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Abstract. We describe a fully relativistic augmented-plane-wave (APW) method where the 
basis functions are pure spin functions in the large component. This feature allows spin- 
mixing interactions to be separated and treated more efficiently than in the standard 
relativistic APW method. These basis functions are constructed by solving an approximate 
relativistic radial equation. In addition, the energy derivative is used in the construction of 
the basis functions so that one obtains adequate variational freedom solving a linear secular 
equation. Both the utility and the limitations of the technique are discussed. 

The desirability of computationally fast approximate methods for solving the single- 
particle Dirac equation in a crystal potential is apparent. Recently a number of authors 
have suggested similar techniques based on approximating the solution of the Dirac 
equation in the central field (Rosicky et al1976, Koelling and Harmon 1977, Wood and 
Boring 1978, Takeda 1978, 1979). At their lowest level these approximations can be 
directly incorporated into non-relativistic molecular and energy band computations by 
simply performing a different radial solution. At this level. one is omitting spin-orbit 
coupling but including scalar particle corrections as would be done with the Klein- 
Gordon equation. In this note, we discuss the implementation of the Koelling-Harmon 
method for the central-field Dirac equation in the linearised APW band structure method 
(Anderson 1975, Koelling and Arbman 1975). The formal basis of the technique is the 
variational solution of the Dirac single-particle equation in the periodic potential. We 
first discuss the construction of approximate basis functions using a muffin-tin approxi- 
mation for the crystal potential. The use of these basis functions in the full Dirac equation 
with a non-muffin-tin potential is then considered. Finally we review our experience 
with the technique and discuss a situation where the procedure breaks down. 

It will be useful to rederive the results of Koelling and Harmon here to place them 
in context for discussing the limitations of the procedure used. We will always measure 
energies relative to the rest-mass energies so that the single-particle Hamiltonian can 
be written as 

H = c a .  p + ( p  - l)mc2 + V(v) (1) 
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where V(u) is the crystal potential and the notation is standard. The procedure is to take 
the radial equations for the relativistic K = 1 ( j  = 1 - $) and K = - 1 - 1 ( j  = 1 + i) 
orbitals which are uncoupled for a spherical potential, and transform to the equations 
for the average and the difference. We then assume the difference for the large component 
(but not the small) to  be negligible so that we need only solve for the average. With this 
average function, basis functions are constructed which are then used with the full 
Dirac formalism. 

The radial Dirac equation can be written 

__ dP, = - K P ,  + ~ M c Q ,  
dr 

~- dQK - (l/c)(V - E)P,  + K Q ,  
dr 

M = m + (1/2c2)(e - VMT) ( 2 4  

where P and Q are the large and small component radial solutions multiplied by the 
radius r .  We use only the spherical component of the potential, VMT, at this point. We now 
consider the average and difference functions P,, Q,, SP,, SQ,, defined by 

- _  

(21 + 1) P ,  = lP, + ( 1  + 1) P - , - l  

SP, = P - , - l  - P,  

SQL 5 Q - i - i  - Qi* 

(21 + 1) Q, = lQ, + ( 1  + 1) Q - , - J  

The equations satisfied by these quantities are 

SP, 
d -  1 -  1(1 + 1) 1 
dr r (21 + 1) r 

- l(1 + 1) 1 
dr (21 + 1) r 

- P ,  - - P ,  = ~ M c Q ,  + ~- 

d -  1 -  1 
SQi - Q ,  + ; Q, = ; (V - €)PI - ~- 

- d (SP,) = (F) P ,  + 2Mc6Q, 
dr 

d 1 
dr 
- (SQ,)  = ; ( VMT - E ) ~ P ,  - ( 4 4  

From here forward we will drop the subscript 1 (and the bar over P ,  Q) for convenience. 
If we now assume that (d/dr)(6P) 1 0, equation (4c) yields 

aQ x - ($Mc)[(21 + l)/r]P ( 5 )  

which can be substituted into equation (4b). The resulting equation plus equation (4a) 
with 6 P  1 0 gives the result of Koelling and Harmon which was derived somewhat 
differently : the elimination method with the same criterion was applied to the second- 
order equation before unfolding back to two coupled first-order equations. We will use 
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as our 1, m, s, component of the basis functions where 1, is the two-component spinor and 
P and Q satisfy the radial equations of Koellin and Harmon 

d P  1 _ -  - P = 2McQ 
dr r 

The second term in the lower component of equation (6) is the result of using equation (5). 
It is easily verified that using the muffin-tin full Dirac Hamiltonian (equation (1) with 
V(r)  replaced by VMT(r)), one gets 

H M d l m s  = ~ + l m s  + HSoO+lms ( 8 4  

HY 5 1 1 dV,,(r) Po. Lqmxs 
(2Mc)’ r2  dr [0 1‘ 

It should be noted that Hg” is a spin-orbit coupling operator and that the last term in 
equation (sa) is a measure of the extent to which the + r m c  fails to be a true solution of the 
spherical potential Dirac equation. Further, the spin and orbital wavefunctions are 
separated in the upper components of This is a useful feature of the method as it 
allows the spin mixing interactions to be separated and treated in a final variation. It is 
useful to impose the normalisation condition 

to complete the specification of each angular momentum component. 

Thus, in the interstitial region we use basis functions which are plane waves. 
The method we consider is an augmented-plane-wave (APW) method (Slater 1937). 

k, = k + G, 
W; = m2c4 + k;c2 

(lob) 

(10c) 
where !2 is the crystal volume and G, is a reciprocal-lattice vector. Note that we omit the 
relativistic normalisation factor as we will have to renormalise anyway due to the 
augmentation. Furthermore it will be quite adequate to make the approximation 
1% + mcz N 2mc2. 

There is a great deal of latitude in the way one chooses to augment the plane waves. 
The original Slater APW formulation required that one use solutions + l m s ( ~ )  where E 

equalled the eigenvalue. Although strictly correct, this results in a non-linear secular 
equation. One can view the (one for each angular momentum) as non-linear variational 
parameters and greatly facilitate the solution of the problem, but the final result is the 
same as the standard prescription (Harmon and Koelling 1974). Alternatively, one can 
formulate a discrete set which forms the basis for expansion of the cjlms at the eigenvalue 
(Bross 1964, Koelling 1970). Done carefully, this can produce a secular problem which 
can be solved by a single diagonalisation (Bross et a1 1970, Takeda and Kiibler 1979, 
Williams et a1 1979). It has been shown that over surprisingly large energy ranges, using 
only the function + l m s ( ~ l )  and its first energy derivative, denoted (blms(eI), provides 
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adequate variational freedom. 

where P ,  and Ql satisfy 

d .  1 .  2Mc.  1 
-P ,  - - P ,  = PQ, + ;Q, dr r r 

with the requirement that 

Higher-order terms have been omitted in equations (1 1) and (12b). The muffin-tin Dirac 
Hamiltonian now gives 

H M T 4 f m s  = ' ( t ) l m s  -k 4 l m s  + H?(t)lms (13a) 

omitting terms of order ( l/m3). 
The APW within the muffin-tin spheres of radius R is now 

~ ( k n s ;  = 1 ( ~ , m ( k n )  + [ m s ( r )  + B , m ( k n )  4 I m J r ) )  
Im 

(13b) 

where A and B are determined from the requirement that the large component and its 
spatial derivative be continuous across the muffin-tin sphere boundary. The lower 
components of the basis function will then have a discontinuity across the sphere bound- 
ary of order (AVMT + k?/2m - EI)/mc2 which can be neglected. AVMT is the discontinuity 
of the muffin-tin potential at R. The resulting variationai solution if carried to full 
convergence would have a discontinuity of order A VM,/mc2 for a muffin-tin calculation 
and would be continuous for the general potential. Utilising the Rayleigh expansion ofthe 
interstitial plane wave, one finds 

( l j b )  

B,,(k,) = 4nR2R- 2if Ym(kn)b , (kn)  (1%) 

(1 jd) 

where g, = (l/r) P,  and is evaluated for r = R. The basis set is now specified once one 
specifies the { E , )  for the 6 and 4. In the typical case, one sets all { E , }  equal to  common 
energy central in the range of energies being examined, although this was not done for Pb. 

Because we fix the {ef}, we have a fixed basis set. Thus the variational procedure will 
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yield a linear secular equation. Although we have constructed the basis functions using 
approximate relativistic kinematics and a muffin-tin approximation to the potential, 
they are to  be used with the full non-muffin-tin Dirac equation (1). Although there is 
some arbitrariness in the choice of variational functional because of the matching 
boundary, we will adopt the one used by Loucks (1965) in constructing the first fully 
relativistic APW method, which is given by 

d3r$’H$ + i d2r[$f: 3 .  - $:3. c+ll] d3r$+$ (16) 
E[*1 = L1 I;. 
where region I is within the muffin-tin spheres and region 11 is the interstitial region. We 
expand 

and perform the standard Rayleigh-Ritz variation to obtain the standard secular equa- 
tion of the form 

HC = ESC. (18) 

The matrix elements H,,,,, ,, and S,,,sj, ns can be obtained in a straightforward fashion. 
Because the basis functions are continuous in the large component and very nearly so 
in the small component, the surface term of equation (16) will be of negligible size. One 
also may make a number of approximations in the evaluation of the volume integrals. 
The interstitial volume integral can be treated as though the plane waves were Pauli 
spinors. This is the same approximation used in the RAPW and relativistic Green function 
methods. Further, one may neglect the terms involving 6. Lin the small component. 
The approximations mentioned above may be relaxed without fundamentally compli- 
cating the method. We have found, however, that they have no significance in practice. 
(For simplicity we do not include them in the subsequent discussion.) The essence of the 
method is that one temporarily neglects matrix element of the spin-orbit operators Hy 
and Hy of equations (8) and (13). When this is done, one gets precisely the spin-diagonal 
non-relativistic form of Koelling and Arbman (1975Ftheir equations (13) and (16)- 
except that the radial solutions have been obtained from the ‘semi-relativistic’ radial 
equations. One can now solve this spin-orbit-less problem and include a majority of the 
relativistic effects since the spin-orbit coupling often has little effect away from the high 
symmetry points and lines. This has been done for a number of systems (Harmon er ul 
1978, Liu er al 1979; Koelling 1979) with excellent results. The non-muffin-tin com- 
ponents of the potential can be included at this step even when spin-orbit coupling is to 
be included later. This has been done for the RAPW method (Elyashar and Koelling 
1976). In the process of attaining self-consistency the crystal potential in equation (1) is 
expressed as a functional of the charge density determined by solving equation (1) in the 
previous iteration. Since the charge density is often affected little by the spin-orbit coup- 
ling one can perform the self-consistency iterations at this level of approximation with 
little loss of accuracy. This approach works well even in the case of the heavy metal Th 
(Koelling 1979). The saving in computational effort is considerable, especially since one 
is able to avoid the doubling in size of the matrix and the complex matrix elements which 
occur when the spin-orbit interaction is included. 

The primary spin-orbit effect enters through the matrix elements of H’,” and H y .  
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Defining 

one has 

RL,, i~ (4zR4/Q) {a[ (kn, )  a,(kn,) <' + [a,(kn,) b,(kn) + b,(kn,) a~(kn)I 4, + ' '( 'n,) bl(kn) 

(204 
Terms of higher order in M - l  which we have shown to be insignificant even in P b  are 
omitted in equations (20a-d). This secular equation is to be solved by a two-step process 
much in the same way as the standard RAPW equations are solved (Koelling 1974). One 
first solves the problem for HSR and SSR to obtain a set of solutions CER and E?. Then 
one uses the new basis set 

c$js E 1 CfR(esR) P(k,s;  r )  
n 

for E? 6 E,,, and solves a second secular equation. Although the spin-orbit terms have 
been ignored as though they were a perturbation, they are in fact treated here variation- 
ally rather than perturbatively. This can be done by working with c$ js  in either the APLV 

or the angular momentum representation. We have done both. The angular momentum 
representation is useful since one often wants to  use that representation elsewhere. 
Further, it is more efficient when the number of APWS increases for the more open 
structures. 

The method outlined above, which we denote SO-LAPW, makes possible drastic 
reductions in computation effort compared with the standard RAPW method. A com- 
parison between the results of the two methods for Pd is presented in table 1. Except for 
the uppermost level at  K, the results agree to within 1 mRy, with the SO-LAPW giving the 
higher value. This is precisely what one would expect, considering that the approximate 
relativistic form of the basis function restricts the variational freedom. The 6 mRyd 
difference for the sixth band at K results at least partially because that band is so high in 
energy. This has two effects: (i) the solution is far from the energy ( E !  = 0.2Ryd) for 
which the basis functions were constructed so the linear energy derivative does not 
provide adequate variational freedom; (ii) the higher bands will more easily couple into 
this band for the second spin-orbit variation, so truncation errors occur. There is the 
additional feature that this is the top of the plane-wave-like band and so will contain an 
appreciable amount of p character. This should be kept in mind as we turn to our 
discussion of P b  and the limitations of the SO-LAPW. 
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A case where the technique begins to break down is Pb. In setting up the basis 
functions, the assumption was made that the large components of the j = 1 & radial 
functions were equal to  an average radial function given by equation (7a). The first place 
this will break down is for p states in heavy metals, for the following reasons. Since these 
penetrate nearer the nucleus than higher 1 functions, they sample the deep nuclear 
potential and spend an appreciable fraction of their time moving at relativistic speeds. 

Table 1. Pd eigenvalue comparison (all energies in mRyd) 

L 

11 

312 

335 

444 

184 
227 
388 
463 
522 

1068 

142 
306 
33 1 
525 
539 

172 
230 
388 
422 
424 
486 

11 

312 

335 

443 

183 
226 
387 
462 
522 

1062 

141 
305 
331 
524 
539 

171 
229 
387 
421 
423 
485 

(The s states are not a problem because they do not have a spin-orbit coupling.) In 
addition, the PI ,2  relativistic function as a finite amplitude at the nucleus as opposed to 
the P ,  and higher 1 functions which vanish at the nucleus. The semi-relativistic approxi- 
mation orbital PI is unfortunately required to vanish in the SO-LAPW method. In figure 1, 
the fully relativistic 6p radial functions for P b  are displayed for an energy roughly 2 ev 
above the Fermi energy. Clearly the approximation PI % P ,  (where the subscript 
denotes the total angular momentum j )  can be expected to be fairly crude in this case. 
In table 2, selected eigenvalues are shown which indicate that the use of the restricted 
basis functions, which are formed with P, = yields errors of order 2 W O  mRyd for states 
of PI character. Again, the SO-LAPW values lie above the KAPW values, indicative of 
incomplete variational freedom. To ensure that the discrepancy does not arise from any 
of the terms omitted, we repeated the calculation including them-but not changing the 
basis functions. The results were changed by less than one mRyd, indicating that it is 
truly a restriction in the variational freedom by the formation of the K-independent 
basis functions that limits the accuracy. 

A closer examination of figure 1 can be quite revealing in this regard. PI is only a 
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mediocre function to use in trying to resolve the difference between the fully relativistic 
functions and the spin-orbit averaged one. Its nodes do not line up well with the points 
where the three functions are identical, for example. That the difficulty should be with 
the PIJz  states clearly relates to the fact that IP, - PI/. This is inter- 
esting since one would expect instead a factor of two from equation (3). If that were the 
case, one could expect a considerable improvement in the precision of the basis function. 

- P,I % 3jP, 

Figure I .  Pb p orbitals for E = 0.6 Ry. The full curve is the semi-relativistic approximation p 
orbital, the broken curve is the relativistic P3 , orbital, the chain curve is the relativistic 
P , , ,  orbital and the dotted curve is the semi-relativistic orbital energy derivative, P, .  Note 
that the nodes of PI do not line up well with the points where P,,,, P ,  and P ,  are identical. 
The finite amplitude of PI at r = 0 is not large enough to show clearly on the scale of this 
figure. 

This is yet another manifestation of the breakdown of the approximation 6P = 0 in 
equation (4). We have not been able as yet to discover a simple approximate form for 6P 
which could be used incalculating the average function. Of course one could solve by an 
iterative technique, but then it would be more efficient to merely solve the radial Dirac 
equations and perform the average directly. 

To conclude, we point out that this technique works quite well with a considerably 
reduced computational requirement except for the p states of heavy atoms. Thus it is 
appropriate to all of the transition and actinide metals and only begins to break down 
for the Hg, T1, Pb, Bi corner of the periodic table. The method allows one to manipulate 
the inclusion of spin-orbit coupling to his best advantage. It is quite acceptable as a 
fast and only slightly approximate scheme. 
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Table 2. Comparison of muffin-tin SO-LAPW eigenvalues (in mRyd) with their UPW counter- 
parts for Pb, using E ,  = 0.25 Ryd, Et+" = 0 7 5  Ryd. The largest errors occur for the lower 
member of pairs which are degenerate when spin-orbit effects are ignored (denoted by 
braces). We note that the Fermi energy is approximately 0.4 Ryd. 

Eigenvalues LAPW kAPW Error 

- 0.466 

1.037 

- 0078 
0.162 
0,529 
0,610) 
0,791 
0,927 

- 0.068 

0,429 

-0.186 
0,086 
0,775 
0899) 
1,073 

- 0.466 
0,786 
1.03,) 

- 0.077 
0151 

0,786 
0,927 

- 0.068 

0343 
0.426 

-0.183 
0.077 
0,749 
0.895) 
1.073 

0 

4:) 

"} 
- li 
11 

5 
0 

0 

l:) 
3 

- 31 
9 

2:) 
0 

I These eigenvalues illustrate a case in which SO-LAPW 

eigenvalues lie below their nAPw counterparts. This 
results from P,, which is evaluated far from the eigen- 
value in question, having one less node than P,  making 
it difficult to maintain orthogonality to the 5d core states. 
Lowering E ,  makes the eigenvalues coincide. 
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