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There is strong interest in discovering or designing wide gap Chern insulators. Here we follow a
Chern insulator to trivial Mott insulator transition versus interaction strength U in a honeycomb
lattice Fe-based transition metal oxide, discovering that a spin-orbit coupling energy scale ξ=40 meV
can produce and maintain a topologically entangled Chern insulating state against an interaction
strength U up to 60 times as large. At a critical strength Uc, the continuous evolution of the
electronic structure encounters a gap closing then reopening, after which the system reverts to a
trivial Mott insulating phase. This Chern insulator phase of honeycomb lattice Fe2+ BaFe2(PO4)2
has large Chern number C = –3 that will provide enhanced anomalous Hall conductivity due to the
associated three edge states threading through the bulk gap of 80 meV.

PACS numbers:

I. BACKGROUND

The quantum anomalous Hall (QAH) insulator, also
known as Chern insulator, is a two-dimensional (2D) fer-
romagnetic (FM) insulator with a nonzero Chern num-
ber, resulting in a quantized boundary anomalous Hall
conductivity without an external magnetic field as first
proposed by the Haldane model on a hexagonal lattice.[1]
The quantized conductivity is given by σxy = C(e2/h)
with the Planck constant h and electronic charge e, and

FIG. 1: (color online) The rhombohedral structure of
BaFe2(PO4)2(left panel), consisting of honeycomb sublattices
of FeO6 octahedra (right panel, top view) and intervening
PO4 tetrahedra and Ba2+ ions. The primitive cell (solid lines
in the right panel) contains two Fe2+ ions. The inter- and
intra-layer Fe-Fe distances, indicating highly 2D character,
are provided.
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the Chern number C quantized due to topological restric-
tions. C, whose origin involves occupied states entan-
gled with conduction states, corresponds to the num-
ber of dissipationless and gapless edge states for the
FM 2D Chern insulator.[2] The QAH insulator is antici-
pated to be a good candidate, with a great advantage in
practice, for anticipated applications of no energy con-
sumption electronics[2], for Majorana fermions and their
manipulation[3], and for future photonic devices.[4] High
Chern number materials will provide comparably higher
conductivities.

A Chern insulating state arises in a broken time rever-
sal system where spin-orbit coupling (SOC) inverts va-
lence and conduction bands which would otherwise pro-
vide a trivial insulating phase. The topological gap is
thereby limited by the strength of SOC. The interplay
between strong interactions and strength of SOC is being
explored in contexts of topologically insulating iridates[5]
and possibly osmates, but primarily model Hamilto-
nian treatments have explored (or suggested) the related
phase diagram, and none have followed how the phase
transition occurs. Witczak-Krempa and collaborators[6]
have presented a heuristic phase diagram in which a
Chern insulating state borders a (trivial) Mott insulator.
However, modeling of the evolution of a realizable system
through such a transition is only now being addressed,
with an example being the results of Doennig and co-
workers[7] of the interplay between SOC and correlation
effects in manipulating the competition between Chern
and Mott phases in a buckled (111) bilayer of LaFeO3

in LaAlO3. Here we provide a related example for the
bulk transition metal oxide and Ising FM BaFe2(PO4)2
(BFPO) whose structure is shown in Fig. 1, of the com-
petition between SOC and strong interaction in creating
and then annihilating a high Chern number QAH phase.

The QAH phase has been predicted in various artifi-
cial structures that can be roughly classified into three
groups: (1) topological insulators doped by magnetic



transition metal (TM) ions[8–10], (2) thin TM layers on
a hexagonal lattice[11, 12], and (3) heterostructures of
{111}-oriented double perovskite or TM oxides[7, 13–15].
A QAH state of C=±2 was calculated for CrO2/TiO2[14]
and VO2/TiO2[15] heterostructures. However, having
gaps of 2-4 meV leaves them primarily of academic inter-
est. A QAH state was also suggested and then calculated
for perovskite bilayers[7, 13], but required a tuning of hy-
bridization or trigonal distortion to realize a QAH phase.
Zhang et al. suggested C=±2 QAH with a larger (∼ 100
meV) gap in graphene decorated with 5d transition-metal
ions[11], while Zhou et al. proposed the C=1 state with
a larger gap around 100 meV in a hexagonal tungsten
lattice on the monolayer Cl-covered Si(111) surface[12].
Generally, the QAH phase in these thin films has been
expected only at a particular thickness. Beyond the pre-
dicted systems, toy models[16–18] with topological flat
bands have suggested high Chern numbers in thin films
or artificial heterostructures. A Chern insulating state
in bulk solids remains a goal for both research study and
possible applications, and large Chern numbers are espe-
cially valued.
Aside from these theoretically designed systems, a

QAH realization has been reported in the Cr-doped
topological insulator (Bi,Sb)2Te3 with C=1 at very low
temperature.[19] To realize a QAH insulator with a large
nontrivial gap, high Curie temperature TC , and high
Chern number in real or easily synthesized compounds re-
mains a challenge. Morimoto and Nagaosa proposed,[20]
based on a strong forward-scattering amplitude model,
that large gap topological insulators may be possible to
achieve in strongly interacting systems, which shifts the
focus away from s− p materials.
In this paper we uncover, and then analyze the na-

ture of, a transition between gapped topological (Chern)
and trivial (Mott) insulating states in BFPO using a cor-
related band approach including SOC. With increasing
interaction strength, a compensated low-density Chern
semimetal evolves into a C=–3 Chern insulator with a
gap up to 80 meV, then transforms abruptly to a triv-
ial Mott insulator, versus increasing strength of on-site
Coulomb repulsion U . It is remarkable that the critical
value for the transition is Uc = 2.45 eV, a factor of more
than sixty greater than the SOC strength ξ=40 meV that
produced the Chern phase. This interplay between SOC
and strong interaction highlights how small energy scales
can leverage topological restrictions to resist effects of
much larger energy scales.

II. STRUCTURE, SYMMETRY, METHODS

A. Structure and symmetry

Symmetries that are present can be critical for topolog-
ical materials. Insulating BFPO[21] crystallizes in space
group R3̄ (threefold rotation plus inversion) and is com-
posed of layered 2D honeycomb sublattices of Fe2+ ions

within FeO6 octahedra, as pictured in Fig. 1. Due to
a substantial interlayer separation of the Fe layers sepa-
rated by Ba2+ and (PO4)

3− insulating layers, BFPO is
2D electronically. BFPO was synthesized by Mentré and
coworkers[22], who identified the rare 2D Ising FM na-
ture with Curie temperature TC = 65 K. The very large
calculated magnetocrystalline anisotropy is related to the
large orbital moment. Our previous study[21] provided
the relaxed atomic positions and revealed large exchange
splitting ∆ex=3 eV of the d6 ion, enforcing the high spin
S = 2 configuration with its filled and inactive major-
ity d orbitals. SOC will couple the single minority t2g
electron to majority orbitals 2-3 eV removed in energy.
Nevertheless, as we will see, SOC plays a critical role in
BFPO.

B. Theoretical methods

The all-electron full-potential code wien2k[23] incor-
porating density-functional-theory-based methods was
applied, with the structural parameters optimized in our
previous study.[21] The Perdew-Burke-Ernzerhof gener-
alized gradient approximation (GGA) was used as the
exchange-correlation functional.[24] Combined effects of
correlation (Hubbard U) and SOC, needed to produce the
insulating state, were included through GGA+U+SOC
calculations. Based on previous experience,[21] U is var-
ied up to 4 eV, while the Hund’s exchange parameter J
is fixed to 0.7 eV.

¿From these results, a tight-binding Hamiltonian for
the t2g manifold was obtained in terms of maximally lo-
calized Wannier functions[25] as implemented in wan-

nier90. All necessary files forwannier90 were prepared
by the codewien2wannier.[26] The Brillouin zone (BZ),
gapped almost everywhere, was sampled by 11×11×11 k-
mesh, and 16 orbitals were used for the Wannier function
projection. Using wannier90, the Berry curvature and
the anomalous Hall conductivity were calculated with a
very dense k-point grid of 5×105 points to picture the
Berry curvature and 300× 300× 300 integration mesh to
evaluate the anomalous Hall conductance.

III. RESULTS AND ANALYSIS

A. Band structure and Berry curvature

First we address the evolution of the band structure
and Berry curvature Ωz(~k) versus increasing strength of
U , finding unanticipated behavior. Although the pertur-
bation theory expression for Ωk is used in the calculation,
it is instructive to note the expression in terms of the pe-
riodic part of the Bloch function uk = wk exp(iγk) with
non-negative magnitude wk and real phase γk (band in-
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FIG. 2: (color online) Top row: GGA+SOC+U band structures versus U , near the gap around zero energy. Two occupied
minority bands lie below EF=0. Bottom row: Berry curvatures Ωk along the Γ − M − K − Γ lines, also versus U . Note the
different scales and signs of the vertical axes in the Ωk plots. The origin of structure in Ωk is described in the text.
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FIG. 3: (color online) As in Fig. 2, but for U approaching
Uc on a fine scale. The regime U > Uc, after band disen-
tanglement (which occurs at Γ, not at K), provides the non-
topological phase in which the Mott gap increases from zero.
Note that the Berry curvature changes its predominant sign
at Uc (as well as integrating to zero).

dices suppressed),

Ωk = −i
∑

ij

ǫij < ∂ki
uk|∂kj

uk >

= 2[< ∂kx
wk|wk∂ky

γk > +(x ↔ y)], (1)

where ǫij is the rank-2 antisymmetric unit tensor.
The usual expression from perturbation theory sug-
gests (as we find) that regions with small bandgaps are
important.[15, 27] These regions of small gap may also
involve larger matrix elements, because mixing by SOC
is larger when the gap is smaller.

Eq. (1) makes explicit that a nonvanishing Berry cur-
vature requires a k-dependent phase. More specifically, it
provides a different picture than the perturbation theory
expression (which is what is actually evaluated). The
complementary interpretation is that the Berry curva-
ture obtains large contributions from where the gradients
of both wk and γk are large. Evidently small gaps and
large velocity matrix elements promote such large gradi-
ents. In integer quantum Hall effect systems the Chern
number was related to zeroes in uk.[28]

In the uncorrelated limit U = 0, a tiny electron pocket
in the Dirac point valley at K, visible in Fig. 2(a), is
compensated with a hole pocket at Γ,[21] preventing the
Dirac point from pinning EF . SOC leads to the opening
of a gap of 40 meV between the Dirac bands at K, pro-
viding the SOC energy scale[29] ξ=40 meV. The small
gap results in sharp peaks appearing in Fig. 2(f) in the

curvature Ωz(~k) near the two K-points; the splitting into
two sharp peaks is caused by the Fermi level overlapping
slightly the conduction band, reproduced correctly by the
fine k-point integration mesh.
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FIG. 4: (color online) Top panel: anomalous Hall conductance
σxy in units of e2/h versus chemical potential, for the range
of U = 0 − 3 eV. Below Uc = 2.45 eV, a nontrivial gap ∼0.1
eV with Chern number of –3 appears, due to the spin-orbit
driven gap at the K points. Bottom panel: the gap at K
versus repulsion strength U . The Chern insulator (CI) phase
persists up to Uc. Above Uc is the Mott insulator (MI) phase,
where the gap increases rapidly with U to nearly 0.5 eV at
U=4 eV.

FIG. 5: (color online) Berry curvature Ωk in the entire zone.
Left panel: U=2 eV, in the Chern phase, where strong peaks
occur at the K points. Right panel: U=3 eV, the C=0 trivial
phase. Positive values of Ωk around the Γ point are canceled
by negative values throughout the rest of the zone.

B. Evolution with interaction strength.

For U as small as 1 eV the band overlap disappears,
the Dirac point pins the Fermi energy as in graphene, and

a sharp, almost δ-function like, peak appears in Ωz(~k) at
K, shown in Fig. 2(g). Unlike in graphene, here an or-
bital degree of freedom is involved. The Dirac point de-
generacy reflects the degeneracy in R3̄ symmetry of the
e′g orbitals, the bands being linear combinations of Fe
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FIG. 6: (color online) Enlarged GGA+SOC+U band struc-
tures (left) and energy resolved anomalous Hall conductance
σxy (right) in unit of e2/h at U = 2 eV. The two bands below
the gap (horizontal line; one band is not visible) provide C=-3;
the next higher band is non-topological ∆C=0; entanglement
of the top band with the next lower one gives it a very large
Chern number C=6.

orbitals with opposite orbital moment projections. In-
corporating SOC, these orbitals become entangled with
the unbalanced spin character, and a gap of several tens
of meV is opened at K without inducing any significant
orbital moment, i.e. e′g occupation is retained.

With further increase in U , the peaks in Ωz(~k) broaden
as the band structure evolves, with the gap at K increas-
ing smoothly without significant orbital moment. For
U up to a critical value Uc, SOC retains its hold on
the Chern state (see below), in spite of the large value
of U and of spin-exchange splitting ∆ex, compared to
ξ. The bands and Berry curvature calculated for val-
ues of U from 2.40 eV to 2.475 eV are shown in Fig.
3. Above U=2 eV the gap between valence and conduc-
tion bands at Γ decreases rapidly, closing at the critical
value Uc=2.45 eV as shown in Fig. 4, lower panel. This
gap closing and reopening marks a disentanglement of
bands and loss of topological character, as we verify be-
low. Note that the eigenvalue crossing at Γ does not
lead to a metallic trivial state, but to a Mott insulating
state dictated by the Coulomb repulsion U . The vanish-
ing of the Chern number at the transition suggests that
the character of the Wannier functions of the two filled
bands will have changed discontinuously at the critical
point. The character of the Berry curvature changes dra-
matically, as shown in Fig. 5.
We had previously found[21] that beyond U ≈ 2.5 eV

the orbital moment mℓ increases rapidly from ∼0.1µB

to 0.5–0.6µB , asymptoting to the remarkably large value
(for a 3d ion) of 0.7µB for U > 5 eV. The spin remains
close to its S=2 value. This jump in orbital moment sig-
nals the reoccupation from a linear combination of the
two e′g orbitals to dominant occupation of the complex
mℓ = +1 linear combination, a sign that SOC retains in-
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FIG. 7: (color online) Orbital
∑

n
〈ukn|~l|ukn〉 and spin

∑
n
〈ukn|~s|ukn〉 textures in a square region in ~k space. The axes are

along Cartesian axes; Γ is at the near corner, M is midway along the diagonal toward the far corner, the vortices circle the
K, K’ points. (a) The orbital texture in the Chern phase (U=2 eV) and (b) in the U=3 eV trivial Mott insulator. (c), (d)
The corresponding spin textures. The color denotes the ẑ component of the texture field, with positive being parallel to the
spin orientation, i.e., ĉ-direction, while the arrow provides the direction. The bottom plane provides the ẑ projection to allow
better visualization of the in-plane variation.

fluence even after the loss of topological character. The
topological-to-trivial transition thus results from a con-
tinuous, strong interaction driven band reordering, ma-
nipulated by the interplay between U and the SOC en-
ergy ξ=40 meV. The transition occurs at a ratio U/ξ=60.

C. Chern number and its origin

A chemical potential resolved Chern number C(E) is
obtained from the anomalous Hall conductivity σxy =
C e2/h by integrating the Berry curvature Ωk over the
zone, up to the chemical potential. For values of U in-
creasing through Uc, the energy-resolved σxy(E) near EF

is displayed in the top panel of Fig. 4. Just below U = 1
eV, an indirect gap opens, resulting in crossover from
the Chern semimetal to a Chern insulator with C= -3,
signaling a Chern phase with three times the minimum
quantized anomalous Hall conductivity. At U = 2.5 eV,
the contribution of the very sharp positive peak at Γ is
canceled by smaller negative contributions elsewhere, and
C→0; BFPO has transformed to a trivial insulator.
Besides the fundamental gap, there are additional non-

trivial gaps at higher energies. The right panel of Fig. 6

shows σxy in the –0.25 eV to 1.5 eV range for U = 2 eV.
Overall, there are three nontrivial gaps, about 80 meV
wide at EF and 100 meV at 0.5 eV, and a smaller gap
at 1.3 eV. Notably, the highest band has C=–6, while
the two bands just below provide C=+9 to the running
sum. Strong spin-orbit entanglement extends throughout
the t2g bands in the Chern phase. The nontrivial states
can be attributed to topological spin-orbit band entan-
glement, at the K points for the physical, fundamental
gap; at the Γ point for band filling up to 0.5 eV; again at
the K points for band filling to 1.3 eV (see the left panel
of Fig. 6). Above Uc, the last two gaps increase a little,
whereas the lowest one becomes trivial.

IV. ANGULAR MOMENTA AND THEIR

TEXTURES

SOC produces noncollinear texture of the spin and or-
bital magnetizations, as studied early on in real space by
Nordström and Singh.[30] Here we study the spin and or-
bital moment texture in k-space, comparing its behavior
in the Chern insulator phase to that in the Mott insulator
phase. The results indicate effects of spin-orbit coupling
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can be strongly confined to specific regions of the zone,
but in a manner very different from the high but narrow
peaks of the Berry curvature.
The contribution to the orbital momemt (and analo-

gously for the spin moment) at point ~r from point ~k in
the zone is

mℓ
k(~r) =

occ∑

n

u∗
k,n(~r)

~luk,n(~r), (2)

in terms of the two occupied minority band wavefunc-
tions uk,1 and uk,2. These quantities can be summed
over the zone to give the texture in real space, or inte-
grated over the cell to give the texture in the zone. It is
this latter approach that we address here, since topolog-

ical character is connected directly to the ~k-dependence
of the Bloch functions.
With the hope of uncovering additional aspects of

the nature of the topological transition, we present in

Fig. 7 the orbital moment
∑

n〈uk,n|~l|uk,n〉 and spin∑
n〈uk,n|~s|uk,n〉 textures summed over the two occupied

minority bands, which are the orbitally active ones in
the t2g manifold. The band decomposed analogs are pre-
sented in the Supplementary Material. One can readily
see that the texture is highly structured, compared for
example to the simple vortex shape found on Cu(111)
and Au(111) surfaces by Kim et al.[31]

In the Chern phase U < Uc (left panels of Fig. 7) both
orbital and spin textures are slowly varying near their
mean values except for sharply defined elliptical regions
around the K and K’ points, where a significant disrup-
tion appears. Most notably, the orbital texture displays
chiral character of oppositely oriented circulations, remi-
niscent of the source-sink character found in the Berry
connection in honeycomb lattice models. The spin is
large everywhere, consistent with the ferromagnetic char-
acter, with texture that also displays well defined, but
different size and shape, regions around the K and K’
points. The z-components differ in the two regions, both
being substantially different from the mean.
Beyond the critical value Uc, the Mott insulating state

appears with enhanced mℓ = +1 character throughout
the zone. There is a small orbital moment ∼0.1µB at
U=3 eV, not much different than in the Chern phase
(but it increases rapidly at larger U). The corresponding
textures are shown in the right panels of Fig. 7. The
transition from Chern to Mott insulator at Uc is accom-
panied by a change in character of both orbital and spin
texture fields. Now the effect of SOC in coupling spin
texture to orbital texture dies rather abruptly away from
the K, K’ points, and structure has appeared around Γ.
It should be mentioned that the change between the

textures at U=2 eV and U=3 eV is not abrupt. The

value of the (say) orbital field
∑

n〈uk,n|~l|uk,n〉 at one

point ~k does not know what is occurring at other k points,
nor does it know specifically about global topological
properties; it varies continuously with changes, includ-
ing changes in U , as long as no first-order transition is

encountered.
Some general observations can be made. A strictly

local isotropic moment should correspond to a smooth,
symmetric texture in k-space. A uniform (purely itin-
erant) magnetization in real space would arise from a
strong peak at small |k|. The sharp boundaries of re-
gions differing from featureless texture are much more
prominent in the Chern phase than in the trivial phase,
indicating that real space texture evolves in both the or-
bital and spin moments as the orbital moment becomes
larger and better defined.

V. SUMMARY

In this work we have followed the evolution of the
honeycomb lattice Ising ferromagnet BaFe2(PO4)2 from
Chern insulator at small to moderate interaction strength
U to the Mott insulator phase beyond the critical
strength Uc=2.45 eV. A noteworthy aspect is that the
Chern phase has C= –3 and, at its maximum, a siz-
able gap of 80 meV. For small U after SOC is included,
the Chern insulator phase is obtained within which the
gap at K increases very slowly with U . The small SOC
strength ξ=40 meV is sufficient to withstand increasing
U and support the topological phase up to the critical
value Uc=2.45 eV, where the gap, which has shifted to
Γ, closes then immediately re-opens with the system in
a trivial Mott insulating phase (C= 0). For Fe in an ox-
ide insulator, U will be at least 4–5 eV in magnitude, so
we do not expect BaFe2(PO4)2 to show Chern insulating
properties. Evidently a larger strength of SOC or smaller
U is the direction to search for a Chern insulator in this
class.
For additional insight, we have demonstrated that

the spin and angular momentum textures throughout
the zone experience an evolution from a tight structure
around the K and K’ points in the Chern phase to a
more extended character in the Mott phase, varying more
smoothly throughout the zone.
A distinctive feature of BFPO is the large Chern num-

ber C= –3. In fact, the highest lying minority t2g band
has C= –6, with the intermediate bands contributing C=
+9. Ren et al.[32] in their review have commented on
large Chern number systems, and referenced the few that
have been predicted, mostly in model systems. As an ex-
ample, Jiang et al.[33] have calculated Chern numbers for
multilayer films in magnetic fields for which the Chern
number, for tuned field values, can be as large as the
number of layers (up to 12 in their model).
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