difference of 0.11e in the 4d

occupation of Ag1 (Ag3+) and Ag2 (Ag+).

8. Discussion

Briefly stated, we have observed that for several cases of “charge ordering” in solids,

usually involving a first order metal-insulator transition, there is no change in cation

3d occupation across the transition, hence no real charge ordering. This lack of

any charge transfer between cations during a “charge ordering” transition raises

fundamental questions about the mechanism(s) behind these transitions and the best

way to understand the underlying physics. There has been some discussion of a

similar conundrum in magnetite by Garcia and Subias.[56] At a more basic level, this

observation raises perhaps more basic questions about the meaning and specification of

“charge states” in solids in addition to the underlying mechanism – just what it is that

orders at the transition, where is the entropy gained or lost?

Before continuing this discussion of charge, we present here the Bader charges QB

promised in the Introduction for some of the systems discussed here. These values were

obtained from the Wien2k code (based on the deviation from charge neutrality from the

sum, the Bader charge is accurate to about 0.02/atom in magnitude).

• YNiO3. Distorted phase: QB(Ni1) = +1.33, QB(Ni2) = +1.49, QB(Y) = +2.15,

QB(O) = -1.19±0.01 for the three O sites. In the higher symmetry phase: QB(Ni)

= +1.45 with little change for Y and O. These values are from LDA+U calculations

with U≈5.5 eV. The Ni charges decrease somewhat with decrease of U, retaining

about the same difference in the distorted phase. Compare with the formal values
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+2, +4, +3, -2, respectively.

• AgO. Distorted phase: QB(Ag1) = +1.10, QB(Ag2) = +0.63, QB(O) = -0.89,

compared to the formal values +3, +1, -2.

• AgNiO2. Distorted phase: QB(Ni1) = +1.15, QB(Ni2) = +1.20, QB(Ni3) = +1.20,

QB(Ag) = +0.33, QB(O) = -0.84; compare to the formal values +2.0, +3.5, +3.5,

+1.0, -2.0.

We have not found the Bader charges in these systems to be useful in identifying and

quantifying formal charges. Specifically, the difference in Bader charges for different

formal charge states of the transition metal ion are much smaller than the difference

in formal charges. The Bader values are consistent with identical ionic charges (3d

occupations) but different environments (tails of oxygen 2p orbitals).

As we have surveyed these few systems, we have observed that if Wannier functions

rather than atomic orbitals are used as the physical local orbital, the charge state picture

may survive as a useful characterization at least in most of the cases. The objectivity and

generality of this viewpoint remains to be tested, and there are cases such as the RNiO3

nickelates where the resulting picture seems less than convincing even with Wannier

functions in mind. Likely other gray areas will be found as these questions are pursued;

fractional charge ordering is especially problematic.

Returning to another underlying motivation – the faithful modeling of “charge

ordering” transitions – the basic issues have changed as the microscopic behavior begins

to be understood. The initial question we posed was: what are the appropriate terms

in a model Hamiltonian to provide correct modeling of the charge-spin-orbital behavior

through the transition that leads to “charge ordering transitions”? The answer is that

this seems not to be the right question. The challenge is different: in a Wannier function

basis of 3d orbitals the most transparent local orbital basis, with occupations one or

zero, is different on either side of the transition – the environment is instrumental

in characterizing the charge state. The difference can be seen in several ways, but

most clearly by the observation that the 3d occupation would differ (by order unity,

the difference in occupations) if they were not considerably different. A physical local

orbital description on each side of the transition is simple only if substantially different

local orbitals are used on either side. A basis sufficient to enable both representations

is the set of all 3d and 2p orbitals (other orbitals are out of the picture); a single simple

eg or t2g basis lacks the necessary flexibility. The issue is not what terms are in the

Hamiltonian so much as that a good minimal basis on one side of the transition is a

poor, insufficient one on the other.

Einstein is said to have stated: “a theory (or model) should be as simple as possible,

but no simpler.” The requisite basis set, until shown differently, is (1) the set of relevant

atomic d states on the open shell cation (eg or t2g when crystal field splitting is large,

for example) and (2) the active 2p atomic orbitals on the ligand (oxygen). These O

functions are necessary because the O participation in a Wannier function changes

across the transition, and this is a crucial degree of freedom. The on-site repulsion U is

21



relevant due to its role in keeping the d occupation fixed, but perhaps it can be thought

of heuristically as a U → ∞ term as far as the mean field physics is concerned. Cation-

ligand hopping terms and cation-ligand Coulomb energies, both distance-dependent,

must be important. The on-site energy difference (“charge transfer” energy εd−εp) of a

reference state (the high symmetry structure) is important in determining the character

of the Wannier functions, and Hund’s rule energy is a relevant factor.

Setting up and carrying out fruitful modeling is a task for the future. A fundamental

question remains: why does a given charge state – occupation of a specific type

of Wannier orbitals – lead to a reasonably well defined ionic radius, rather than a

continuum depending on the environment – why are ionic radii ‘quantized?’ More

broadly stated: why does the conventional charge state picture function so usefully, when

3d (or 4d) charge is not involved – both cation and anion charges are unchanged?[57] An

understanding of “charge ordering” transitions may require an answer to this question.
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