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BaFe2(PO4)2 is an unusual Ising insulating ferromagnet based on the Fe2+ spin S=2 ion, whose
susceptibility suggests in addition a large orbital component to the Fe local moment. We apply
density functional theory based methods to obtain a microscopic picture of the competing interac-
tions and the critical role of spin-orbit coupling (SOC) in this honeycomb lattice system. The low T

ferromagnetic phase displays a half-semimetallic Dirac point pinning the Fermi level and preventing
gap opening before consideration of SOC, presenting a case in which correlation effects modeled by
a repulsive Hubbard U fails to open a gap. Simultaneous inclusion of both correlation and SOC
drives a large orbital moment ML of more than 0.7 µB (essentially L = 1) for spin aligned along
the ĉ-axis, with a gap comparable with the inferred experimental value. The large orbital moment
accounts for the large Ising anisotropy, in spite of the small magnitude of the SOC strength on the
3d (Fe) ion. Ultimately, the Mott-Hubbard gap is enabled by degeneracy lifting by SOC and the
large Fe moments, rather than by standard Hubbard interactions alone. We suggest that competing
orbital occupations are responsible for the structural transitions involved in the observed re-entrant
rhombohedral-triclinic-rhombohedral sequence.

PACS numbers: 71.20.Be, 71.30.+h, 75.25.Dk, 71.27.+a

I. INTRODUCTION

In the last few decades, the two-dimensional (2D)
honeycomb lattice has attracted interest due to several
exotic physical phenomena related with superconduc-
tivity, magnetism, and topological phases, and to the

FIG. 1: (Color online) (a) The rhombohedral structure, which
contains PO4 tetrahedra and edge-sharing FeO6 octahedra, of
BaFe2(PO4)2 in its low and high T regimes. (b) Top view

of the 2-dimensional Fe honeycomb lattice in the â− b̂ plane.
The solid line indicates the unit cell, containing two Fe ions
(brown circles). The oxygen ions (small red circles) in the
upper layer are denoted by a dot.
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Dirac point 2D material graphene. Recently, discover-
ies of topological insulators, originally on the honeycomb
lattice,[1] have stimulated increased research on proper-
ties of systems with honeycomb lattices.[2–4]

Transition metal d1 systems are good examples to in-
vestigate the interplay among lattice, spin, orbital de-
grees of freedom, and correlation effects, since variation
of 3d → 4d → 5d leads to weakening strength of corre-
lation, but strengthening of spin-orbit coupling (SOC).
For 5d1 systems, a large SOC results in a Jeff = 3

2
Dirac

(or relativistic) Mott insulator in Ba2NaOsO6[5, 6] in
which the orbital moment plays a pivotal role. Similarly,
a Jeff = 1

2
Mott transition has been proposed in 5d5

Sr2IrO4, i.e. one hole in the t2g manifold.[7] 4d1 systems
usually have a reduced SOC and some enhanced correla-
tion strengths. In Nb12O29,[8] a highly localized d1 Nb5+

ion coupled to itinerant Nb4+ carriers induces a new two
dimensional Kondo-Heisenberg lattice system. In 3d sys-
tems, a much stronger correlation strength leads to a
Mott transition, which has been intensively discussed,[9]
while SOC is usually minor. Here, we focus on the re-
cently synthesized BaFe2(PO4)2 compound with a hon-
eycomb lattice of high spin d6 Fe2+ ions, leading to an
effectively isolated minority spin d1 configuration due to
a large exchange splitting of the high spin Fe ion. Large
3d orbital moments have been encountered recently[10]
but understanding their origin is not simple.

Mentré and coworkers synthesized a rare example
of an insulating 2D Ising ferromagnetic (FM) oxide
BaFe2(PO4)2, confirmed by the observed critical expo-
nents in good agreement with the theoretical Ising val-
ues, with the Curie temperature TC = 65 K and negligi-
ble hysteresis.[11, 12] This system also shows an unusual



TABLE I: Optimized internal parameters and structure infor-
mation with the experimental lattice parameters of a=4.869
Å and c=23.230 Å at low T .[12] In the representation of
a hexagonal lattice, the Ba ions are at 3a (0,0,0). The Fe,
O1, and P atoms sit 6c (0,0,z), while O2 lies at 18f (x, y, z).
The O2 ions are corner-shared by the PO4 tetrahedra and
the FeO6 octahedra, whereas the O1 ions are at one of the
vertices of the PO4 tetrahedra. The bond length d and the
bond angles are given in units of Å and degree, respectively.

Fe P O1 O2
internal z z z x y z

parameter 0.1680 0.5710 0.6371 0.3494 0.0235 0.8840

d(Fe-O)(×3) 2.042, 2.050
d(P-O) 1.536, 1.598(×3)
6 O-Fe-O(×3) 86.6, 88.6, 93.2,91.8
6 O-P-O (×3) 107.2, 111.7

re-entrant structural transition sequence: a re-entrant
rhombohedral (R3̄) → triclinic (P 1̄ at 140 K) → rhombo-
hedral ferromagnetic (FM) (R3̄ at 70 K). This rare reen-
trant sequence was suggested to arise from competition
between Jahn-teller distortion and magnetism.[11, 12]
The observed Curie-Weiss moment, 6.16 µB , is sub-
stantially enhanced from the spin-only value of 4.9 µB

for a S = 2 system. Additionally, the saturated mo-
ment is about 5 µB from powder neutron diffraction
studies.[11, 12] These values are close to those of the case
of S = 2, L = 1, thus requiring a large orbital moment on
the 3d ion. The latter corresponds to the possible largest
orbital moment ML = 1 µB for the t12g system.[5] Optical
spectroscopy measurements show semiconducting behav-
ior with an estimated energy gap of 1.5 eV.[13]

Although the generalized gradient approximation
(GGA) plus on-site Coulomb repulsion U calculations
by Mentré and coworkers provided some preliminary
results,[11] available information about the electronic
structures is still limited. Here we report more extensive
density functional theory (DFT) based studies, including
correlation and SOC, to uncover the origin of the strong
magnetocrystalline anisotropy, Mott transition, and the
large orbital moment in BaFe2(PO4)2.

II. CRYSTAL STRUCTURE AND METHODS

Figure 1 shows the rhombohedral structure of the space
group R3̄ (No. 148), which is observed in the both low
and high T regimes. In this structure, P ions sit in the
center of the Fe honeycomb lattice, but above and be-
low the layer along the ĉ direction. The P ions are edge-
shared with three oxygen ions of the FeO6 octahedra, and
form PO4 tetrahedra. The Fe2+ layers are isolated by
the intervening insulating (PO4)

3− tetrahedra and Ba2+

ions. In the low T phase, the interlayer distance is 7.71
Å along the c-axis, while the Fe-Fe distance is 2.81 Å.
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FIG. 2: (Color online) Nonmagnetic GGA band structure
(left) and densities of states (right) of the rhombohedral struc-
ture in the energy region containing Fe d orbitals. The occu-
pation confirms the d6 Fe2+ configuration and the density of
states just below the gap shows a quasi-one-dimensional char-
acter due to the flat band that extends from M to K, hence
all around the edge of the Brillouin zone. The bottom of the
gap is denoted by the horizontal dashed line.

Both structurally and electronically (below), the com-
pound is strongly 2D in nature.
Using the GGA exchange-correlation functional, the

internal parameters[14, 15] were optimized at the experi-
ment lattice parameters for the low T phase (see Table I),
since no experimental data is available. The optimized
positions are very similar to the experimental ones at
high T , as expected since the difference in volumes be-
tween the low and high T phases are only several tenths
of a percent.[11, 12] The FeO6 octahedra are somewhat
more regular in the low T phase, while the PO4 tetrahe-
dra are close to an ideal tetrahedron in the high T phase.
Our calculations were performed in a rhombohedral

unit cell with GGA exchange-correlation functional plus
U and SOC, which are implemented in the accurate all-
electron full-potential codewien2k.[16] On-site Coulomb
repulsion U = 3− 5 eV and the Hund’s exchange param-
eter J = 0.70 eV were employed, as widely used for Fe2+

systems.[11, 17] The basis size was determined from the
smallest atomic sphere by RmtKmax = 7 and augmented
plane wave radii of Ba 2.30, Fe 2.00, P 1.61, and O 1.29,
in atomic units. The Brillouin zone was sampled up to a
k-mesh of 17× 17× 17 to check convergence carefully in
this system, which is semimetallic at some levels of the
theory.

III. RESULTS

A. Underlying electronic structure

Before discussing the low temperature FM phase re-
sults, we address the nonmagnetic state, which repre-
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sents the underlying electronic structure. The enlarged
band structure in the energy range of Fe d orbitals and
the corresponding densities of states (DOSs) are given in
Fig. 2. In the region displayed there are 10 d bands,
since the unit cell contains 2 Fe ions. From the tiny
oxygen character in the DOS around EF , we conclude
that direct Fe t2g − t2g hopping is substantial due to the
edge-sharing octahedral structure, and this interaction
leads to a bonding-antibonding splitting ∼1 eV of the
fully filled t2g manifold. A gap of 0.25 eV opens between
the antibonding t∗2g state and the unfilled eg manifold.
This feature of isolated bands around EF in a hexagonal
lattice system is similar to that of the hole-doped super-
conductor Li1−xNbO2.[18, 19] In both bonding and anti-
bonding manifolds, Dirac points appear at the K point
by symmetry, as observed in several honeycomb lattices.
An anomalous feature is that the top of the t∗2g man-

ifold (bottom of the gap) is flat along the M − K line,
hence along the entire edge of the Brillouin zone. Con-
sidering also the dispersionless character along the ĉ-
axis due to the large interlayer distance, the electronic
structure becomes an unusual quasi-one-dimensional one,
as evident in DOS near EF . This one-dimensionality
however is not uniaxial but instead radial, perpendic-
ular to the edge of the Brillouin zone. A similar one-
dimensionality was found as well in the hexagonal lattice
CuAlO3 compound.[20]

B. Ferromagnetic electronic structure

1. Uncorrelated electronic structure and magnetism

Now we focus on the FM state, which is the ground
state at the low T regime. The magnetic energy is large,
with the FM state being 1.2 eV/Fe lower in energy than
for the nonmagnetic state. This very large magnetization
energy guarantees that the local moment is robust even
in the high T disordered regime. Based on the Stoner
picture (which may be accurate only for small moments)
where this energy is 1

4
IM2

S , MS = 4µB leads to a broad
first estimate of the Stoner I of 0.3 eV. A more realistic
means of estimating I is from the band exchange splitting
IMS = ∆ex = 3 eV of the GGA bands, giving I = 0.75
eV, more in line with accepted values for the magnetic 3d
ions. Consistent with the experiments, the FM state has
the lower energy (in GGA) of 370 meV/Fe than simple
antiferromagnetic state.
The left side of Fig. 3(a) displays the GGA FM band

structure, showing a half-semimetallic character with a
minority spin Dirac point (or Weyl node)[21] lying right
below EF by 30 meV at the point K. The corresponding
DOS, given in the right side of Fig. 3(a), shows a 2

3
-filled

minority t2g bonding manifold, confirming the high spin
S=2 Fe2+ configuration. The t2g manifold shows a large
exchange splitting of 3 eV. All majority states (t2g and
eg) are filled, hence 5

2
spin, and orbitally inert. Hence-

forward we focus on the single minority electron, whose
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FIG. 3: (Color online)(a) FM band structures and DOSs
within GGA in the range of Fe d bands, indicating a half-
semimetallic character in the minority bands (red dashed
lines). A Dirac point appears almost exactly at EF at the
point K. (b) Overlaid FM GGA (red dashed lines) and
GGA+SOC (green solid lines) band structures and total DOS
enlarged near EF , in a ±0.3 eV region containing only some of
the minority t2g manifold. The Dirac point is split by about
30 meV by SOC. Note that a tiny hole pocket compensat-
ing a tiny electron pocket at the K point appears along an
uncommon symmetry line (invisible here).

spin-half reduces the total spin to S=2 and introduces
the question of orbital occupation.
With the local X,Y, Z coordinates of the FeO6 octa-

hedron, the t2g orbitals with global z-axis along ĉ can be
described in a 3-fold symmetry adapted manner by

φm =
1√
3
(ξ0mdXY + ξ1mdY Z + ξ2mdZX), (1)

where the phase factor is ξm = exp(i 2πm
3

) and m = Lz is
the projection of the orbital moment. Due to the small
trigonal distortion, the Lz = 0 orbital φ0(dz2 in shape)
has a somewhat higher site energy than the doublet φ±1.
The corresponding DOS near EF has some similarity to a
particle-hole asymmetric version of graphene,[22] due to
a Dirac point at K that lies very near the Fermi level. The
strong magnetism completely changes the Fe ion config-

uration from {t62ge0g} to {t3↑2ge2↑g t1↓2g}.

2. Dirac point; semimetal-insulator transition

We now address the observed insulating character of
BaFe2(PO4)2, using the GGA+U approach for correlated
insulators. Applying a small U = 1 eV with J = 0.5 −
1 eV to the Fe ions within GGA+U, the Dirac point
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FIG. 4: (Color online) Band structures near EF : (a)-(c)
within GGA+U, and (d)-(f) from GGA+U+SOC, for U =
1 − 4 eV and J = 0.7 eV. The spin up and down bands in
(a)-(c) are denoted by black solid and red dashed lines, re-
spectively, while the bands including SOC (d)-(f) are shown
by green solid lines. In (d) the scale is enlarged to allow the
gap opening at the Dirac point to be seen. (g) Charge density
plot of the minority d orbitals, shown at isovalue of 0.09 e/Å3.
The c-axis is along the vertical direction. This shape is nearly
identical for all calculations performed here. (h) total DOS
at U = 4 eV in GGA+SOC+U, showing a 1.2 eV energy gap
between the corresponding up and down bands.

degeneracy pins EF and no gap opens, as shown in Fig.
4(a). The Dirac cone is isotropic, as in graphene. As
U is increased, the Dirac point degeneracy continues to
pin EF . Applying U up to 7 eV, beyond the limit of a
proper value for Fe ions, although higher energy bands
shift this system remains a half-semimetal without gap,
as illustrated in Fig. 4(b) and (c).

As mentioned in the Introduction, experiment shows
semiconducting behavior and implies a large orbital
moment ML,[11, 12] which are not explained by
GGA+U. We carried out calculations including SOC,
both GGA+SOC and GGA+U+SOC. The GGA+SOC
band structure, overlapping the GGA one, is shown in
the left panel of Fig. 3(b). SOC leads to a band splitting
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FIG. 5: (Color online) Variation of the Fe orbitalML moment,
and energy gap Eg, varying U in GGA+U+SOC from 0-6 eV,
with the spin directed along the ĉ-axis. From U = 4 eV, the
gap is between the filled spin-up and the unfilled spin-down
channels. The critical value of U is in the 2.5-3 eV range.

of 40 meV near EF , visible in this plot only at the Γ and
K points. The linear Dirac bands are also split by 30
meV. This small effect is consistent with the small SOC
strength in 3d ions, and spin mixing is also degraded by
the 2.5 eV exchange splitting.
Another interesting feature occurs in the parabolic

bands touching EF at the Γ point. Inclusion of SOC
splits the bands, degenerate at the Γ points, and leaves
only one maximum at EF , which is more isotropic than
in the case excluding SOC. As a result, as shown in the
DOS of the right side of Fig. 3(b), a van Hove singular-
ity (vHs), much sharper than in GGA, appears very near
EF , in addition to two additional vHs at –0.15 and 0.25
eV.
Simultaneous inclusion of correlation and SOC effects

splits the Dirac point degeneracy, thereby opening a gap
for U as small as 1 eV. At small U this gap is a spin-orbit
gap, not a Mott gap. Although the strength of SOC is
small in 3d systems, the symmetry lowering due to SOC
becomes crucial for opening a gap in this system, as oc-
curs also in BaCrO3.[23] The resulting band structures
in GGA+U+SOC are given in Fig. 4(d)-(f). As dis-
played in Fig. 5, the energy gap of 1.2 eV for U = 4
eV is close to the experimentally estimated value. The
gap is indirect, between K and Γ, although due to the
small dispersion the direct gap is not much larger. There
has been some uncertainty in determining the optical gap
spectroscopically.[13]

3. Degeneracy lifting, large orbital moment

GGA+SOC gives a negligible magnetocrystalline
anisotropy (MCA), with an orbital moment of ML ≈
0.08µB/Fe both for in-plane and ĉ-axis spin alignment.
Varying U in GGA+U+SOC with the spin along ĉ, ML
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of Fe rapidly increases in the U=2-3 eV range, then sat-
urates near 0.7µB at U = 4 eV, as displayed in Fig. 5.
This value excludes contributions from the tails of the
3d orbitals extending out of the Fe sphere, so the atomic
value will be somewhat larger. As a critical value Uc of
2.5-3 eV, the opening of a Mott gap begins.
Consistent with the large exchange splitting ∆ex = 3

eV, the total spin moment MS = 4µB/Fe remains un-
changed, since mixing of the spin-split orbitals by small
SOC is minor. At U = 4 eV, the spin direction along the
ĉ direction has much lower energy around 400 meV/f.u.

than for spin in the â− b̂ plane, explaining the observed
Ising behavior. The state obtained for the spin direc-

tion in the â− b̂ plane (not pictured) remains semimetal-
lic (Dirac point) even in large U regime, showing a very
small ML of ∼0.06 µB . This striking anisotropy confirms
that SOC drives the semimetal-insulator transition, and
that depends strongly on spin direction. This type of
Ising magnet, i.e. with the spin direction perpendicular
to the layers, has been proposed as a crucial ingredient
for emergence of a quantum anomalous Hall state[4] in
ferromagnets.
We now discuss the origin of the large orbital moment.

The SOC operator is

HSO = ξ~S · ~L = ξ[SzLz +
1

2
(S+L− + S−L+)]. (2)

The majority shell is filled, spin-split from the active mi-
nority orbital by ∆ex, and inert, because spin-mixing is
reduced by ξ/∆ex ∼10−2. Thus the spin and orbital
operators are those of the minority channel. With the
majority channel frozen out, the only effect is from the
diagonal term SzLz with Sz = − 1

2
. For the magnetiza-

tion along the ĉ axis, the orbital degeneracy is broken by
− ξ

2
Lz for the two orbital projections. With a bandwidth

of 0.5 eV, this small splitting induces an orbital moment,
but more importantly it specifies the orbital to be occu-
pied in the Mott insulating phase. For the magnetization
in-plane, the Lz = ±1 degeneracy remains unbroken, no
orbital moment arises, and correlation is ineffective in
opening a gap, as discussed above.
As can be seen in Fig. 4(g), the spin density plot of the

filled minority t2g manifold shows the φ+1 character char-
acteristic of an Lz = 1 orbital. When symmetry allows
it, the two orbitals φ±1 are equally filled, the semi-Dirac
degeneracy remains at K, so no gap emerges. It is SOC
that breaks the degeneracy, which though small, enables
the correlation effects to operate. Upon increasing U , the
single minority electron density begins to transfer from
the φ−1 orbital to the φ+1 orbital.

IV. DISCUSSION AND SUMMARY

Using the DFT-based calculations, we have investi-
gated the Ising insulating Fe-honeycomb lattice system
BaFe2(PO4)2, where at the GGA level results in a half-
semimetallic electronic structure with a fermionic Dirac

point lying nearly precisely at EF ; this degeneracy is
split by inclusion of SOC. Applying both U and SOC
suppresses the direct t2g − t2g interaction, and leads to a
Mott transition of uncommon origin, becoming enabled
by the symmetry lowering due to the (small in magni-
tude) SOC. In the insulating phase the magnetic phase
is S = 2, L = 1. The atomic-like value of L suggests
classifying BaFe2(PO4)2 as a Jeff = 3 Dirac Mott insu-
lator. These DFT-based studies have explained the large
magnetic anisotropy, the very large orbital moment for
a 3d ion, and the unusual manner in which spin-orbit
coupling enables the Mott gap to open in BaFe2(PO4)2.
Even the magnitude of the gap is given reasonably by
our methods.

The re-entrant structural transitions mentioned in the
Introduction needs comment. The Fe honeycomb lat-
tice studied here bears a great deal of similarity to the
(111)-oriented perovskite bilayers that are recently be-
ing studied,[24, 25] a difference being that in the lat-
ter case the metal-oxygen octahedra are corner sharing
rather than edge sharing. In those systems structural
symmetry breaking is predicted in some cases, using the
same methods as used here. That symmetry breaking
involves a new type of orbital-occupation competition.
The high symmetry structure (3-fold, as here) supports
complex-valued, orbital moment containing orbitals, but
breaking to low symmetry (P1 space group in that case)
is connected with occupation of the usual (pseudo-)cubic
t2g type real orbitals.

The same orbital-occupation competition can be ex-
pected in BaFe2(PO4)2. At high temperature where the
Fe spins are disordered (primarily up and down due to the
Ising nature) the (space- and time-averaged) symmetry
is the high 3-fold symmetry, and the symmetry adapted
φ+1 orbital is occupied and shows up in the Curie-Weiss
moment. The “ground state” (with spins still disordered)
may be one in which a real-valued t2g orbital is ordered
instead, with accompanying symmetry lowering, and the
transition toward such a lower symmetry structure occurs
at 140 K. However, upon ordering ferromagnetically, the
strains that accompany occupation of cubic orbitals (viz.
Jahn-Teller strains) may be incompatible with long range
order. Such spin-lattice competition could then favor a
return to the symmetric structure at or near the Curie
temperature, as observed. Further consideration of this
mechanism will be left for future work.

A Dirac point has played an important role in our
discussion of how the Mott gap in BaFe2(PO4)2 arises
only when spin-orbit coupling is included. Few in-
stances of a Dirac point pinned to the Fermi level in
a ferromagnet have been reported, which produces a
half-semimetallic system. One such instance is in the
CrO2/TiO2 multilayer[26] where it is actually a semi-
Dirac semi-Weyl point. Another instance is (111)-
oriented perovskite superlattices,[25, 27] where Dirac
point degeneracies are only lifted by symmetry break-
ing interactions. Related band points arise in the hexag-
onal W lattice on the Cl-Si surface,[4] and are also of
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interest in triangular lattice systems.[28] In some such
systems, Chern bands with a Chern number ±2 are
proposed.[26, 27] In addition, the three-dimensional Weyl
semimetals NbP and TaAs, which are distinguished by
lack of inversion symmetry but preserving time reversal
symmetry, have been very much of interest, since these
compounds show an extremely large and unsaturated
magnetoresistivity even for very high magnetic field.[29–
31] BaFe2(PO4)2 bears some similarity to the above
mentioned compounds, and has the potential for addi-
tional interesting properties. It suggests further careful
experimental research on the system.
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[2] A. Rüegg and G. A. Fiete, Topological insulators from
complex orbital order in transition-metal oxides het-
erostructures. Phys. Rev. B 84, 201103(R) (2011).

[3] A. Shitade, H. Katsura, J. Kuneš, X.-L. Qi, S.-C. Zhang,
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