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Single-spin superconductivity: Formulation and Ginzburg-Landau theory
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We describe a superconducting phase that arises due to a pairing instability of the half-metallic antiferro-
magnetic(HM AFM) normal state. This single-spin superconductii®SS phase contains broken time-
reversal symmetry in addition to broken gauge symmetry, the former due to the underlying magnetic order in
the normal state. A classification of normal-state symmetries leads to the conclusion that the HM AFM normal
phase whose point group contains the inversion operator contains the least symmetry possible which still
allows for a zero momentum pairing instability. The Ginzburg-Landau free energy for the superconducting
order parameter is constructed consistent with the symmetry of the normal phase, electromagnetic gauge
invariance and the crystallographic point-group symmetry including inversion. For cubic, hexagonal, and
tetragonal point groups, the possible symmetries of the superconducting phase are classified, and the free
energy is used to construct a generalized phase diagram. We identify the leading candidate out of the possible
SSS phases for each point group. The symmetry of the superconducting phase is used to determine the cases
where the gap function has generic zefpsint or line nodeson the Fermi surface. Such nodes always occur,
hence thermodynamic properties will have power-law behavior at low tempergBOE:3-18208)05101-7

I. INTRODUCTION superconductors in Sec. IV demonstrates that the HM AFM
state has the minimum symmetry required of the normal state
The pairing theory? of superconductivity and superfluid- to allow q=0 pairing instability, and that in SSS theory in-
ity is based on a normal state with time-reversal symmetryersion symmetry plays a role analogous to that of time-
and inversion symmetry. The former symmetry requires thateversal symmetry in BCS theory. In Sec. V we provide the
the two spin directions are related by symmetry, and Spinclassification of all possible order-parameter symmetries for
space rotations have played a central role in the classificatiofigh-symmetry crystal point groups, and present results of a
of broken symmetry phases. The latter symmetry is sufficienBymmetry analysis of the Ginzburg-Landau free energy that
to ensure that states with identical spin directionk @ind  €numerates the possible SSS states for cubic, tetragonal, and
—k are degenerate. Electronskaand — k can then be paired hexagonal crystals.
to have zero total momentum and can be classified by spin
state as singlet or triplet. The question of inversion symmetry Il. THE NORMAL STATE
and time-reversal breaking is central in the specification of
the pairing state$;°and in this paper we present some as-
pects of these relationships. A half-metallic (HM) ferromagnetic (FM) electronic
It has recently been pointed dlithat there is a normal structure arises in a ferromagnetic material when the Fermi
state with broken time-reversal symmetry that has a pairindevel (Eg) of one spin direction lies within a gap in the
instability in direct analogy with that in BCS theotyThis  spectrum of the other spin directiéi® The gap may occur
magnetically ordered normal state, in whidequivalentup-  in either the majority or the minority channel. In either case,
spin and down-spin magnetizations cancel exactly, has beeme will take the up channel to be the metallic one. We also
termed “half-metallic antiferromagnet(HM AFM) by van  confine this discussion to stoichiometric compounds, which
Leuken and de Grodt This normal state, which we describe have an integer number of electrons per cell. The system of
in Sec. Il, has considerable theoretical and probable technayp spins then forms a metallic fermion liquid, while the
logical interest in itself. Its lack of macroscopic magnetiza-down spins form an insulating system that may be thought of
tion means that considerations of pairing do not have to conas an inert background for the purposes of studying low-
front the question of competition between superconductindemperature, low-energy processes. This specific occurrence,
order and a pre-existing magnetic field. the placement of the Fermi level of the metallic channel in a
In this paper we outline in more detail the characteristicsgap of the other channel, defines half-metallic character: the
of this “single-spin superconductivity(SSS phase. In Sec. up-spin “half’ of the electrons is metallic, while the down-
Il we review the characteristics of the HM AFM state, which spin “half” is insulating. Figure 1a) shows a model spec-
is the precursor normal state of the SSS. In Sec. Ill we showrum of exchange split bands that leads to HM character.
that the phenomenon maps onto the BCS model with minor Half-metallicity leads to several features of a crystalline
but nontrivial changes. Comparison to liquitie, conven- solid that are qualitatively distinct from conventional metal-
tional BCS superconductors, and more exotic heavy-fermiofic ferromagnets. Unlike in a conventional FM, electron

A. Half-metallic ferromagnetism
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found with the double perovskite crystal structiitelhese
examples indicate that half-metallic character is not a rare
phenomenon.

B. Half-metallic antiferromagnetism

N(E)

It may occur that the integer spin momeM in a half-
metallic system is zero. This situation has been terhmedt
metallic antiferromagnetisrtHM AFM).12 Its properties are
like that of the HM FM discussed above, with one essential
difference: there is no macroscopic magnetic field. The HM
AFM has 100% polarized charge transport without any net
magnetization. It must be kept in mind that the HM AFM is
not antiferromagnetic in the usual sense of the term, as there
is no symmetry operation that connects spin-up and spin-
down states or densities. In fact, it is essential that the two
spins channels are electronicallgnd thus chemicallydis-

N(E)

'Ep Down tinct, so a gap can occur in one channel only at $hene
, . . , band filling. A model illustrating this situation is shown in
-15 -0.5 0.5 15 Fig. 1(b). This model uses the same two-band form of Fig.
Energy/Bandwidth 1(a), but the bands for the two spin channels must be dis-

placed in opposite directions, reflecting the necessary in-
FIG. 1. (a8 Model spectrum with rigid exchange splitting that equivalence of the channels.
illustrates a HM FM systentb) Model spectrum for a HM AFM In a HM AFM the spins are precisely balanced, so there is
illustrating that the channels must have different structure. The peaRo majority or minority spin. In this paper we will cdlivhen
at the Fermi level is merely an artifact of the form and symmetry ofthe need ariseghe metallic channel the “up” spin and the
the model. insulating channel the “down” spin. For low-energy and
low-temperature processes the insulating channel becomes

transport is 100% polarized, and there are no allowed lowiN€rt and drops out of consideration. van Leuken and de

energy spin flips. In a common FM, the spin moment is aGroot1 have suggested one quintinary compound, interme-

continuous quantity whose value is determined by the patdllic V-MnFe;Styin in a Heusler-like crystal structure, that

9
ance of exchange energy and kinetic energy. In a HM FMShould be a HM AFM. One of the present authth§; has

however, the spin moment is constrained to be precisel afnOund candidates for HM AFM states within the class of
. ' SP . . P Y magnetic double perovskites. An example of a HM AFM
integer M. This is so because the insulating channel contamg

. i . Spectrum is shown in Fig. 2 for the double perovskite com-
an integer number of filled bands, and hence an integer Sp'Bzund LaVCuO,, calculated using accurate spin-density-
N, the cell contains an integer number of electrdfg, so ’

; ; : _ functional method$® This is nominally a C&*, V4" com-

the metallic up channel contains an integer number of Sp'nﬁound for which both ions have spi When the spins are
N;=Nig—N|. Then M=N;- N, is an integer, and the arqllel (top panel the spectrum is that of a conventional
moment isMug per cell. This follows for any placement of metallic FM. When the spins are antialigned, however, the
Er within the gap in the down-spin density of states. TheFermi level falls where the spin-up density of states is large,
application of a magnetic fielt shifts up and downs spin  but within a gap in the spin-down channel. This compound,
bands by+=gugH but does not change the occupation or theand other double perovskites, are discussed in more detail
net spin moment. Hence the spin susceptibility is preciselyelsewheré? We leave further discussion of proposed HM
zero, which is a direct consequence of the lack of low-energynaterials to future papers, and address below the pairing
spin flips. There is then no Stoner continuum to damp spinéstability of the HM AFM normal state, and its conse-
waves by single spin flips of carriers. In fact, the situationquences.

can be categorized as extreme spin-charge separation in the

carrier system, in which the spin degree of freedom has been C. Experimental consequences

separated from the charge fluctuations and frozen out en- An important practical consideration is how a HM mag-
tirely. In this paper we do not address possible effects due qyic material can be identified. The anticipated properties
Spin waves. _ _ (questions of many-body correctidfissidé have not previ-
Perhaps the simplest example of a HM FM is Gr@  oysly been enumerated. We include a partial list here to pro-
which the moment is 25 .*° de Groot and BuschoW,have  vide guidelines. The general feature of course that as the
identified calculationally various Heusler alloys that aretemperature is lowered through the magnetic ordef@igrie
likely HM FM's, and experimental work on several membersor Neel) temperaturdly, , the material changes from an non-
(especially UNiSn and NiMnSthas been reportéd:*’Pick-  magnetioconducting or nonconductingystem to a metallic
ett and SingHf presented theoretical evidence thatmagnetically ordered system at Idwwhere the spin excita-
the colossal magnetoresistance  manganites,  vizions are frozen outt
LaysCa;sMn0O;, are HM in their low-temperature FM phase. (8 Metal with fully polarized transport at low TMetal-
Recently several candidates for HM behavior have beelic resistivity, but vanishing magnetoresistance at Idw



57 SINGLE-SPIN SUPERCONDUCTIVITY: FORMULATIM . . . 559

tron emission and scanning tunneling microscopy tunneling
are sensitive to surface properties. In addition, the magnetic
order may be different at the surface, mitigating against HM

character in the surface region. Spin-polarized photoemission
studies of Cr@ were inconclusivé?

(f) Spin-polarized positron annihilationrhis technique,
which takes advantage of the natural polarization of the pos-
itron beam, has been claimed to establish within narrow
bounds that NiMnSb is a HM ferromagniétlt is a bulk
probe.

(g) Thermodynamic propertie¥Ve will show that SSS’s
necessarily have point or line nodes of the gapt always
the case in previously studied cases of triplet pajriridhe
resulting gapless excitations lead to heat capacity, penetra-
tion depth, thermal conductivity, etc. That have power law in
T (or w) rather than exponential.

(h) Tunneling. Tunneling between an SSS and a ferro-
magnet will show a strong dependence on the direction of
magnetization of the ferromagnet. Josephson coupling be-
tween an SSS and a singlet pairing superconductor should
not occur.

15

Parallel

Densities of States (eV™!)

[ll. PAIRING INSTABILITY IN THE HM AFM

Densities of States (V1)

La,VCuO, E,|

F' The HM AFM is a single component fermion liquid as a
T result of underlying magnetic order and electronic structure
that renders one spin channel insulating. The lack of a mi-
croscopic magnetic field in a HM AFM suggests the possi-

. N bility that a superconducting instability may occur in the
FIG. 2. Totgl densities of states for each spl.n dlrectlon.ln themetallic channel. The Cooper instabil"itjs spin blind: the

%Oeuntilifﬁﬁ;Oésalft;ﬂff&fi‘:)?:fﬁ%%*;‘;ﬂg:gi'l'itﬁﬁ;agfegazl'g';'V two fermions that undergo the pairing instability can have

for the lower lying(Cu) states and 0.5 eV for the higher Iyi.my) antiparallel spins as in BCS theory, or they can have parallel

. . 3 . oy . . _
states. Bottom panel: antiparallel alignment of the spins, resulting ir?plgs ;S n He_’ Iand ]Ehe '.nStab"'ty IS walghtfor\gardl{] ex hi
a HM AFM system with the Fermi levé¢ lying in the gap of the tended to a spinless termion system. We now show that this

down-spin channel. instability maps directly onto the BCS model of
superconductivity in a simple but not quite trivial manner.
There is no clear signature in the Hall or Seebeck coeffiThis superconducting state has been called single-spin
cients. At intermediate temperature there may be a negativ‘éipercondUCt'Vlt)}-

magnetoresistance for a HM FM, reflecting the field-induced

increase in magnetic order and reduced spin scattering as the A. Formal relationship to BCS theory

rriers in one channel me noncon ing. For HM . . . T
carriers one channel become nonconducting. Fo In BCS theory an electron in stat€ is paired with its

AFM, this field-induced effect will not apply. : ) )
: - ; - time-reversed partnefK. K= (k, 1) is an index that together
(b) Magnetic order.There is no obvious signature of the with its partnerTK = (—k, |) exhausts all states on the

pendence o the maghetis order parameter, - and {) Fermi surface. In a SSS, an clection in stae
(c) Vanishing spin susceptibilitydowever, core diamag- =(k,+) is paired with its inversion partnefK =(—k, —).

netism, van Vleck(orbital) paramagnetism of the metallic To cover all states on the Fermi surface once olf!y;nu”st

channel, Landau diamagnetism of the insulating channel, and@"9€ over only half of the Fermi surface, say the “top” half

temperature variation of the net order of the local momentdVith k,>0 (hence the notation "), and states wittk,

will make the magnetic susceptibility difficult to analyze. ~—0 can be assigned t& and — components of the pairs
(d) Non-Korringa behavior in NMRThis technique may also. , )

provide the most direct indication of HM character. The lon- N térms of the general two-body interaction

gitudinal relaxation ratel; !, which is a measure of the

conduction-electron spin flips, is proportional to the product V= E Vi bk al al a.ay ., (3.1

of the densities of states of each spin channel kq Ky Kg,ky 17277874 R1 T2 3 R4

[N;(EF)N,(EF)], which vanishes for a HM phase. The

Knight shift, normally dominated by the spin susceptibility all terms excepk; = —k,=k, ky=—k,=k’ are irrelevant

in normal metals, should be small. An NMR study of the for pairing. To count the pair states properly, the full Bril-

proposed HM magnet UNiSn has been repoffed. louin sums in the above expression must be expressed in
(e) Spin-polarized electron spectroscopiest first  terms of pair indice«. Using the anticommutation relations

glance, these spectroscopies seem ideal, but both photoelesf-the electron field operatom, ,a), and defining the pair

-154— ————
-3 -2

—

-1 0
Energy (eV)
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annihilation operatob,=aa_, the resulting interaction is
(making the notational simplificatioy _y ' —x— Vi k),

.
Vpair:; [Vk,k'+V—k,—k'—Vk,—k'—V—k,k']blbk'

M+ =M+

~M +

Uy rbibyer - (3.2

!

=

The “+” sign indicates that the summation extends only

over the “top” half k,>0 of the Brillouin zone. The sym-

metry of the matrix element noted by Sigrist and Ueda

results in all terms in the braces being identical, &gy
=4V, . We return to the implications of the form of
the matrix element in the next subsection. Frof .
=(k’,—k'|VIk,—k)=(K",ZK'|V|K,ZK) =V k', and
similarly for Uy ., and the expression for the kinetic en-
ergy in terms of pair label§running over half of the Fermi
surface, the pairing Hamiltonian then is

_ t t T
Hpair_; fk(aKaKJraIKaIK)JF; > Uk kbkbgr,
K/

(3.3

whereby=aga; . Note that we do not use the BCS con-
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Wi k/
2Ek/

Ak:_E

K’

Ay tani(z BEy), (3.10

where Wk,k,=%Uk,k,=2Vk,k,, indicates the final formal
equivalence to the BCS equation.

B. Simple consequences of single-spin pairing

The combination of matrix elements in E®.2), and the
symmetry noted by Sigrist and Uefa,

Vi ==Vokkw ==V -w=Vog-x, (311
indicate explicitly thek-space structure that is necessary for
SSS pairing. Ak-independent attractive potenti&d, =
—V, which leads to singlet pairing in the BCS model, con-
tributes nothing toward SSS pairing; likewise, Ik
independent repulsion is harmless. The simplest form of such
coupling, which is odd in bottk and k', is of the form
Wk-k'. When this is substituted into the gap equation Eq.
(3.10 (see beloy, a nonvanishing solution requiré4'<0.
Thus the pairing interaction must be attractive for small
angle (“forward” ) pair scattering and repulsive for large
angle scattering of pairs. This behavior is reminiscent of the
situation in highT, theory, where the spin-fluctuation pic-

vention of separating out a negative sign from the interactioriure has an everywhere-positive interaction, which peaks at

matrix elements.
The Bogoliubov-Valatin transformatiéhis analogous to
its form in BCS theory,

aK:UKaK"FUKC!}K, (34)

an =

(3.9

u;Ka}K-I— vk,

large g [more specifically, at 4/a,mn/a)].?® That type of
interaction favors @,z 2 symmetry ofA for singlet pairing.
Using the pairing interaction in normalized form

k-k’

Wi =—WM —=,
kk k213

W (3.12

wherekg is the Fermi wave vector, th€=0 gap equation

and the formalism of SSS pairing theory maps onto BC&:ap, pe solved readily for several trial gap symmetries. Gap

theory. Specifically, the SSS ground state is

(Dozl;[ (Ug+ Kbl P, (3.6)

and the gap function is given by

A= Uy r(bir). 3.7
K’

functions of the formA,«d-k, for some constant vectat,
give the lowest-order possibilitiegn terms of polynomials

of the components ). If d is real, or purely imaginary, its
direction can be taken as tlzeaxis[d=(0,0,1)] so Ak,
with a line of nodes on the equator of the Fermi surface.
Complexd can be represented = (1,i,0)//2, in which
caseA,xk,+ik, with point nodes at the poles. We also
consider the “highest symmetry” single dimensional func-
tion I'{ ek, k k(K2 —K2) (k2 —k2) (k2 K2) (see the follow-

The gap is a scalar, i.e., it has no spinor indices, which dising section as an exotic possibility—it has nine lines of
tinguishes SSS from all superconducting systems discussgfdes.

previously. The gap equation is formally identical to BCS:

UK,K’
2E«/

AK:_E

K’

Ag-tanh(z BEk/), (3.8

where 8= 1/T is the inverse temperature. Wigh denoting
the chemical potential,
Ex=Ex=[(ex—u)?+|Ay[*]"? 3.9

is the quasiparticle excitation energy, which is everkin

We treat the usual weak-coupling case, where

> wa:CdEN(e)f %EE)HN(O)JwZCdeI dﬁf),
(3.13

where N(e€) is the density of states per spin which is as-
sumed to be constant over the energy seal®f the pairing
interaction. We display in Fig. 3 the resulting=0 gap
value, relative to the energy cutaif., versus the coupling

It is useful to express the gap equation as usual in terms aftrengthA =N(0)|W| for these gap symmetries. The BCS

a full Brillouin-zone summation. It is readily verified that

result is given for comparison. Given the same couphng

extending the sum over the full zone introduces an expectei$ evident that the zero-temperature gap magnitude is com-

factor of 3, and the gap equation,

parable to the BCS value, even for th§™) function.
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FIG. 3. The rms value of the gap functionTat 0 relative to the
coupling boson frequency cutofd., for the singlet BCS case, and
for three SSS cases. The coupling strengik defined in the text.
Note that the point nodes of the Q" gap, the line nodes of the
“001” gap, and the set ofineline nodes for thd‘(l_) case do not
affect the rms gap value drastically.

It is straightforward to obtain the limiting behaviors of the
zero-temperature gap from E.10. In the weak-coupling
limit,

Ams=2we NC(1+Cre™ M), (3.149
while for large\ the asymptotic form is
D,
Armsz (J)C)\ Dl_ F . (315)

HereC;,C,,D;,D, are symmetry-dependent constafts
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pansion ofW, ., in normalized functions. Thus the equa-
tion for T versus coupling constant=N(0)|V| is identical
in form to that of BCS.

1

A

@c

K
0
where 8.=1/kgT,.

Although there is every reason to expect that SSS will
arise in the appropriate transition metat f electror) com-
pounds, there is not yet any expectation of high For one
thing, the necessary interactio, . is of a particular kind
(see above however, this is also the case for tHewave
scenario in highF. cuprates. More to the point, however, is
that at largefT transverse spin fluctuations increase strongly
and tend to reduce the AFM order parameter, finally causing
the system to revert to the paramagnetic state above the Ne
temperature. The manner in which the HM AFM state will
thereby by weakened has not yet been explored.

(3.19

tanh( B.€/2)
€ .
€

IV. SYMMETRY: RELATIONS TO PREVIOUS THEORY

It is instructive to clarify the relationship between the de-
gree of symmetry of the normal state and the degree of rich-
ness of broken symmetry in the condensed phasie has
the highest symmetry possible in ifgquid) normal state. It
has continuous real spag¢eand spin rotatiorS symmetries,
it has time reversal and inversionZ, and of course gauge
symmetry UW1). The group of its normal phase then is
LXSXTXITXU(1). In the condensed superfluid phase,
U(1) is a broken symmetry and one or more of the other
symmetries can be broken concomitantly. Much work has
been done to characterize the more likely cases among the
infinite possibilities(infinite because the relative angular mo-
mentumL of the pair can be any non-negative integdihe
observed phases correspond to particular states within the

Appendix B. This latter relation explains the linear behavior (pair spin and orbital angular momentum quantum numbers

at larger that is evident in Fig. 3. Note that strong-coupling
corrections will change this to @ behavior?® A

At T=T., E,— €, (we takeu=0). Takingk alongd (or
along one nonzero component df is compley, the only

S=1, L=1 complex that is described by an 18 component
order parameter in general.

When considering pairing in a crystal, the continuous
real-space rotation symmetry is replaced by the finite crys-

difference from the corresponding BCS equation is an angutalline point groupG (see Table I, where the classifications

lar integral. This integral is unity, however, due to the ex-

of this subsection are collectedThe group of the normal

TABLE |. Categorization of normal-state symmetries, number of allowed broken symmetry broken states,
and allowed values db andL for several fermion liquid$S, L values for the BCS case refer to cubic crystal
symmetry. HFS refers to the picture where the spin is frozen into the lattice and therefore is not a separate
symmetry of the normal state; it is still unclear if this picture gives the best description of the heavy-fermion
superconductors. N@ indicates HFS without inversiofsee text Symmetry group notation is given in the

text.
System Normal Broken symmetries Pairing type
*He LXEXTXIXU(1) oo S=0,L=even
S=1, L=odd
BCS GXSXTXIXU(1) Finite S=0,L=0,2,4,6
S=1,L=1,359
HFS GXTXIXU(1) Fewer S,L coupled
Even or odd parity
No Z GXTXU(1) Still fewer Impure states
SSS GXIxU(1) Fewest L=odd
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state then isGXSXTXZxU(1). The number of broken Wwhich was introduced in Eq3.7). Below T, the gap func-
states is finite because the space of basis functions of irreff®n is nonzero, and it transforms under the full symmetry
is spanned by a few small-sets. The necessary valueslof group of the normal phase. In particular, it is not invariant
for cubic crystals are presented under the BCS case in Tablder the U1) Abelian gauge symmetrjand the concomi-

. The allowed symmetries in cubic, tetragonal, and hexagotant global U1) of electron numbdr since Cooper pairs
nal crystals have been exhaustively categorfz&d. have electric charge 2 (electron number 2 The U1) sym-

In crystals with strong spin-orbit coupling, it may be ap- metry is broken to the cyclic grou@,. The gap function
propriate to consider the spin as frozen into the crystallingnay break other symmetries as well, and this is the main
lattice, in which case spin rotation is no longer a separatéocus of this section.
symmetry.(On this matter there are arguments bpth and The gap function must form an irreducible representation
con in the literature. Then the normal-state symmetry is (irrep) of the symmetry groupg=GxU(1), atleast in the
lowered further, and the number of distinct broken symmetryvicinity of the phase transition. This follows from the fact
states is further reduced. The next lowest symmetry situathat near the transition, the gap function satisfies the linear-
tion, where inversion symmetry is absent from the pointized gap equation, which for a spherical Fermi surface is
group, has been considered by Pahos?® with the spins  given by
frozen to the lattice, distinction between singlet and triplet
pairing vanishes and the order parameter becomes a low -
symmetry combination. Ap=— 7(wC/kTC)f dk' Wi A

For the SSS discussed in this paper, the two spin systems
are inequivalent, so time-reversal and spin rotation symmewith
tries are strongly broken by the normal state. The symmetry
of the normal state is described B/<XZXU(1). Thenum- 1

L x tani(z y)
ber of distinct possibilities for broken symmetry states, y(X)= N(O)J dy ———, (5.2
which we enumerate below, is reduced still further. In fact, -x y
this state of affairs gives the lowest possible symmetry nor-
mal state that still allows pairing in the usual sense of zeravhere w. is the cutoff for the interaction. This is &-
net momentumQ of the pair. Inversion symmetry ensures invariant eigenvalue equation wheseis an eigenvector and
thate,=ex= e;x=€_y, SO that ifk lies on the Fermi surface therefore must transform as a member of an irref.oAs
then so does-k, and these two states can pair to total mo-usual, we start with the assumption that the transition tem-
mentumQ=k+ (—k)=0. Without inversion symmetry, i.e., Perature for the first irrep to condense is much higher than
for GXU(1) normal-state symmetryQ=0 pairing is not that of the others. This lets us focus on each irrep separately.
allowed. This result indicates that inversion, not time- Under a Ul) gauge transformationa,—e '¢ay,

reversal symmetry, is the minimal symmetry requirement forAHefzi“’A_- A may transform under the point groug, as
a pairing instability. For convenience, inversidnwill be ~ Wwell. Consider the case where there is an elemer@ ohat

considered part of the point group below. sendsA to another function which is not related toby a

Because for a SSS state time-reversal symmetry is alreadjauge transformation; i.e., thereds= G such thagA=A’
broken in the normal state, it is natural to exp@otd indeed ~ Where|A|#[A’|. This breaks the point-group symmetry to a
we find) that broken symmetry phases with unusual propersubgroupH of G that does leavé invariant up to a gauge
ties are likely to arise. Such considerations occupy the rest dfansformation. This nontrivial form of spontaneous symme-
the work reported here. try breaking occurs exactly whef is in an irrepI” of G
whose dimension is greater than dfie.

The overall symmetry-breaking scheme may be described
as follows. When\ is in the irrepl” of G, there is a maximal
A. Allowed superconducting phase symmetries subgroupH of G under which A transforms as a one-

The spontaneous symmetry breaking at the superconducg-lmens'onaII imefd . Theng is broken to the little grougt,

: N —H. All such decompositions of irreps of the crystallo-
Ny pha;e transition Is governed t.’y the free energy. Bdlow raphic points groups are tabulated in “compatibility
the minimum is a superconducting phase whose order pag, o 80y g merely a matter of looking up the maximal
gamii;r?ergzkss\:;ﬁ (u':')h?:uﬁeslir(l\éar:;gnCbeea:jlnedsgrci)sz::lb%ro(;lr}e;; subgroupH in which each distinct one-dimensional irrep ap-
y well. Tis phy Y 9 Sears. This classifies all of the possible superconducting
phenomenological Ginzburg-Landau free energy that de-hases according to symmetr
scribes the mean-field theory of the superconductor in term8 9 y Y.

of a few parameters related to matrix elements of the effec- There is one subtlety in this analysis. The gap function is
1 pe T . not gauge invariant, so it is not a physical observable. The
tive potential. Despite its simplicity, the mean-field free en-

physical residual symmetry group,,,s may be larger than

ergy captures all of the generic information about the al'H For example, the spectrum of quasiparticle excitations
lowed symmetries of the superconducting phase. ' pie, b q P

The order parameter describing the Cooper pair conde
sate is taken to be the gap function,

V. GINZBURG-LANDAU FREE ENERGY

(3.9 has the symmetry of the gauge-invariant prodhtiA.

T aisina complex irrep, there may exist an elemgrif G
that switched™’ and its complex conjugatE’; that is, g
=y for yeI''. Theng leaveg A|? invariant, but it is not an

Akzz Wi (@ o), (5.2 element ofH. The residual symmetry of the physical observ-

K’ ables belowT, is the groupH g, generated byH and g
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field A, in which the fluctuations about the mean field have

andDyp . been integrated odt3 It must be invariant under the full
_ symmetry groug; which describes the physics of the normal
Irrep I Basisy(I',m:k) state. This constrains the combinations of the mode& ,of
Octagonal—9, Eq. (5.9 that enterF. Only invariant ";) combinations
Iy (T 1, 1K) = Kk ko (KE— k) (kG —K3) (K —K5) contribute. In a perturbative expansionfefin terms ofA,
r, W(T5 1K) =k, kK, the form of the low-order terms is highly constrained &y
Ty ('3 1K) = ke (262 —KZ—KJ) nvanance. _ _
¢(F§,2;k):\/§kxkykz(kf—k§) The group symmetry imposes a very restrlcteq form_.
~ ey — 2 2, 2,2 Many terms that could appear in the free energy vanish. This
U5 1k = kool Hokih w7ky) [ Il computed with a  Clebsch-Gordon
(T3 ,23K) = ko k(K2 + 023+ k) IS usualy  gomp
- I 1) —k d_ecom_posm(_)r?r, but we develop a more pow_erful tech-
4 W 4re X nigue in which the group symmetry is used directly. The
«p(l‘i,z;k):ky result is an explicit computation of the allowed terms in the
~ ‘”(r{'s;k):kz s o free energy to arbitrarily high order in perturbation theory.
s (s, LK) =ky(ky—k;) The group symmetry imposes a number of constraints.
¥(T'5,2:k) =k (K~ k) Gauge invariance requires that the polynomial have equal
(T3 ,3iK) =k (kg —k?) numbers ofz's and z’s. The restrictions due to the point
Hexagonal—Dg, groupl)J are injglemdented as foIIov_vs. Each r?ro:Jp operr?tion
Ty U(T T 1K) =k k(K2 3K2) (K2 3K) may be considered to act on thgs in a way that leaves t e
o H(T, 1K) =k free energy invariant. A is tran_sform_epl under an operation
F% I‘Z_,lik _kg_3k2k from G, it may be restored to its original form by a linear
3 W 8 )= Yy Xy transformation of the constantg,,; that is, they form the
Fi w(ri’l’k):kx_skxky contragredient representation Iofof G with charge 2 under
I's ‘p(ri'l;k):kx global U1). The free energy is invariant undér so it must
(I's 2 k) =k, be an invariant polynomial im,, under the action ofj. In
I'e (L 1K) =Kk (kG — 3K5) addition to the symmetry constraints, the free energy must be
#(Tg ,2;K) = kk (k5= 3KY) real and bounded below for stability.
Tetragonal—D Invariant pplyn_omials have be_en studied .extensively i.n
Iy W(T7 1K) = Kk ko (K2—K2) the mathematics Iltgrature. In partllcular, invariant polynomi-
o H(T, 1K) =k y a}ls for the symmgtnc and alternating grotfpand for Abe-
F% F%lltk :kzk K lian and non-Abelian gauge grodpsiave been constructed
3 w 8 ) vz, explicitly. These polynomials play an important role in
Ty ¢(I'a, 1K) = (k= ky)k, gauge theory®* Invariant polynomials foG X U(1) require
I's ‘p(ri'l;k):kx an extension of this theory, and since it has not been dis-
(s ,2;k) =k, cussed in the condensed-matter literature, we will give some

(Hphys=HXZ5). On the other hand, if there is no sugh

such as when the irrep is real, they, —H.

It is convenient to expand the gap function in terms of
explicit representatives of the irrdp A general form of the

mode expansion ok is

details.

SinceG is a finite group, its action on the coefficients
is isomorphic to a direct product of finite simple groups, in
particular the symmetric groupSg andS,, the alternating
groupsAsz and A, and the cyclic groupsZ; and Z,. The
form of invariant polynomials for each of these groups is
well known, and our task is to form combinations of them
that are invariant undeg <X U(1).

The free energy is almost trivially constructed for the one-
dimensional representations. Gauge invariance requires that
the free energy be a function b#,|?. This is also invariant
under the point-group operations. The perturbative expansion
of the free energy takes the form

Ak=r2m§ (T30 (T, iy k) (5.3

where 7,(I";n;) is a complex coefficientn=1, . . . ,dinT’
labels the components df and the indices; distinguish
polynomials of different degree&-or multiple or aspherical
Fermi surfaces Allen’s Fermi surface harmonfosould be _
used) A suitable choice of basis elementgI’,m:n,=0;k) for dim’=1,

is given in Table Il. A complete basis of higher modes of the 5.4

Iinear!zed gap equation may be constructed using Stand""(fi’herea, B, andvy are parameters describing the expansion of
techniques. the effective potential for the order parameter in terms of the

basis elements of the irreducible representation. Note that the
k integrals for matrix elements of the effective potential
At this point we have identified the possible residual sym-Wkx have been included in these parameters, so they en-
metries of the superconducting phase. It remains to sho®ode the physics. In general, there are exponentially small
how each is realized as a minimum of the free energy. Théorrections to this perturbation series of the form
Ginzburg-Landau free energy, is a functional of the mean P(|74|2)e~ ¥« whereP is a polynomial. These non-

F=aln|?+ Bl na|*+ v 5a]°+- -

B. Construction of the free energy
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perturbative corrections can be important at very low tem-These invariant polynomials have not been constructed pre-

peratures or in strongly coupled systems, but they are beyondously.

the scope of this paper. Using the invariant basis the most general form of the
The treatment of higher dimensional representations iperturbative expansion of the free energy may be written

more involved. The first step is to find a basis for the point-

group irrep that respects the simple group decomposition. L n + ;o

Each simple group generator should correspond to a specific F(On(I's ))_m%p F (mn.p)P(mn.p)(72:772)

element ofG. This makes the symmetries of the invariant

polynomials manifest, permitting a straightforward descrip- +F mnp Pimnpy (715 72)

tion. Using invariant polynomial techniques, we will con- _ 12 . C 2 V12w
struct the free energy fd?; andl'; 5 of Oy, I' s of Dy and =a(|n1|*+ |72l + Bi(| n1|*+1m3%)

I's of Dyp. +4,8é|7;17]é|2+--- . (5.10

Consider the two-dimensional representatlon of O,,. . N )
The standard real basis shown in Table Il does not respetherea=F g, ), B1=F 0,2,0)? ﬁé:F(O,O,l)' etc. For com-
the simple group decomposition. The appropriate basis iparison, Sigrist and Uefaise the coefficient®,;= g1+ 35

composed of the complex functions andB,= B, . The minima of this free energy will be studied
in the next subsection.
Y1 =[Ya(T3) +i9p(3)1IVZ=kekyk (K2 + ok + w?k)), The next case is the two-dimensional representations
o B ) ) ) andI'y of Dg,. The analysis is essentially identical to the
Y =[91(T3) —i9(T3)1IV2=kekyky(KZ + 0?k5+ wky). case ofl'; of O,. Again the action oDg, on these two
(5.9 irreps is isomorphic to Z3XZ,XZ, where Z,
The action ofO,, on this basis is isomorphic B;xZ,xZ, ~ ={E,Cs;,Cs;}, and Z,;={E,Cy}. The difference in the

Where23={E,C3a,C3’,}}, Z,={E,C},} andZ is inversion two cases comes from the wa, X7 is embedded in the
(anotherZ,). In addition to U1), we only need to consider group; €.9.C,(I's)=1C5(I'g). A complex basis is nec-

the following two point-group operations: essary to make the simple group decomposition manifest
- 2 0| = 0 -1 =L +iw,]Iv2
R ) C§a=( T ) 5.6 =L tive]
R = (ky+iky)/V2 for T5
Consider a monomials;)N1(75)N2(57)N1(775)N2 in the per- Kkt K (K2—3KD) V3 for T'=
turbative expansion of the free energy. Invariance under yka(kot Ty (ky = 3K/ o e

OpXU(1) imposes the following constraints;

(8 U(1): Ny +Np=N; +N,. V2=l 191V2
(b) C3,: N;—N,—N;+N,=0 (mod3. =(kg—iky)/vV2 for I'y
(c) Cjy,: invariancen;— — 15, n5— — 11 - . ) 5 B
This leads to a basis of invariant polynomials of the form =kykz(k—iky)(ky=3k)/v2 for I'g . (5.11)
28] ! 1274 | 1! 127] ! 2PV R 17\3e] The generators for the invariant polynomialsItf g of Dgp
(Il e+ = el )R (7)™ are the same as those B¢ of Oy, (5.8), and the free energy
and may be expressed

(| 23122 3127 = | 1 Y 5 PP Im[ (1 72)%*]. (B.7) _ o,
F(Dﬁh(FS,G)): E F(er,n,p)P(er,n,p)(nlv7I2)

. . m,n,p
They can be reexpressed in terms of the polynomial gen-
erators forl'; of Oy, +F mnp) Pmnp (715 72)
Py=|m1l+|75/%, =a(| 72+ 75+ Bi(| 912+ 5?2
., +ABY L2+ (5.12
P,=4 7717]2|2, 59 Bal m1m3
L ' This is identical in form tdF(On(I'3)), so the phase transi-
P3=8Rd (7175)°], tions take place at the same values®fpB;, v, etc. Of
o course, the symmetries of the phases are different in the two

P,=8(|71%—|752)Im[ (91 7%)3], cases. Also, the dependence of the parametef ,... on

) _ ) physical quantities such as couplings, masses, the tempera-
where the complete set of invariant basis elements are powgre, and the pressure are different, so systems with different

ers of these four elements, in one of the two forms normal-state symmetries do not sit at analogous locations in
N - the superconducting phase diagram in general.
Pmn,p=P1P2P3’, (5.9 Next we consider the two-dimensional representalign

B nopom of Dy,. The action ofD,;, on this irrep is isomorphic to
Pmnm=P1P2P3Pa. S,XZ2; that is, it permutesy; and 7, and changes their
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signs. In  particular, S;={E,Cze}, and Z,={E,Cy}, P11=Re (717373~ |73 72732 (| 72l *+ [ m]*) 1+ cyc,
{E,C,,}. The generators for the invariant polynomialslaf
of Dy, are P1,= Im[ 5575 m5(] 72l 2+ 73|21+ cyc,
102 2
P1=|71*+ 72", P1s=Im[ 75 73] 73l (| 71>~ m2l*) ]+ cye,
Po=[| 75+ 7312— (| 71| %+ | 72|2)21= — 4[Im( 1 72) 1, where cyc, denotes additional terms with the indices cycli-
cally permuted and we have noted that four of the generators
Ps=4|7.7,|%, have extra continuous symmetries. Al§t;, Py, P11, and
o P, have aZg; symmetry in addition to the requisite
P,=4(| 71)%=| 72lDIM[ (71772)]. (5.13  U(1)x Oy, for fixedr = P12, An arbitraryO,,(I'; o) invariant

. . _ olynomial may be expressed in terms of the generators
The basis elements are generated exactly as in the céSe of 5)5 55) y P g

of Oy Eq. (5.9), and the free energy is given by

- P(n1,72,m9)= 2 CXO L, PY o (11,72,m3),
F(D4h(F5 )): 2 F(er,n,p)P(er,n,p)(”]117I2) 17273 Ny, ng, X RIS M5" Ny N5 172273
m.n,p (5.16
+F(m,n,p)P(m,n,p)(77117]2) where the basis is given by
2 2 2 2\2
= + + +
a(|771| |772| ) Bl(|771| |772| ) P%),...,nSZ P21P22P23P24P25PX, (5.17

—4B,[IM(7172) 1>+ 4B3| o>+ -+ . 5 3 _ _
(514> Where PX: 1,P6 y P6’ P6P7 y PG’ P.7 y Pg . !P13' ThIS baS|S
has not been constructed previously.

The coefficients agree with those used by Sigrist and &eda The free energy foOy(I', 9 is expressed in terms of the

to fourth order, except foB; which differs by a factor of 4 invariant polynomialg5.15):

with theirs larger.

_The fin_al irreps are the_three-dimensional represgntation]g: S OFX  p

I', andI's of Oy. The action ofO,, on each of these irreps g, Shex  Moels Mo fs

is isomorphic toS; X Z3: that is, it permutesy;, 7,, and 73

and changes any of the signs. Of course, the correspondence= aPi+ B1PT+ BoPy+ B3Pyt y1Pi+ ¥2P1Pa+ y3P1P,

between specific group elements and these transformations

differs in the two cases. I, , S; is generated b ;5 and T74Pat y5Pet yePr (518

C;C5; and the three copies &, are generated by the reflec- where the sum runs over the indices described above. These

tions oy, oy, and o,. On the other hand, if's, S; is coefficients agree with those used by Sigrist and Beda

generated byC;; andC),, and theZ, actions are generated fourth order, and they do not consider the free energy for

by the reflectionsr,, o,, anday. The details of the con- I'y50f Op at higher order.

struction of these invariant polynomials and those for the

two-dimensional irreps are presented elsewf&fEhe gen- C. Minimization of the free energy

erators for the invariant polynomials &fy s of O, are The physical gap function minimizes the free energy. The

Py=| 7.2+ | 7|2+ 752, [SO6)] (5.15 minimum determines both the magnitude and the direction of
’ A in representation space. The magnitude depends on the
Po=| 717212+ | 72732+ | 71782, [U(1)3X O, ] parametersx,ﬁ,y, <. in acompllgated fashion. Fortun_ately,
its exact value is unimportant. It is zero abdlg, small just
Pa=|71m2742, [U(1)3X0,] below the second-order critical point and possibly large at
’ low temperatures. The direction i space is more interest-
P.=|n2+ n2+ 32, [U(1)XSO3 ing, since it determines the symmetry of the superconducting
4= m1+ m3+ 3 [U(D)*XSAI)] phase.

Theorem 2 in Appendix A guarantees that regardless of
the value of the parameters,8;,... atleast one pair of
critical points of the free energy lies on each rotational sym-
metry axis of the representation spaegspacé. The theo-
rem does not say which of these critical points if any is the

22 22 22| 2
Ps=|nins+ noms+ namil?—P3,

Pe=Rd |71 2(n5m5—| n2m3|%) 1+ cyc,

— 22 2_ 2
P7=Im[ 7375(| 71"~ |72l ]+ eye, absolute minimum, but sufficiently close to the critical point
_ > 7 5 5 2 one of them is®° This is a consequence of the Morse theory
Pg=Re| 71" n275(2| 71|"~ | 72| "= [ 3| *) ]+ ey, of critical points combined with an accounting of the critical
Py M 7 22+ 27 m ] points of a fourth-order polynom|aIF() in terms qf point-
9 M3 1271737 7371721, group orbits. Even as the magnitude/ofjrows, an interme-

12 ) 5 diate symmetry phase is the ground state for most values of
Pyo=Im[ 71 75] 73l (| 72| * = [ 72| *) 1+ cye, the parameters.
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1.1D irreps The function®(x,y) is convenient because it is a monotoni-
Because of its simple form, the minimization of the free Cally increasing function of bothx| andy. o
energy for one-dimensional representatiof&4) is a It is possible to have first-order phase transitions in this
straightforward, in principle. To fourth order, the free energyParameter space at eight order, where a small change in one
is given by parameter causes a large change in the gap function because
the minimum hops from one sheet to another. The location of
F=al|n|?+ B 7+ . (5.19  these critical points is nonuniversal. The symmetry of the

_ superconducting state need not change at this type of phase
For a~(T—T.) <0 andB>0, the minimum isng’zroez'o transition, and we do not consider them further. Note that

with away from the transitions, the higher-order terms simply
renormalize the leading nonzero coupli@gccording to Eq.
[ (5.22, and we defineBg=—1/(4dP(B,|a|y/B?)) so that
fo= ﬁ_'— ’ (520 Fmin:_a2/(4BR)-
where ¢ is an arbitrary phase angle which parametrizes the 2.2D irreps
ground-state degeneracy. This breaks tfig) Symmetry to The free energy for the two-dimensional irreps has the
Z,, but it does not break the point-group symmetry. same general features, but it also allows the point-group

Higher terms in the free energy may be considered agymmetry to be broken. We expreBsin terms of one real
well. The Ginzburg-Landau formulation is best near theand one complex variable

second-order critical point where it is well known that the

fourth-order free energyperturbed by a few higher-order 7

terms to break the residual degenepagsovides a good de- re=|mlP+nl? e'=—7, (5.29
scription of the system. At lower temperatures, the magni- 72

tude of the gap grows and higher-order terms become impomlnd conversely,

tant. Eventually the perturbative expansionsAhw. and ) - i

V.« may break down due to a finite radius of convergence m=re”? "sectRew)/v2,

and asymptoticity, respectively. Also, the exact form of the .

temperature dependence of the coefficients becomes impor- ny=re?""2sechA Rew)/v2. (5.29

tant, so it no longer suffices to make the ansatz that thq?_h ining d f freedom i Aol i h
coefficients are independent of temperature exceptafor € remaining degree ot iree om rf and |sap'as<'a¢,9..
This is the zero mode of the Goldstone boson which is irrel-

~(T—-T.). Nevertheless, there does exist an effective free b . ) Th ables beh icol
energy even at low temperatures which is related to the pe|e_van Yy gauge invariance. These variables behave nicely

turbative Ginzburg-Landau free energy through resumma‘—mde_rohxU(l)'_':Or example, inl’y of Oy, Cgq:W—w
tion, and information about the system at low temperatures 27i/3 and C,;:w— —w. Consider the two-dimensional
(especially the symmetrigsan be extracted from the higher- imepsI’y of O andI's ¢ of Dey, first. The generators of the
order terms. invariant polynomials for these irre5.8) become

As these terms are considered, the magnitude of the gap
functionry(«, B,...) takes values on a branched cover of the
parameter space. Consider the minimization of the sixth- P. — r4secR(R
order free energy = a| 7o+ 6l /*+ ylml®+ ., which 27 secH(Raw) (5.26
Is of Interest In the case of higher-dimensional irreps. The
minimum becomes Py =r°cogIm3w)sechi(Rew),

P1=r2,

P,=r8sin(Im3w)secH(Rew)tanh Rew),

|l

- _ M+3lalv/B2) lt...

o= \/( Sgn(B) + V1+3|aly/57) 3y+ : which are manifestly invariant under the symmetry opera-
(5.21 tions. In the ¢,w) variables, the free energy is

The value of the free energy at the minimum is conveniently  F=qar2+ gir*+ gor*seclf(Rew) + y,r®
expressed in terms of the function
+ v,r®sec(Rew) + y,r écog Im3w)secH(Rew)

PY)= 57 {2(1+3y)%2—sgn(x)(2+9y)} +oe (5.27

L with the same coefficients defined in £§.10.
_ - 1 9 2. 1 The order parameteXx(r,w) is nonzero below the critical
T oax (I=zy+iy ) x>0, lyl<s, point, breaking the (1) symmetry. The value ofv (the di-
(5.22 rection of A _in 7 spac_ee below T, determines whether a_nd
' how the point group is broken. A glance at the functions
where the series is its criticémall @) expansion. The free P1,...P4 Eq. (5.26 which generate the invariant polynomi-
energy is given by als reveals that the generic extrema awe=+x,
—,0/i7/3,...,57i/3. These are the critical points identi-
Fmin=a’®(B,|a| v/ 8. (5.23  fied by Theorem 2 in Appendix A, since the rotational sym-
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metry axes in the two-dimensional’ representation space

are(1,0), (0,2, (1,+1), (1* w), and (1;+ »?). They give a
nontrivial residual symmetry.

The minimization of the free energy is straightforward.

We considelF to sixth order. The imaginary part @f only
enters through cos(Imy8, so

0 27w 4 <0
,?, ? V3R )
Imw= (5.28
T 57
3™ 3 Y3r>0,

where the renormalized couplingsg= 5 at sixth order. At
this order of perturbation theory, inis unconstrained if
v;=0. The free energy takes the forf=ar?+g;r*
+ Bor 42+ y1r 8+ y,rx%—| 5| rx3 to sixth order with Imv
given by Eq.(5.28 and x=sech(R&)[0,1]. The minima
either havex=0 or x=1, since the coefficient of® is nega-

567
_ -1
P 20 B alvi I B
Bor=—Bir
N ~1
4D (B1+ By | al(yi+ v2—|varD/(B1+ B2’
(5.30

so that the free energy of the ground state is given by
Fmin(XZO):_azl(4BD and Fpin(x= 1):_a2/(4(,81+:8é))-
The ground state ix=0 when B,>0 and x=1 when
B-r<0. The ground-state gap functions for the three distinct
phases are shown in Tables Il and IV. Typically, the value
of ro changes discontinuously at the boundary between these
phases, so the transition is first order, as expected when the
symmetry does not break to a subgroup.

At eighth and higher orders, there are small regions of the

tive and there is no term proportional xo They correspond  parameter space in which the ground state hax€1 and
to phases in which the pOInt group Is Only partlally brOken,the point group is broken Comp|ete|y:§(oh)_)ri(D2h),

and A points along a rotational symmetry axis #space.
Specifically, these phases are

x=0:
A =rokekyky(K2+ wki+ w?K?)
A=rokeky k(K24 w?k2+ wk?),
for I'; of Oy,
A=ro(ke*xiky) for I's of Dgp,
A= okyk (K iky) (k2 —3k2)
for T's of Dgp (529
x=1:
A=rokk/k,(2k2—k2—K2),cyc (y3<O0
_0xyz( 2 X 2y)y (73<0) for T3 of O,
A=v3rok,k/ky(ky—ky),cyc  (y3>0)
1 V3
A:rokx,ro Ekxi? ky (73<O) B
for I's of Dg

A =rokekyk (k2 —3K3), ..
A=rokik,(ki—3K2), ...

(v3<0)

(75>0) for I'y of Dgp,

wherer is the value ofr for the ground state, and cyc
means terms of the same form with the indices cyclically

permuted.
The magnitude of the ground-state gap functiog, is
given by an expression of the same form as &R1), with

B=pB; and y=vy, for x=0 and B=B;+B, and y=vy,

+ y,—|vs|, for x=1. It is natural to define the following

renormalized couplings:

'z (Dgn)—T'71(Cy) andl'; (Dgn)—TI'1 (C;), whereC; is in-
version. Second-order transitions to these phases can result
from frustration due to the competition between the terms
minimized atx=0 and those minimized at=1 (or from the
contribution of the symmetry-breaking generaRy). Con-
sider the eighth-order free energy. It has the tegys*x?

and 8,r8x* which compete wheg,<0 andd,>0. The free
energy is a fourth degree polynomial xp which decreases
asx increases from 0, then reaching a minimum, it increases.
If the minimum occurs ak>1, then the ground state is

=1 sincex=sech Rav<1. On the other hand, if the mini-
mum occurs ak<<1, the ground state is the low-symmetry
phase. We can estimate the critical point takijgg|
<B1r, for which the low-symmetry phase exists when

ol =| HB2RIBR)
a|= 54

with B8,r<0 andé,>0. Sincea~ (T—T.)/T, is small near
the initial superconducting critical point, this secondary
phase transition would occur at much lower temperatures.
The other two-dimensional irrep 155 of Dy, . Again, the
simple groups act nicely on the projective variables,
Cyy:W—w+im andCye:w— —w. The rotational symmetry
axes in the two-dimensional representation space(Bf®,
(0,1, (1,=1), and (1;=1), which correspond tev= o, —oo,
0, i, iw/2, and —iw/2. The generators of the invariant
polynomials are

(5.3)

P]_: r2;
P,=—rsir’(Imw)seck(Rew),
P;=r%secl(Rew),

(5.32

P,=r5sin(Im2w)sech(Rew)tanH Rew),

which are manifestly invariant. The free energy becomes
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TABLE lll. SSS symmetry-breaking phases.

r H(T") Hpnys Bi # (k)

Octahedral-©,
Iy On(ly) Oy
I, Ou(Iy) Oy,
s  Du(ly)  Duan B2r<0, y3r>0
Du(I's)  Dun B2r<0, y3r<0

Kk (KE—K3) (kg — K2) (K2 — k)
kykyk,

V3Kyky K (K —K?)

kykyk (2K —kZ—K?)

Th(T5) Oy Bar>0 kykyk (K2 + wkZ+ w?k?)

Th(T'3) Oy kykyk, (K2 + w?KZ+ wk?)
ry Cs(I'7) D3qg Bar<0<PB2r ko + wkyt+ w2k,

C5(T3) Dy K, + @k, + wk,

Daq(I'2) Dag B2r:B3r<0 k. +ky+ky

Dun('z)  Duan 4B2r<PB3r. B3r>0 k;

Can(T'3) Dan 0<B3r<4B2r ky+iky

Can(I's) Dun ky—iky

Dan(T'2) Da2n Bar=0, B2r<0 ky+ky

Don(I'y)  Dop ky—ky

s Cau(Ty) Dag Bar<0<Br
Csi(T'3) Dag
D3g(I'y)  Dag B2r:B3r<0
Dan(l'y) Dan 4B2r<P3r, B3r>0
Can(I'y) Dan 0<B3r<4B2r
Can(T'3) Dan
Don(I';)  Dop B3r=0, Br<0
Don(I'y)  Don

k(K2 —k2) + wky (k= k2) + w2k, (k2 — k2)
k(K2 —k2) + k(K5 —K2) + wk, (k2 — k%)
ka(KE—kg) + Ky (kg —K3) + Ky (K2 — k)
k(K k)

ky(kG—K2) +iky (K2~ KZ)

k(K — K2) — ik (K2~ K3)

kx(k)z/_ kg) + ky(kf_ k)z()

k(g = K2) — ky (k2 — k)

TwWwwwomwhrDDWWWWWAMDMDRERRWWERPR

2il:

w=¢€

TABLE IV. SSS symmetry-breaking phases.

Hexagonal-Bygy,
Iy Den(I'1) Den 1 Kk k(K5 — 3K7) (kG — 3k?)
Iy Den(I'z) Den 1 k,
I'y Den(I's) Den 1 kS —3kZk,
Iy Den(I's) Den 1 k3—3kxk§
I's Dan(I'y) Dan B2r<0, v3r<0 3 Ky
Don(I'z) Dan B2r<0, y3r>0 3 Ky
Cen(I's) Den B2r>0 1 ke t+iky
Con(I's) Den 1 ke—iky
Ly Don(I'y) Dop B2r<0, y3r<0 3 kyky k(K2 —3k2)
Dan(T'3) Dan B2r<0, y3r>0 3 k2k,(K5—3k%)
Cen(1'2) Den B2r>0 1 kyk(Ky+iky) (k2 —3K2)
Cen(T'3) Den 1 kyk (ke —iky) (kg —3K?)
Tetragonal-b 4,
Iy Dan(I'y) Dan 1 Kk K, (KZ— k2)
Iy Dan(T'7) Dan 1 k,
I3 Dan(l's) Dan 1 kekyk,
Iy, Dan(I'y) Dan 1 (K= kd)k,
I's Can('3) Dan Bar>B3r: Bor>0 1 ke tiky
Can(l'y) Dan 1 ke—iky
Dan(I'z) Dan Bor B3r<0 1 Kyt Ky
Don(I'y) Doan 1 ky—ky
Dan(1'2) Do2n Bsr>Por, P3r>0 1 ky
Dan(I'y) Dan 1 Ky
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We restrict our attention to the sixth-order free energy
with no symmetry-breaking parametey;=0. The relative
phase for the ground state is given by

F=ar2+ B,r*— B,r4sir’(Imw)sech(Rew)
+ Barisec(Rew) + y,r®

— v,r%sir?(Imw)secl(Rew) + y,r sec(Rew)

0,77 ﬁ2R<O
+ y,r%tani Rew)secl(Rew)sin(Im2w)+ - - - . Imw={ 7 37 (5.39
AR B2r>0

(5.33

The structure of the solution is more complicated than in thewith B,r=B,+ -+ [see Eq(5.35]. The free energy reduces
case of the other two-dimensional representations because F(Imw=m/2)= ar?+ B,r*— Bor*x2+ Bar*x%+ y,r®

the generatoP, that explicitly breaks the intermediate sym- — y,r x?— y5rx?, and F(Imw=0) given by the same ex-
metries occurs at sixth order rather than eighth order. Thigression with3,=y,=0. Note that the free energy is qua-
leads to low-temperature phases in which the point group igratic inx. The phase boundaries are again best expressed in

broken toZ. terms of renormalized couplings,
Buom -1
K40 (B aly,/BY)
Bar=—Birt -
R PIRT 40 (B + Bssal(y1+ va) (Bt B3)?)’
Bor=PBir* Bsrt - (5.39
2ROPIR PR A0 (B~ Bo+ Ba. el (v1— va+ v3) (B1— B2+ Ba)?)’ '
|

to sixth Order, SO thaFm|n:_a’2/(4ﬂ) with B:,B]_R for w A7] Pl Pz P3 P4 P5 PG P7_13
=%, B=Birt Barforw=0,im, B=pB1r— Bort Bsrfor (0,0, 1 0 0 1 0 0 0
w=*im/2. The ground states awe=0,m whenB,z,B3r  (1,1,0 1 1 0 1 0 0 0
<0, w=*o whenBsz>max(08,g), andw= *im/2 when (1.1.0 1 i 1 1 0 0 0
Bor>max(0B3r). Expressions for the gap function in terms ™’ ) 3 27
of the original variables for each of the three phases afel.w,®?) 1 3 % 0 0 -3 0
given in Table IlI. (1,i,0) 1 : 0 0 0 0 0

3.3D irreps at r=1. Let Big=—1[4D(B;.|aly1/B3)]17*, and define
In analogy with the analysis of the two dimension irreps,the other renormalized couplings such that the free energy of

the free energy for the three-dimensional irrds andl’; ~ €ach phase is given by

of Oy should be expressed in terms of complex projective

coordinates. There are two relative magnitudes and two rela- —a?

tive phases, s@,, 7,, andz; should be expressed in terms F(O,O,l)zwa
of a two-dimensional vector in complex projective space IRTP2R
e CP?; however, there is no known vector that behaves sim-
ply under theOy, operations. The best we can do is to use the
homogeneous coordinateﬁ,/(rez"’), and there is no appar-
ent simplification of the free energy.

—a?

Fajo=——————,
(Lo 4(Bir+ 3 Bar)

The ground state of the free energy to sixth order is given
by a generic critical point provided the symmetry-breaking
parameteryg is taken to be zero. The generic critical points
are(0,0,9, (1,1,0, (1,1,, (1i,0), (1w,w?), and (1w, »?)
up to symmetry, according to Theorem 2 of Appendix A. At
these points, the invariant polynomial generai®45 have
the following values:

F(1,1,1):

—a?

4(Bir+ Bart 5 Bar)

i o ’

27 \ 2(Bypt+ Bort 5 Bar)|
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D. Weak coupling

Phase Diagram

Bon This completes the construction of the generalized phase
diagrams for SSS with cubic, hexagonal, and tetragonal sym-
@ @ metry in the normal phase. We are now in a position to
reexamine the superconducting phase transition in the
(Leo?) Li0) weakly coupled the(_er. Using §tandard technicftfase find
” that the weak-coupling expansion of the free energyAfam
- B an irrep ofG is given by
1 T
(1,1, 0,0,1) F=Fn+ = N(0)In =— (JA(V)|?)&
2 Te
(1,1,0) +m§—:1 F2m+2<|A(Vk)|2m+2>ﬁ,
- (5.37
FIG. 4. The Ginzburg-Landau phase diagram for SSS Wifh 1 (2m-1)n
cubic symmetry has five phases nd@ar. The cubic group is only Foto=—5 ———— (22m+1— 1)Z(2m+1)
partly broken in each of these phases. The notation is explained 2 (m+1)!
fully in the text, but forI", the gap function is proportional to _ p2\m
a-k, whered is the vector labeling each phase. The phases at the X _2° N(0),
top of the diagram have point nodes and those at the bottom have 8

line nodes. The phase with=(1,1,0) is only stable on the negative \yhere Fn is the free energy of the normal phase aBd

Bar axis (see the tejt The “X" on the positive S, axis denotes 1, T . Note that weak coupling means that the parameter
the weak-coupling point with a spherical Fermi surface and the 2|A|2 is small. As in Sec. Ill B, the simplest ansatz is to
interaction(5.38. When the Fermi surface is deformed outward or ~ ¢!~ IRMS . L ’ ,

consider an interaction of the for(3.12

inward at the diagonals as pictured, the ground state is a phase on
the right or left side of the diagram, respectively.

Vi Vir
Wk,k’: - |W| T4 (53&
— a2 vgl3
= = @ Yar _ Y5R
(Lo.w?) 4 + 1 27 6 where we have rewritten it in terms of the Fermi velocity
(IBIR 3 BBR) . . . ..
appropriate for nonspherical Fermi surfaces. The coefficients
|| 3 in the free energy(5.18 are then integrals over Fermi
Z(B—Jr L) surface harmonic¥, which are found to equala
RS PR =gN(0)In(T/T), Bi=1Fas, B2=1Fs, 71=%Fe, 72
5 =2Fs, and B3=7y3=7v,=7vs=0 assuming a spherical
_ @ . Fermi surface. In this case, the free energy reduces to the
Faio , (5.36

4(B1r+ Bor+t 3 Bar) * form invariant under S)XxU(1) which is studied in Ap-
pendix C, and the weakly coupled system sits at the point on

where the couplings are defined sequentigdhg by F o0 1), the positiveB,r axis near the origin, denoted by ank”™ on
then Bsg by F(1j0), theny,g by F(111)and finally ysg by the phase diagram in Fig. 4. As the Fermi surface is de-
F (10,02 - The free energies may be expressed in terms of théormed outward at the diagonals inducing a positive hexade-
original (barg couplings through the&b function as before, capole moment3; becomes positive, and (1) becomes
using the coefficients listed above. Note thak=p8; to  the ground state. On the other hand, if the Fermi surface is
fourth order, but the renormalizegls receive corrections deformed inwardp; is negative, and (i, ?) is the ground
even at sixth ordery,g=y4+ -+ and ysg=17ys+--- . state. Therefore, we identify (10) and (1p,w?) in I'; of

The ground state of the cubic system is shown in Tabled, as the leading candidates for the SSS ground state in
lll, and the phase diagram is shown in Fig. 4 takipgr  cubic systems. In hexagonal and tetragonal systems, the can-

=7ysr=Yer=0. When y,r and ysg are nonzero, the phase didates are\o(1,i,0)-v in I's of Dg, andDy,.
boundaries shift by a small amount. They also have a more

interesting qualitative effect in that they allow the possibility
of stabilizing (1,1,0 as the ground state. At fourth order,
even though(1,1,0 is a rotational symmetry axis, th&,1,0 The gap functiom, may be zero for certain values kf
phase only exists on the negati@gy axis(see Fig. 4where  This can occur accidentally, but in some cases the gap func-
it is degenerate with th€0,0,1) and the(1,1,1) phases. This tion is required to vanish by symmetry. Such zeros are robust
degeneracy is the result of the enhanced3®U(1) sym-  and have a marked impact on the low-temperature behavior
metry (see Appendix € The fact that theyp=(1,1,0)#2 is  of thermodynamic quantities such as the heat capacity and
only a saddle point at fourth order and not a minimum fol-acoustic attenuation. The characteristic>*’“T exponential
lows from Morse theory constraints. This is no longer true inbehavior due to the finite gap, changes to a power-law be-
the larger parameter space of the sixth-order free energy, arhvior when the gap function has zeros.

the ground state is allowed to l§#,1,0. Taking 83=0, we The gap function for SSS always has zeros. This is a
find this occurs fory,>— % y5>0. consequence of its odd parity and the fact that it has a single-

VI. THERMODYNAMIC PROPERTIES
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TABLE V. Zeros of the gap function guaranteed by symmetry.

r H(T") Nontrivial mappings Generic zeros
Octahedral-©,
ry On(ry) 1,85,30,,S4,604 9 circles:{ki=0}i-13, {ki= =Kj}ij
r; On(I'3) 6C,,6C5 1,854,307, 3 circles:{ki=0};_1,3
r; Dan(T'7) 1,2S,,00,20,,20¢ 5 circles:{ki=0};_1 23, {ki1=*ky}
D4n(T'3) 2C,4,2C5 I, 04,20, 3 circles and 8 pointstk; =0}, 53, {(*1,£1,=1)V3}
Th(T5) 4C3,4C51,1,30,45,,45: * 3 circles and 8 pointstki=0}_1 53, {(£1,£1,=1)V3}
Th(T3) 4C5,4C5 1 1,30,455,45; 3 circles and 8 pointstki=0}_1 23, {(£1,£1,=1)V3}
r, Cai(T'5) C3,C341,85,5:t 2 points:{+(1,1,1)#3}
Csi(T3) C3,C311,S6,55t 2 points:{+(1,1,1)#3}
D3y(T'5) 3C;,1,2S¢(op, of Dgy) 1 circle: {ky+ky+k,=0}
Dun(T'3) 2C;,2C5 ,1,2S,, 0, 1 circle: {k,=0}
Can(T3) C4,C,,C;1,S8,,S, 1 2 points:{*+(0,0,1)}
Can(T7) C4,C,,C; N 1,5,,S,t 2 points:{+(0,0,1)
Iy Csi(T5) C3,C341,S6,S " 2+12 points:{(*+1,+1,+1)/V3}, {(0,0+ 1)} +cyc.
Cai(T'3) C3,C311,S6,5: 0 2+12 points:{(+1,+1,+1)/V3}, {(0,0+1)} +cyc.
Dsy(T'7) 1,2Sg,30 3 circles:{ki=K;};
Dun(T'5) 2C,4,2C5,1,2S,, 00,204 3 circles:{k,= 0}, {ky=*ky}
Can(T3) C4,C,,C;11,54,S,t 2+12 points:{(0,0,+1)}+cyc., {(+1,+1,+1)V3}
Can(T}) C4,C,,C;11,5,,S,t 2+12 points:{(0,0+1)} +cyc., {(+1,+1,+1)/V3}

spin component. The zeros are guaranteed by topologicalidate ground statedi,0) and (1,w,0?) of I'; of Oy, dis-
considerations very reminiscent of the Hopf, or Poineare cussed above have point nodes, so their intrinsic heat capaci-
Hopf, index theorem(commonly known as the hairy ball ties scale ag=.

theorem, which relates the total index of a vector field to the

Euler characteristic of the underlyinglosed, orientable

surface’* Consider the fielde'®=A/|A| where ¢ is real, VIl. SUMMARY

which is a well-defined field on the Fermi surface assuming

that A has no zeros. It takes values on the unit circle in thecor;rgjct?rfcgrzzngﬁe?;siIgtm ASF'\i/ln gﬁ;rgsélsﬁég’bvé’gg sor?;wn
complex plane. Sincé& changes sign under inversio, 9 gsp '

T ; to provide the possibility of a superconducting phase for
i(s tgénqsg:()):n(o?';: 1)ew.ula:\?o"rci)a\:\lnZﬁglzeovnaltl;;nosfgék?::rsrﬁi which the operation of time reversal has no part. The state is

. y €d . best considered as a condensed phase of spinless fermions,
surface, we find thatp comes back to itself up to an odd

winding number, 8¢=2m(2k+1). The nonzero winding with a gap function that is odd ik and a pair wave function

number prevents the equatorial circle from being contracte{fat is odd upon interchange of particles. The form of aniso-

smoothly to a point on the Fermi surface. It must encounter a0piC interaction required to form this state was obtained,
y P ; : - ‘and the resulting gap equation is found to be of the BCS
zero of A. Although the gap function may have zeros in

) . L . _ form. The allowed symmetries of the gap function have been
singlet and triplet superconductivity, only in SSS IS It guar-.,umerated for cubic hexagonal, and tetragonal lattices, and
232‘:&1 tc()tr?:\éealtigﬁr-?/il;?ﬁa?nagrper%lfrg?jtifﬂ&Of Itcr)'zlgttosgcpuircoﬂie corresponding conditions on the parameters of the free

y ) 9 . energy have been determined. The quasiparticle spectrum is
because\ only has one spin component in SSS.

These generic zeros of the gap function may be founo?ecessa”ly gapless. For point nodes or a line of nodes, this

using Theorem 1 in Appendix A. They are given by fixed _gaplessness gives rise to power-law behaviof ior w. For

oints of elements of the residual symmetrv arodiovith a intersecting lines of nodes, there will be logarithmic terms
gontrivial character, and are tabula%:ed in 'I)'/a%lesp\v/ and VI such asT InT as enumerated by Nazarerfko.
) y ; ) . . " It is anticipated that examples of such phases can be
Isolated point nodes arise as fixed points of rotations . " )
found in transition-metal compounds. The recent suggestions

whereas lines of zeros are associated with reflections. T %at SERUO, may be displaying triplet superconductivﬁ‘il
4 ’

nodall structure oA determines the density Qf states near thetogether with predictions of HM AFM states in transition-
Fermi surface and consequently the scaling of thermody- 119 S . .
metal oxides? both indicate that transition-metal oxide com-

namic quantities. With a few assumptions the scaling expo- o L :
.pounds present a favorable possibility of obtaining single-
nents may be computed. For example, the heat capacity, .
Sbln superconductors.

which for a constant gap vanishes exponentially, scales a
T3, T2, and T with point nodes, line nodes, and vanishing
order parameter, res_pectively, in a defect-free super- ACKNOWLEDGMENT

conducto?’ Multiple line nodes lead toT InT.*® This

power-law scaling is a hallmark of unconventional super- This work was supported by the Office of Naval Re-
conductivity?” It must occur in SSS. For example, the can-search.
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TABLE VI. Zeros of the gap function guaranteed by symmetry.

Hexagonal-Bgy,
ry Dgn(T'1) l,001,2S3,254,30 4,30, 7 circles:{ki=0};_1 23, {V3ke=*k}, {V3ky=*ky}
r, Den(T'5) 3C5,3Ch ,1,01,253,256 1 circle: {k,= 0}
ry Den(I'3) C,,2C¢,3C5 1,254,304 3 circles:{k,=0}, {v3k,=*k}
r, Den(I's) C,,2C4,3C5,1,2S4,30, 3 circles:{k,=0}, {v3k,=*Kk,}
rs D,n(T'5) C,,C5 1,0, 1 circle: {k, =0}
Don(T'y) C,,Cj.1,0), 1 circle: {k,=0}
Cen(I's) C,.C3,C54,C6,C611,55,5: 56,56 ¢ 2 points:{+(0,0,1)}
Cen(I's) C,,C3,C31,C6,C511,55,55 5,56, 2 points:{+(0,0,1)
e D,n(T'7) l,o,,0,,0,(cy,04 of Dgp) 3+2 circles:{kj =0} -1 2 g+ {ky= = V3K}
D,n(T'3) C;,C5,1,0,(0q,0f,04 of Dgp) 1+3 circles:{ky=0} +{k,=0}, {k,=*v3k,}
Cen(T5) C3,C34,C6,C11,55,551,S6,55 Lo 1+3 circles:{ky=0}+{k,=0}, {ky=*v3k,}
Cen(T'3) C;3,C3%,C6,Cs 11,55, ,S6,S6 oy 1+3 circles:{ks=0}+{k,=0}, {k,==v3k,}
Tetragonal-b 4,
ry Dan(T7) 1,2S,,0h,20,,204 5 circles:{ki=0}i-123, {ky=*k}
r; D4n(T'3) 2C},2C5,1,2S,, 0y, 1 circle: {k,=0}
ry D4n(T'3) 2C,,2C5 1,020, 3 circles:{ki=0}i_1,3
r, Dan(T'y) 2C,4,2C5,1,25,,01,204 3 circles:{k,=0}, {ky=*ky}
I's Can(l'3) C4,C,,C 11,88t 2 points:{=(0,0,1)
Can(T'y) C4.C,.CiM1,84.8, " 2 points:{+(0,0,1)
D,n(T'3) C,,Ch 1,0} 1 circle: {ky=—k}
Don(I'y) C,,C5 1,0} 1 circle: {ky=k}
Don(T'7) C,,Cj 1,0, 1 circle: {k,= 0}
Don(T'y) C,.Cj 1,0 1 circle: {k,=0}
APPENDIX A: TWO THEOREMS g3A(ko)_’A(§lko):XF/(Q)A(ko)- (A1)

The minimum of the free energy determines the order
parameter of the superconducting phase, and the zeros of tleit k, is a fixed point, so
gap function in turn determine the scaling of thermodynamic
properties with temperature. The generic values of these

minima and zeros are fixed by the symmetries of the system, [1—xr:(9)]A(ko)=0. (A2)
and they may be determined without resorting to explicit
representatives of the symmetry. And we arrive at the result\ (ko) =0 providedyr:(g) # 1.

_This Appendix presents two theorems_ which are us_eful N This theorem provides a relatively easy means to identify
this regard. Theorem 1 may be used to find the generic zerqge nodes of the gap function guaranteed by symmetry. As an
of the gap function. The zeros arise as fixed points of eleéxample consider thél,w,w?) state of'; of Oy, which

ments of the residual symmetry grotfpthat have nontrivial - . .
character. This is a refinement of the procedure used by Vot_ransforms ag’, of the little groupCy; (see Table Ill. The

. ) : o ; 2. characters of the elements Gf; are listed in common char-
lovik and Gor’kov? WhO“IdentIerd the zeros with specific acter table2 C. -1 | S, gndS’l have nontrivial char-
group elements. The utility of our theorem is that the appro- ARG ,
priate group elements may be read off of standard charact&@Cters and of thos&s andC; ~ have fixed points, the two
tables. points where the axis of rotatioil,1,1) intersects the Fermi

Theorem 2 may be used to find the direction of the geSurface. o _ ,
neric critical points of the free energy in representation 1his information is tabulated in Table V. Note that in
space. Note that the magnitude of the solutitre magni- some cases any functlon_ in the specified irrep must have a
tude of the gap functioris not determined, but this does not d|V|sqr w_hose little group is Iarggr than the little group of the
affect the symmetry of the superconducting phase. The thedunction itself. Theorem 1 .apphes to these factors as well,
rem also applies to more traditional applications, such as t§1d any Zero of tzhe fag:tor is also a zero of the function. An
show that the Fermi surface is orthogonal to the axes ofX@mple iskyk,(ky—3ki) which transforms a$' (2)f D
rotation of the crystal where they intersect. This theorenits little group isDyy, but it has the factokyk,(kj—3k3)

applies to the full nonperturbative free energy. that transforms as the one-dimensional iriép of Dygy,.
Theorem 1.SupposeA (k) is in the irrepT’’ of the little  This accounts for two additional lines of nodes.

group H, and suppose gH has a nontrivial character Theorem 2.Suppose thay transforms as the irred’ of

xI'’(g9)# 1. ThenA(kg) =0 for any fixed poink, of g (i.e., G, a subgroup of Q or Dg,, where 5 is a dimI" dimen-

for any ko such that dg,=Kko). sional complex vector and suppose that th€l)invariant

Proof: SinceH is the little group, dini'’=1 and function H(») is in the trivial irrep I'; of G. Also suppose
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that there exists an elementgs with a fixed pointyo up to  function, which has not been calculated in closed form.
a phase g7o=€'%7,. Then é%g lies in the little group of
the gradientdF ( 7o)/ dn; .

Note that dink"’<3. Also note thatF/dn;=d;F is the
complex gradient, which could be expressed in terms of its

=

=arcsiniv/v3)+ & vy3+1°

A 0,0,

2 diml” real components. The theorem states that all of these V3 | v (B1)
components are invariant undet?g where the phase is TN —
equal to the one that appears in thg transformation. 6v3 \V3+\3+v
Proof: wherev=w¢/A s,
9351":(770)—>¢91F(77)|§7;0:§1ij<?j':(770)- (A3)
. 2 _ 2
Sincegno=¢'?7,, we have ! 24 H9—2v7) arctar( \ﬁ Vl)
o ANaijo 6 6.6 2
€' dkF (170) = d;F (7). (A4) " )
. . +3 + 5 v9).
Thus,d;F (7o) is invariant undee'?g; that is,e'*g is in the ZIn(1+5 % B2)
little group of 9;F(70). U It is evident from the plot that the magnitude of the gap

This theorem is particularly useful whenis a nontrivial  fynction at low temperature decreases as the number of gap

rotation (and ¢+ m); i.e., when degj=+1 andg is not the  fynction nodes increases, but that the effect is not dramatic.
identity matrix. Then the fixed points @f are on the axis of

rotat!on. In th|s' case, the theorgm states that on an axis CHPPENDIX C: THE ROTATIONALLY INVARIANT EREE
rotation, 9;F points along the axisd;F (7o) 7,. If we re-

. . ENERGY
strict to a surface of constahy|?=r2, then we find
In the text we constructed and analyzed the free energy
JF _ with the gap function in various irreducible representations
(9_771. (770) _ =0 (AS) of the cubic, hexagonal, and tetragonal point groups. The
[7l=r resulting phase diagram is quite complicated because of the
on an axis of rotation. The axes of rotation are critical pointsmany couplings necessary to specify the pairing interaction.

of F in the angular variables. Only a small subset of these couplings corresponds to physi-
We again consider (&,0?) of I'; of O, as an example. cal perturbations.
This is a fixed point ofC; about the(1,1,) axis up to a The free energy simplifies greatly if we make the natural

phase which is a third root of unity:Cs(1,w,w?) ansatz that the dominant channel for pairing comes from the
= w(1w,0?). According to the theorem, the gradient of the interaction(3.12

free energy at (Iy,w?) must be invariant undemwCs; .

hence, it is proportional to the dual vector ¢%,®). This Wi o =— W] ﬂ (C1)
radial vector projects to 0 whenis held fixed, so (I, w?) k! kZ/3’

is a critical point of the free energy.

Note that perturbation theory is not used directly in theand that the Fermi surface is spherical. This interaction has
proof of these theorems. To the extent that we can say th@&nO(3) symmetry, a higher symmetry than we have consid-
the functions of interest lie in a particular irrep, the theoremsered in Sec. V. Let the gap function beliy of Oy, the only
are nonperturbative. cubic irrep that pairs under the interacti@@l). It has two

Theorem 2 also has implications for solutions of the gapnoncyclic degrees of freedom, the magnitudand the angle
equation. Since it is an auxiliary equation of motion for the ¢ between its real and imaginary parts:
free energy, the theorem implies that the full gap equation is

stable forA [or more preciselyz,(I')] pointing along any A=r(1+i cosp,i sing,0)-k/v2. (C2
of the rotational symmetry axes of the representation space.
Stability means that the function The overall phase and the three Euler angles do not affect the
energy. The free energy is expressed in terms of the well-
1 W, r ) known O(3) invariant polynomiaf&
- A_ f Ak,tanl‘(g ﬂEkr) (A6)
k K K’

Pi=m1|>+ |72/ + | m>=12,
is invariant undelg. This reduces the gap equation to a one-
dimensional problem, only slightly less tractable that the Po=|72+ 5+ 73|>=r%coe, (C3
usual singlet BCS solution.
and it is given by
APPENDIX B: SOME EXACT RESULTS
F=ar?+ Br*+ Borcoge+ y,r®+ yrécodp+-- - .

In this Appendix we present an exact solution of the gap (C4)
equation at zero temperature for two of the cases studied in
Sec. lll. These two gap functiond=(0,0,1) andd=(1,i,0) According to Theorem 2extended tdD(3)], the generic

of ', of Oy, are plotted in Fig. 3, along with thE; gap critical points arer(0,0,1)-k andry(1,i,0)-k/v2 up to ro-
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tation. Note that these have a line of zeros and 2 point zerosyhere
respectively. The free energy has nongeneric critical points

in small regions of parameter space at eighth ordeA.in
At sixth order, the ground-state gap function is given by

Bor=<0,

A=ro(ktiky)/IV2Z  Br=0,

A:rokz

(CH

Bar=—[4D(B1+ B a|(y1+ v2) (B1+B2)D)] !

and note thaiB,g= 3, at fourth order. The value af; is
given by the expression in Ed5.21) with =3, and y
= v, in the first case, an@= B+ B, andy=vy;+ y, in the
second.
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