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Reformulation of the LDA 1U method for a local-orbital basis

W. E. Pickett,* S. C. Erwin, and E. C. Ethridge
Complex Systems Theory Branch, Naval Research Laboratory, Washington, DC 20375

~Received 13 February 1998!

We present a local orbital approach to the evaluation of the on-site repulsion energyU for use in the
LDA1U method of Anisimov and co-workers. Our objectives are to make the method more firmly based, to
concentrate primarily on ground-state properties rather than spectra, and to test the method in cases where only
modest changes in orbital occupations are expected, as well as for highly correlated materials. Because of these
objectives, we employ a differential definition ofU. We also define amatrix U, which we find is very
dependent on the environment of the atom in question. The formulation is applied to evaluateU for transition-
metal monoxides from VO to NiO using a local-orbital basis set. The resulting values ofU are typically only
40–65 % as large as values currently in use. We evaluate theU matrix for the eg and t2g subshells in
paramagnetic FeO, and illustrate the very different charge responses of theeg andt2g states. The sensitivity of
the method to the choice of thed orbitals, and to the basis set in general, is discussed.
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I. INTRODUCTION

The understanding and evaluation of the electronic str
ture of strongly correlated materials is a long-standing pr
lem. For weakly correlated materials such as nearly-fr
electron-like metals, covalent semiconductors, ionic sol
and even rather complex intermetallic transition metal co
pounds, the local-density approximation~the LDA, which we
understand to include the spin degree of freedom as wel! to
the exchange-correlation functional that occurs in dens
functional theory gives very reasonable ground-state pro
ties and even band structures~which are excited-state fea
tures!. For correlated materials, however, LDA can
completely wrong: the now-classic example is the canon
cuprate La2CuO4, which LDA predicts to be a nonmagnet
metal1,2 whereas it is actually an antiferromagnetic insulat
Model many-body Hamiltonian treatments, such as the H
bard model,3 can readily explain the observed type of grou
state, but do so in terms of adjustable parameters and
neglect of many aspects of the crystal that may influe
most of its properties. Evaluation of the dynamic self-ener
which gives the description of excitations, is appropriate
comparing with many experiments, but even low-order
proximations can be very tedious to evaluate.4

Within the past few years Anisimov and co-workers ha
proposed an extension of the LDA approach~now called
LDA1U) based on lessons learned from Hubbard mo
studies3 that single out a particular local orbital and the a
sociated on-site repulsive interactionU as the fundamenta
characteristic to be addressed.5–8 They proposed that the
LDA treats the effects ofU reasonably well in some averag
sense, even in highly correlated systems, but that one m
allow a deviation from this average behavior by including
correction to the total energy, including a term like
PRB 580163-1829/98/58~3!/1201~9!/$15.00
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m,sÞm8,s8
~U2ds,s8J!nmsnm8s8, ~1!

whereJ is the exchange constant andnms is the new charge
that includes a local charge redistribution~relative to the
LDA value n̄ms) obtained by solving the LDA1U equations
self-consistently. The local-orbital and -spin indices arem
ands, respectively. It is assumed in the method that one
identify the orbitals to be treated (d orbitals of Cu in
La2CuO4 for the example mentioned above!.

The LDA1U method achieves some spectacular s
cesses, such as leading to an antiferromagnetic insula
state of La2CuO4 with band gap and atomic moment in re
sonable correspondence with observed values9, and leading
to similarly impressive descriptions of the transition-me
monoxides. There remain questions, however, such as
proper way to specify the orbitals, the correct way to obt
the interaction constants (U andJ), and how, if possible, to
extend the method to give an improved treatment of the m
tallic phase when the insulator is heavily doped. In this pa
we address these questions. A primary feature is that, s
the method is perforce focused on an atomic orbital, it
natural to use a local-orbital basis set. We will refer to t
local orbital of interest as the ‘‘d orbital,’’ although in some
applications it may be anf or, rarely, ans or p orbital.

II. DESCRIPTION OF LDA 1U
AS CURRENTLY PRACTICED

In extending the LDA method to account for correlatio
resulting from strong on-site interactions, there are sev
criteria that one might hope to satisfy, such as~1! it should
reduce to LDA when LDA is known to be good;~2! the
energy is given by a functional of the density;~3! the method
specifies how to obtain the local orbital in question~perhaps
1201 © 1998 The American Physical Society
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through a self-consistency procedure!; ~4! the definition ofU
andJ are provided unambiguously;~5! the method predicts
antiferromagnetic insulators when appropriate; and~6! the
description of highly correlated metals is improved over
LDA description. This list, although perhaps still incomple
is already very ambitious, and only certain of these des
have been addressed seriously.

Anisimov, Zaanen, and Andersen~AZA ! ~Ref. 6! chose to
refine the LDA by including an orbital-dependent on
electron potential to account explicitly for the importa
Coulomb repulsions not treated fully in the LDA. This wa
accomplished in analogy with Hartree-Fock theory by c
recting the mean-field contribution of thed-d on-site inter-
action with an intra-atomic correction. This correction h
been applied in slightly varying forms, but a representat
example of the functional to be solved is

ELDA1U5ELDA@n#2 1
2 U(

i
Ni@nms#~Ni@nms#21!

1 1
2 (

i
(

msÞm8s8
Um,m8nimsnim8s8. ~2!

Herei denotes the lattice site, and terms involvingJ have
been neglected because we do not need to specify the
plete form of the functional for this paper.Ni is the site sum
of the d charges, evaluated for the self-consistent LDA1U
densities. The second term is presumed to be a reason
description of the direct Coulomb interaction energy
cluded in the LDA expression.

Equation~2! reveals that, in the LDA1U approach, one
singles out beforehand the atomic orbitals to be treated,
decides how to specify them. Implementations to date
orbitals arising in the linearized muffin-tin orbital~LMTO!
method. Thed orbitals to which theU correction is applied
are numerical solutions to a Schro¨dinger equation inside an
atomic sphere, and are zero outside this sphere. In addi
LDA1U is clearly no longer a straightforward density fun
tional because it depends on parametersU andJ that depend
on the LDA density rather than the LDA1U density.

The one-electron potential is the conventional LDA for
of potential, plus an orbital-dependent shift of energy giv
by

DVms5U~ 1
2 2nms! ~3!

if Umm8→U is orbital independent. The changes in the el
tronic structure are proportional toU, and the definition and
calculation ofU is the next topic to address.

To obtainU and J, AZA performed LMTO calculations
for a supercell in which thed charge on one atom is con
strained and the eigenvalue is obtained.10 The d orbitals on
all atoms in the supercell aredecoupledentirely from the
remaining part of the basis set. This makes the treatmen
the local orbitals an ‘‘atomiclike’’ problem, which greatl
reduces the difficulty associated with constraining the oc
pation numbers. It also has the effect of leaving a rat
artificial system to perform the screening. For example,
NiO the screening system consists of oxygenp orbitals that
cannot hybridize with the Nid orbitals, plus whatever othe
virtual orbitals are included in the basis set.
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The discreteness of thed eigenvalues makes it simple t
specify the charge in the spin-orbitals in the supercell, andU
andJ are determined from the relations

U5«3d↑S n̄

2
1

1

2
,
n̄

2
D 2«3d↑S n̄

2
1

1

2
,
n̄

2
21D , ~4!

in which thed occupation differs by unity around a mea
polarization of unity, and

J5«3d↑S n̄

2
1

1

2
,
n̄

2
2

1

2
D 2«3d↓S n̄

2
1

1

2
,
n̄

2
2

1

2
D , ~5!

which is a straightforward difference between up and do
eigenvalues for unit spin polarization. Here«3d↑(n↑ ,n↓)
@«3d↓(n↑ ,n↓)# is the spin-up~spin-down! 3d eigenvalue for
occupanciesn↑ andn↓ .

While it is widely recognized that the on-site repulsionU
is a screened quantity, the manner in which the screen
should be done is not precisely specified. An early study
Cox, Coulthard, and Lloyd11 for 3d metals used a renorma
ized neutral atom approach, although it was recognized
screening processes might extend over a somewhat la
region. Anisimov and co-workers chose the method p
sented in this section, but in this paper we pursue a differ
approach, with a somewhat different objective.

III. REFORMULATION OF LDA 1U
FOR A LOCAL ORBITAL BASIS

We specify in following subsections the various ways
which our approach differs from that in current use.

A. LCAO basis set

We begin with a basis set of local orbitals$f%, whose
lattice sums lead to the standard linear combination
atomic orbitals~LCAO! Bloch basis functions for the one
electron Hamiltonian.12 To represent an occupied atomic o
bital ~including core states!, we use a contracted set o
Gaussian functions, multiplied by appropriate angular fu
tions for s, p, or d behavior. In particular, at the beginnin
we choose~from a neutral atom or an ion! the d orbitals of
central interest. Although we have no indication of any bet
choice than thed orbital of the corresponding atom~e.g.,
neutral Cu in La2CuO4), our method allows the ability to
check how sensitive the results are to the form chosen for
orbital. In addition to basis functions describing filled atom
~or ionic! orbitals, we add other Gaussian functions to t
basis to provide a more nearly complete basis for the vale
and conduction states than a minimal basis set would p
vide. This feature is an advantage of our local-orbital rep
sentation, as the ability to include self-consistent screen
by a crystalline density of general form in the calculations
important.

This LCAO basis set brings up an important feature. A
sum of squares of wave functions, the charge density c
tains two types of terms. One consists of atom-centered c
tributions containing the coordinate dependencef lm

2 (rW2RW ),
and is clearly identified as a contribution to the charge fr
angular momentuml of the atom located atRW . The other
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contribution has a coordinate dependence given byf lm(rW

2RW )f l 8m8(r
W2RW 8), RW ÞRW 8, which at a particular point may

be positive or negative and cannot be assigned uniquel
any atom. The Mulliken decomposition,13 which assigns half
of each such term to charge componentl ,m on the atom atRW

and the other half to chargel 8m8 of the atom atRW 8, is widely
used when atomic decomposition of the charge is desi
Mulliken population is well understood to be not only arb
trary, but also dependent on the flexibility of the basis s
and therefore should not be endowed with any import
physical meaning.

A central fact that must be addressed is that the t
charge density cannot be decomposed, precisely or mean
fully, into simple atomic contributions alone. This fa
means that the orbital occupations that are the centerpiec
the LDA1U approach unfortunately are not particular
well defined. For our LCAO basis set we will use fornms
charge contributions solely of the first type, which will b
called on-site charges to distinguish them from Mullik
charges. These on-site quantities also cannot properly
called occupation numbers since there is no sum rule
their total, and it is not impossible that for a given orbital t
value can exceed unity.

B. On the specification of the functional

Although we do not carry out LDA1U calculations in
this paper, we are thinking in terms of a generalized LD
1U functional that is consistent with our philosophy behi
the correction. Without more formal justification than is no
mally done in the LDA1U approach~and which we do not
address seriously here!, any change must simply be tested
see if it produces better results. The form that we envis
has affected our study of how to define and evaluate
interaction constants that arise in the method. We supp
that the correction is to provide adjustment to full-potent
LDA results, and therefore includes both a suborbital ind
and a spin index on the reference chargesn̄→n̄ms. These
numbers will differ, sometimes greatly, for different irredu
ible representations of the point group of the atom. The c
rection then might be written suggestively as

ELDA1U5ELDA@n#1 1
2 (

i
(

msÞm8s8
~Um,m82ds,s8Jm,m8!

3~nims2n̄ims!~nim8s82n̄im8s8!. ~6!

This change may affect the types of orbitally ordered
lutions that will be obtained. This form ensures that the LD
solution is an exact stationary solution of the LDA1U func-
tional ~for which the correction vanishes identically!, which
is not the case for Eq.~2!, i.e., if shell-averaged values ofn̄
are used. Aside from strongly correlated solids, another
terest of ours is to ascertain whether LDA1U can provide a
useful improvement of the description of ‘‘simpler’’ system
such as the transition metals Fe and V, where anisotr
~relative amounts oft2g andeg character! is not reproduced
accurately in LDA, or in correlated metals where no bandg
occurs but charge rearrangement might be appropriate.
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C. Procedure for determining U and J

We take as our ansatz that the constantU (J) occurring in
the LDA1U functional should describe the cost in potent
energy of charge~spin! fluctuations in the actual crystal, i.e
with all normal interactions and degrees of freedom availa
to the electrons. Thus we donot decouple thed states from
surrounding states. TheU and J terms are applied in pre
cisely the same system from which they are determined.
comment below on the question of dealing with the asso
ated cost in kinetic energy due to charge fluctuations. For
remainder of this paper we concentrate solely onU, postpon-
ing a related treatment ofJ such as suggested in Ref. 14 fo
the future.

We also take the point of view that the main purpose
LDA1U theory, as in density-functional theory, is to obta
ground-state properties, rather than to approximate exc
tions with the eigenvalues. Describing the ground state m
require small rearrangements of occupation numbers a
from their LDA values, and usually less than one-half, so
employ a differential definition ofU ~also used by Solovyev
Dederichs, and Anisimov14! rather than one employing occu
pation numbers differing by unity. We will see that this in
troduces extra richness into the charge rearrangements
scribed by the LDA1U method, because a small change
~say! t2g population can be strongly compensated by
change ineg population.

We employ then a generalized constrained density fu
tional approach as proposed by Dederichset al.10 to calculate
the change in energy due to constraints on local-orbital d
sities. We minimize the local-density functional subject
the constraint that on-site local orbital chargesna,s be equal
to designated valuesQa,s , where a labels an irreducible
representation of the point group of the atom in quest
~e.g.,t2g or eg), and that total chargeN be conserved:

E~Q!5 min
n↑ ,n↓ ,na,s

H ELDA@n↑ ,n↓#1(
a,s

wa,s~na,s2Qa,s!

2mS E n~r !d3r 2ND J . ~7!

The Lagrange multipliers are the usual chemical potentiam
and the potential shiftswa,s necessary to satisfy the con
straint na,s5Qa,s . Dependence on the total numberN of
electrons~always conserved! will not be displayed explicitly.
Variation with respect to the spin orbitals leads to a on
electron Schro¨dinger equation in which the potential is th
LDA potential, supplemented by local orbital shiftswa,s on
the orbitals in the irreducible representationa having spins.
These additional shifts of potential can be represented
nonlocal potential

VNL5(
a,s

(
mPa

ufm,s&wa,s^fm,su, ~8!

where$f% are normalized atomic orbitals.
Evaluation of the constrained energy in Eq.~7! deserves

comment. Solution for the constrained energy involves g
erating the Kohn-Sham equations, which have an additio
potential of the form of Eq.~8! that effectively constrains the
density as desired. The conventional method of evalua
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the energy is to sum the resulting eigenvalues and correc
double counting of the Hartree energy and the miscoun
of exchange-correlation energy. That cannot be done
rectly, because the Kohn-Sham eigenvalues contain the
fects of the additional potential of Eq.~8! and one does no
obtain ELDA . The additional term that has been included
summing the LDA1U eigenvalues, however, contains on
the additional one-body term(a,swa,sna,s , and this term
can be subtracted to obtainELDA evaluated for the con-
strained density.

D. Constrained energy

It is convenient to introduce a vector notation for the loc
occupations, the constraining values, and the~Lagrange pa-
rameter! potential shifts:na,s→nW , and similarly forQW and
for wW . Since we will be dealing with quantities relative
their LDA values, we also use the notational convenienc

qW 5QW 2QW LDA,

EqW5E~QW !2E~QW LDA !. ~9!

From the Hellmann-Feynmann-like relation

]EqW

]qW
[¹qWEqW52wW , ~10!

we can generalize the constrained density-functional the
viewpoint of Dederichset al.10 to obtain the change in en
ergy due to constraining a set of orbital densities in the m
ner of Eq. ~7!. Since there is no change in energy if th
charges are ‘‘constrained’’ to be their LDA valuesQW

5QW LDA ~so qW 50), the energy change is given by

EqW5E
0W

qW

dqW •¹qWEqW52E
0W

qW

dqW •wW ~qW !, ~11!

subject only to the condition thatEqW is analytic ~as we as-
sume!.

The general behavior of the constrained energy can
seen by noting thatwW is linear for small changes in occupa
tion, i.e., linear inqW . Since at the minimum of Eq.~7! we
havenW [QW , we may use these quantities interchangeably
write

wW 52UqW 1O~qW !252UdnW 1O~dnW !2, ~12!

wherednW 5nW 2nW LDA, andU is the constant~matrix! of pro-
portionality. For the remainder of this section we conce
ourselves with the linear ‘‘response’’ that is implicit in th
LDA1U method, although we demonstrate in the numeri
results of Sec. V A where non-linear corrections begin
arise. Then the energy shift is given by

EqW5 1
2 qW •U•qW , ~13!

where

U[2]wW /]qW . ~14!
or
g
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E. Potential vs kinetic contributions

The constrained energyE(qW ) can be decomposed into th
kinetic-energy term, the interaction with the external pote
tial, and the remainder, the potential energy

EqW5EqW ,K1EqW ,ext1EqW ,P . ~15!

EqW ,ext is linear in qW and gives no contribution toU, but the
quadratic term involvingU contains both a kinetic-energ
contributionUK and a potential-energy contributionUP ,

U5UK1UP ,
~16!

UK~P!5¹qW¹qWEqW ,K~P! ,

and cancellation between the two contributions may occu
In a self-consistent calculation, any change in local orb

charge results in an accompanying change in kinetic ene
as well as a potential energy change. Since the ‘‘U ’’ term in
the LDA1U energy functional is a potential energy term
one might argue that it should beUP that goes into the
LDA1U calculation, and the kinetic-energy change in t
constrained LDA calculation should be removed:U→UP
5U2UK is the appropriate ‘‘U ’’ in LDA 1U. It was a re-
lated correction, to avoid double counting of kinetic term
that Anisimov and Gunnarsson5 expected to account for by
disconnecting their local orbitals from all other basis fun
tions in their prescription for the determination ofU. The
constrained LDA procedure we propose is in some resp
closer to that of Hybertsen, Schlu¨ter, and Christensen16 than
to that of Anisimov and co-workers. However, Hybertse
Schülter, and Christensen were specifically interested in
taining parameters for the Hubbard model, and their pro
dure was tied to the form of extended Hubbard model th
wished to consider.

Using the Hellmann-Feynman relation@Eq. ~10!# to obtain
wW (qW ), it is straightforward to obtainU of Eq. ~12! numeri-
cally: one applies a shift in potentialwW and calculates the
change in chargeqW , and forms the finite-difference derivativ
in Eq. ~14!. To calculate the separate contributions there
no alternative to evaluating a finite difference seco
derivative.17 We have carried out this calculation~methods
are described below! for FeO. We obtain the provocativ

resultUK /Ū'210, which leavesUP /Ū'11, i.e., each con-
tribution is an order of magnitude larger than the net res
and they have opposite sign. Clearly these individual con
butions are not directly useful, nor in fact is this direct
related to the kinetic-energy contribution that Gunnarss
and Anisimov treated by disconnectingd orbitals when cal-
culating U. In the context of the Hubbard model, the ter
‘‘kinetic energy’’ really denotes all of the energy except th
potential energy related toU, and is very different than the
kinetic energy we have evaluated. We leave the questio
potential vs kinetic contributions toU for further study. The
value of U that we evaluate and report below is the to
~net! valueU5UK1UP .

F. Change in independent variable

It will be instructive to consider the potential shiftswW to
be the independent variables in an associated energy f
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TABLE I. Calculated values ofU for transition-metal oxides, compared to values of Anisimov, Zaan
and Andersen~AZA ! ~Ref. 6!. Empirical values include representative values from the literature.

Ref. VO MnO FeO CoO NiO

This work 2.7 3.6 4.6 5.0 5.1
AZA 6.7 6.9 6.8 7.8 8.0
Empirical 4.0–4.8a 7.8–8.8a 3.5–5.1a 4.9–5.3a 6.1–6.7a

7.0d 3.9 c, 7.0d 4.9c 7.9,b 6.1,c 7.5d

aAnisimov, Zaanen, and Anderson, Ref. 6.
bReference 19.
cReference 20.
dReference 21.
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tional leading toqW (wW ) rather thanwW (qW ). This is also in keep-
ing with the practice in the constrained density approach
choosing the shiftswW and then calculating the charge r
sponseqW . This change of variable is done by a Legend
transformation

ÊwW 5EqW1qW •wW , ~17!

which, from the differential forms

dEqW52wW •dqW⇒d ÊwW 5qW •dwW , ~18!

leads to the energy shift

ÊwW 5E
0W

wW

qW ~wW !•dwW '2 1
2 wW •U21

•wW . ~19!

This formalism brings in thematrix U21 implicit in Eq.
~12!, relating the charge shifts in various suborbitals to p
tential shifts applied to other suborbitals, e.g., a decomp
tion of the HubbardU for d orbitals intoeg and t2g contri-
butions for cubic site symmetry. This result is reminiscent
the extension of the definitions ofU andJ @Eqs.~4! and~5!#
by Solovyev, Hamada, and Terakura15 to give different val-
uesUeg

and Ut2g
, but their procedure did not provide off

diagonal terms. The effects of differing charge response
the eg and t2g channels will be quantified in Sec. V. Th
concept can be extended to non-site-diagonal interacti
viz. d orbitals interacting with neighboring oxygenp orbit-
als.

We now establish a sum rule relating the matrix eleme
of U to the conventional scalarU, which for clarity we de-
note Udd 5 ]wd /]Qd , where Qd is the totald charge and
wd is a shift in potential applied to alld orbitals. Since a
change in potentialwt2g

acting on thet2g orbitals followed

by a change in potentialweg
acting on only theeg orbitals is

equivalent to a potentialwd of the same magnitude acting o
all d orbitals, we have, in the linear regime

]

]wt2g

1
]

]weg

5
]

]wd
. ~20!

By definition nd5nt2g
1neg

, so, from the definition

Uab
2152

]na

]wb
, ~21!
f

-
i-

f

in

s,

ts

we have a sum rule relating the matrix elements to the c
ventional Coulomb repulsion constant

Udd
215 (

a,b5t2g ,eg

Uab
21 . ~22!

Below we provide a numerical test of this sum rule for NiO

IV. METHOD OF CALCULATION

For the metallic constituents of the compounds we c
sidered, a basis set representing sixs-, four p-, and three
d-type functions is expanded on a set of 16 Gaussian fu
tions. The O basis set is expanded on a set of 12 Gaus
exponents contracted into fours- and threep-type functions.
The Coulomb and exchange-correlation potentials comp
the effective potentialVeff , which is also described by a
superposition of atom-centered Gaussian-type functions.
choosing this expansion, the matrix elements of the Ham
tonian are analytic. Details of the method, and compariso
results of the full-potential linearized augmented-plane-wa
~LAPW! method, have been published elsewhere.12,18

For this work it is important to obtain sufficiently we
converged values of orbital densities. Tests using spe
point meshes in the irreducible148 of the simple cubic Bril-
louin zone~IBZ! for eight atom cells up to 56kW points indi-
cated that ten or 20kW points in the IBZ gave the necessa
accuracy. A temperature broadening of 0.07 eV was use
facilitate convergence to self-consistency, and it was verifi
that this size of broadening did not change the results.

V. EVALUATION FOR TRANSITION-METAL
MONOXIDES

We have applied this approach to evaluateU for the tran-
sitions metal monoxidesMO, M5V, Mn, Fe, Co, and Ni, in
the paramagnetic state and for the cubic rocksalt struct
The ~experimental! lattice constants used were VO, 4.093
MnO, 4.444 Å; FeO, 4.332 Å; CoO, 4.260 Å; and NiO
4.193 Å.

A. Suborbital independent U

First, applying a potential shiftwd equally to alld subor-
bitals analogously to LMTO treatments, the derived value
U is shown in Table I. Comparison is provided with valu
obtained by the method of AZA, and it is seen that the valu
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obtained are 40–65 % of the values obtained by AZA. T
our values are smaller is no surprise, since our approach~of
not disconnectingd orbitals from other orbitals! naturally
allows additional screening to occur, by including hybridiz
tion betweend orbitals and neighboring oxygenp orbitals.
Moreover, charge rearrangement betweeneg and t2g sub-
shells reveals that there is some intra-d-shell screening in the
current approach. In addition, our definition of thed orbital
is not identical with that of AZA.

Figures 1–3 for MnO, FeO, and NiO illustrate the chan
in subshell charge withwd as well as the total change, whic
is what determinesU. Taking MnO, for example, it is seen i
Fig. 1 that the effect of positivewd is to decreasent2g

as

expected, butneg
instead increases. Clearly charge rear-

rangement within thed shell is leading to a reduction inU
~i.e., additional screening!. A similar behavior occurs for
FeO ~Fig. 2!, while for NiO the eg charge remains almos
unchanged aswd is varied. Note that, besides the differenc
in approach and in basis sets, the values obtained in the A
approach are evaluated for differences ind charge of unity.

FIG. 1. Change in the on-sited charge~solid line! in MnO
resulting from a potential shiftwd applied to alld states on a single
Mn atom in a four molecule supercell. The total charge is deco
posed into itseg ~short dashed line! and t2g ~long dashed line!
components.

FIG. 2. Change in thed charge in FeO, plotted as in Fig. 1.
t

-

e

A

Empirically determined values~obtained by comparing to
excited state data! lie in nearly all cases between our valu
and those of AZA.

The values ofU in Table I are obtained as the first de
rivative of polynomial fits to thewd vs Qd curve Eq.~12!.
Figures 1–3 indicate theDQd vs wd curve for shiftswd up to
60.8 eV for MnO, FeO, and NiO. The change in totald
charge is linear up to this size of shift ('20230 % of U).
Even for this size shift, however, the individualt2g and eg
contributions are beginning to become nonlinear, as s
most clearly for MnO in Fig. 1.

On-site charges and Mulliken charges within the LD
for our basis set, are compared in Table II. The charges
less ionic than their formal~dipositive! charge, as experienc
would suggest.~Although atomic charge within a crysta
cannot be defined uniquely, it is widely accepted that ‘‘e
fective’’ ionic charges are nearly always reduced by hybr
ization from their formal, full ionic values.! Although VO is
somewhat of an exception, the Mulliken charge does
differ more than 4% from the on-site charge for these
amples. The response of Mulliken and on-site charges
very different, however, with Mulliken charges varying mo
slowly. If one uses Mulliken charges rather than on-s
charges to obtainU, the resulting values are much larger: 3
eV for VO, 6.2 eV for MnO, and 11.1 eV for NiO.

B. Suborbital dependentU

We have studied FeO charge redistribution wheneg and
t2g subshells are treated separately. In Fig. 4, we presen
change in subshell charge when a shift in potential is app
individually to the subshells. In both cases, charge forced
of one subshell by an upward shift in potential goes prim

-

FIG. 3. Change in thed charge in NiO, plotted as in Fig. 1.

TABLE II. d-shell charges, according to various definitions, f
transition-metal monoxides from VO to NiO.

Type VO MnO FeO CoO NiO

Formal 3 5 6 7 8
On-site 3.67 5.45 6.22 7.41 8.22
Mulliken 3.09 5.48 6.44 7.20 8.40
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rily into the other subshell, amounting to very strong intr
d-shell screening in these cases. Using Eq.~21!, we obtain,
in eV21,

S Ut2g ,t2g

21 Ut2g ,eg

21

Ueg ,t2g

21 Ueg ,eg

21 D 5S 1.18 21.00

21.39 1.41 D , ~23!

which satisfies the sum rule of Eq.~22!. The inverse is, in
eV,

S Ut2g ,t2g
Ut2g ,eg

Ueg ,t2g
Ueg ,eg

D 5S 5.15 3.65

5.08 4.31D . ~24!

Recall thatUdd54.6 eV, so in the usual orbital-independe
treatment the corresponding matrix would be

S Ut2g ,t2g
Ut2g ,eg

Ueg ,t2g
Ueg ,eg

D 5S 4.6 4.6

4.6 4.6D . ~25!

Thus the behavior that looks rather peculiar in Fig. 4, and
negative off-diagonal elements in Eq.~21!, do not lead to
pathological behavior in the direct matrixU.

FIG. 4. Change in the subshell (eg and t2g) charge in FeO,
resulting from a potential shift of only one of the subshells. T
panel: change int2g charge; bottom panel: change ineg charge. The
label indicates the type of applied potential shiftw: d indicates
shifts of alld states;t2g (eg) indicates a shift of onlyt2g (eg) states.
Only positive energy shifts are shown.
-

e

C. Dependence of local orbital shape

The LDA1U procedure is built around some choice
local orbital. In a LCAO basis, this orbital is specified at t
beginning, and we have used neutral atomd orbitals from
atomic LDA calculations. Another possible choice might b
say, thed orbital from a positive ion. For FeO we hav
checked the effect of using the Fe21 d orbital obtained from
an atomic calculation on an isolated ion. The difference
radial density is shown in Fig. 5. For the FeO~paramagnetic!
solid, the on-site charge of 6.22 electrons~Table II! changes
to the rather peculiar value of 4.85 electrons, and the ca
lated value ofU increases from 4.6 to 7.8 eV. The tot
energy, however, changes only by10.12 eV/FeO, which is a
very modest change~adding f functions in a LCAO or
LMTO calculation, or increasing the number of basis fun
tions in a LAPW calculation, can result even larger chang
which are unimportant for most purposes!.

This result makes it clear that the choice ofd orbital can
affect the calculated value ofU, certainly in the LCAO
method but most likely in any calculational approach. In o
calculation it is the result of the density being represented
a different fashion, that is, the separation between local
bital charges and the overlap~Mulliken! contributions is a
rather sensitive function of the basis set choice. As a re
the values ofnms that arise in the LDA1U functional de-
pend on the choice ofd orbital. We are investigating meth
ods of minimizing this effect, by normalizing the sum of th
‘‘ d occupation numbers’’ over the fulld band region to ten.

VI. DISCUSSION

The results presented in Sec. V reflect a strong differe
in response of theeg and t2g electrons, at least to potentia
of moderate strength. Such differences have been noted
eral times in the literature. In the context of the LDA1U
method, Solovyev, Hamada, and Terakura15 have advocated
using using separate values ofU for the two subshells in
perovskite structure transition-metal oxides. Their method
obtaining Ua was a generalization of the standard meth

FIG. 5. Comparison of the 3d radial functions used in the
LCAO basis set as the Fe 3d orbital to calculate the two values o
U reported in the text. The functions are radial wave functions fr
neutral and doubly ionized Fe atomic calculations, fit to a set of
Gaussians.
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described in Sec. II. We, on the other hand, have adopted
differential definition ofU that leads to a matrixUab .

To begin to understand the response of the separate s
shells, in Fig. 6 we show the on-siteeg and t2g densities of
states~DOS! on a Ni atom in an eight-atom supercell of NiO
both before and after a downward shift of alld states by
20.54 eV. Thet2g states in the rocksalt structure are weak
dpp bonding and form a narrow band, whereas theeg states
form dps bonds that produce widereg bands. From Fig. 3 it
is seen that such shifts produce negligible change in the
site eg charge, with all the difference coming entirely from
the on-sitet2g subshell. This result is counterintuitive, sinc
the t2g DOS is full, and pulling it down seemingly canno
increase its occupation. Theeg DOS is open shell and could
accept charge, but does not do so.

The resolution of this paradox lies in the change in th
representation of charge of the system by the LCAO ba
functions as a shift in potential is applied. By looking a
other local DOS’s, for both on-site and Mulliken charge de
compositions, we have found that a downward shift ofd
states, which changes the degree and character of hybrid
tion as well as the probability of occupation, results in
more active participation of the virtual orbitals in represen
ing the charge density. To some extent this is a real effe
d-p hybridization increases as thed states are pulled down
nearer thep bands, and what one calls thed function, or the
d charge, becomes less well defined.~The definition be-
comes clear for well-separated atoms, and perhaps for st
well separated in energy from any other states.! The effect is

FIG. 6. Ni d density of states in NiO, before~dashed lines! and
after a shift of thed states by20.54 eV. Theeg (t2g) density is
plotted upward~downward!. The Fermi levels have been aligned.
o
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present with other basis sets as well, but is more difficul
identify.

It is important to understand clearly the source of t
paradox. It arises because the ‘‘d charge density’’ is not a
precisely and objectively defined quantity. Although we a
accustomed to thinking in terms of fived bands in a
transition-metal oxide that can be identified and whose D
integrates to five electrons per spin, this is a fiction that
comes apparent as soon as orbital overlap becomes a
ciable. This difficulty has the same origin as the difficulty
defining the ‘‘d orbital’’ to be used in the LDA1U method.
These ambiguities are problems that must be lived with u
a better prescription can be formulated.

VII. SUMMARY

We have presented a reformulation of the method of
taining U for a LDA1U calculation. The approach is base
on a local-orbital expansion, which is a natural one cons
ering that thed orbital is to be singled out and specified
any case. We aim specifically to improve ground-state pr
erties rather than to account for spectroscopic data.

Values of U using this approach are found to be on
40–65 % of the values of Anisimov and co-workers. Most
this difference is understood in terms of the definitions a
procedures that are used in each case. A generalization
sented here is the identification of an interaction matrix t
describes interactions that are nondiagonal in the subor
index, e.g., the change in energy oft2g states due to a chang
in eg charge. The off-diagonal parts of this interaction a
expected to be strongly dependent on the environment o
ion, and this expectation is borne out in our study of FeO

There are important aspects of our approach that req
further work. The contribution toU from the kinetic energy,
and how it should be dealt with, is one loose end. The m
appropriate choice ofd orbital is another question that ma
require some experience to answer. Carrying out LDA1U
studies to compare with results using the previous L
1U method, and ascertaining the effect of off-diagonal
teractions, are, however, the main priority, and this work
in progress.
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