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Single-spin superconductivity: Formulation and Ginzburg-Landau theory
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We describe a superconducting phase that arises due to a pairing instability of the half-metallic antiferro-
magnetic ~HM AFM ! normal state. This single-spin superconducting~SSS! phase contains broken time-
reversal symmetry in addition to broken gauge symmetry, the former due to the underlying magnetic order in
the normal state. A classification of normal-state symmetries leads to the conclusion that the HM AFM normal
phase whose point group contains the inversion operator contains the least symmetry possible which still
allows for a zero momentum pairing instability. The Ginzburg-Landau free energy for the superconducting
order parameter is constructed consistent with the symmetry of the normal phase, electromagnetic gauge
invariance and the crystallographic point-group symmetry including inversion. For cubic, hexagonal, and
tetragonal point groups, the possible symmetries of the superconducting phase are classified, and the free
energy is used to construct a generalized phase diagram. We identify the leading candidate out of the possible
SSS phases for each point group. The symmetry of the superconducting phase is used to determine the cases
where the gap function has generic zeros~point or line nodes! on the Fermi surface. Such nodes always occur,
hence thermodynamic properties will have power-law behavior at low temperature.@S0163-1829~98!05101-7#
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I. INTRODUCTION

The pairing theory1,2 of superconductivity and superfluid
ity is based on a normal state with time-reversal symme
and inversion symmetry. The former symmetry requires t
the two spin directions are related by symmetry, and sp
space rotations have played a central role in the classifica
of broken symmetry phases. The latter symmetry is suffic
to ensure that states with identical spin directions atk and
2k are degenerate. Electrons atk and2k can then be paired
to have zero total momentum and can be classified by
state as singlet or triplet. The question of inversion symme
and time-reversal breaking is central in the specification
the pairing states,2–10 and in this paper we present some a
pects of these relationships.

It has recently been pointed out11 that there is a norma
state with broken time-reversal symmetry that has a pai
instability in direct analogy with that in BCS theory.1 This
magnetically ordered normal state, in whichinequivalentup-
spin and down-spin magnetizations cancel exactly, has b
termed ‘‘half-metallic antiferromagnet’’~HM AFM ! by van
Leuken and de Groot.12 This normal state, which we describ
in Sec. II, has considerable theoretical and probable tech
logical interest in itself. Its lack of macroscopic magnetiz
tion means that considerations of pairing do not have to c
front the question of competition between superconduc
order and a pre-existing magnetic field.

In this paper we outline in more detail the characterist
of this ‘‘single-spin superconductivity’’~SSS! phase. In Sec
II we review the characteristics of the HM AFM state, whic
is the precursor normal state of the SSS. In Sec. III we sh
that the phenomenon maps onto the BCS model with m
but nontrivial changes. Comparison to liquid3He, conven-
tional BCS superconductors, and more exotic heavy-ferm
570163-1829/98/57~1!/557~18!/$15.00
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superconductors in Sec. IV demonstrates that the HM A
state has the minimum symmetry required of the normal s
to allow q50 pairing instability, and that in SSS theory in
version symmetry plays a role analogous to that of tim
reversal symmetry in BCS theory. In Sec. V we provide t
classification of all possible order-parameter symmetries
high-symmetry crystal point groups, and present results o
symmetry analysis of the Ginzburg-Landau free energy t
enumerates the possible SSS states for cubic, tetragonal
hexagonal crystals.

II. THE NORMAL STATE

A. Half-metallic ferromagnetism

A half-metallic ~HM! ferromagnetic ~FM! electronic
structure arises in a ferromagnetic material when the Fe
level (EF) of one spin direction lies within a gap in th
spectrum of the other spin direction.13,14 The gap may occur
in either the majority or the minority channel. In either cas
we will take the up channel to be the metallic one. We a
confine this discussion to stoichiometric compounds, wh
have an integer number of electrons per cell. The system
up spins then forms a metallic fermion liquid, while th
down spins form an insulating system that may be though
as an inert background for the purposes of studying lo
temperature, low-energy processes. This specific occurre
the placement of the Fermi level of the metallic channel in
gap of the other channel, defines half-metallic character:
up-spin ‘‘half’’ of the electrons is metallic, while the down
spin ‘‘half’’ is insulating. Figure 1~a! shows a model spec
trum of exchange split bands that leads to HM character

Half-metallicity leads to several features of a crystalli
solid that are qualitatively distinct from conventional meta
lic ferromagnets. Unlike in a conventional FM, electro
557 © 1998 The American Physical Society
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558 57ROBERT E. RUDD AND WARREN E. PICKETT
transport is 100% polarized, and there are no allowed lo
energy spin flips. In a common FM, the spin moment is
continuous quantity whose value is determined by the b
ance of exchange energy and kinetic energy. In a HM F
however, the spin moment is constrained to be precisely
integerM. This is so because the insulating channel conta
an integer number of filled bands, and hence an integer
N↓ , the cell contains an integer number of electronsNtot , so
the metallic up channel contains an integer number of sp
N↑5Ntot2N↓ . ThenM[N↑2N↓ is an integer, and the
moment isMmB per cell. This follows for any placement o
EF within the gap in the down-spin density of states. T
application of a magnetic fieldH shifts up and downs spin
bands by6gmBH but does not change the occupation or t
net spin moment. Hence the spin susceptibility is precis
zero, which is a direct consequence of the lack of low-ene
spin flips. There is then no Stoner continuum to damp sp
waves by single spin flips of carriers. In fact, the situati
can be categorized as extreme spin-charge separation i
carrier system, in which the spin degree of freedom has b
separated from the charge fluctuations and frozen out
tirely. In this paper we do not address possible effects du
spin waves.

Perhaps the simplest example of a HM FM is CrO2, in
which the moment is 2mB .15 de Groot and Buschow,13 have
identified calculationally various Heusler alloys that a
likely HM FM’s, and experimental work on several membe
~especially UNiSn and NiMnSb! has been reported.16,17Pick-
ett and Singh18 presented theoretical evidence th
the colossal magnetoresistance manganites,
La2/3Ca1/3MnO3, are HM in their low-temperature FM phas
Recently several candidates for HM behavior have b

FIG. 1. ~a! Model spectrum with rigid exchange splitting th
illustrates a HM FM system~b! Model spectrum for a HM AFM
illustrating that the channels must have different structure. The p
at the Fermi level is merely an artifact of the form and symmetry
the model.
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found with the double perovskite crystal structure.19 These
examples indicate that half-metallic character is not a r
phenomenon.

B. Half-metallic antiferromagnetism

It may occur that the integer spin momentM in a half-
metallic system is zero. This situation has been termedhalf-
metallic antiferromagnetism~HM AFM !.12 Its properties are
like that of the HM FM discussed above, with one essen
difference: there is no macroscopic magnetic field. The H
AFM has 100% polarized charge transport without any
magnetization. It must be kept in mind that the HM AFM
not antiferromagnetic in the usual sense of the term, as th
is no symmetry operation that connects spin-up and s
down states or densities. In fact, it is essential that the
spins channels are electronically~and thus chemically! dis-
tinct, so a gap can occur in one channel only at thesame
band filling. A model illustrating this situation is shown i
Fig. 1~b!. This model uses the same two-band form of F
1~a!, but the bands for the two spin channels must be d
placed in opposite directions, reflecting the necessary
equivalence of the channels.

In a HM AFM the spins are precisely balanced, so there
no majority or minority spin. In this paper we will call~when
the need arises! the metallic channel the ‘‘up’’ spin and th
insulating channel the ‘‘down’’ spin. For low-energy an
low-temperature processes the insulating channel beco
inert and drops out of consideration. van Leuken and
Groot12 have suggested one quintinary compound, interm
tallic V7MnFe8Sb7In in a Heusler-like crystal structure, tha
should be a HM AFM. One of the present authors,11,19 has
found candidates for HM AFM states within the class
magnetic double perovskites. An example of a HM AF
spectrum is shown in Fig. 2 for the double perovskite co
pound La2VCuO6, calculated using accurate spin-densit
functional methods.18 This is nominally a Cu21, V41 com-
pound for which both ions have spin12. When the spins are
parallel ~top panel! the spectrum is that of a convention
metallic FM. When the spins are antialigned, however,
Fermi level falls where the spin-up density of states is lar
but within a gap in the spin-down channel. This compou
and other double perovskites, are discussed in more d
elsewhere.19 We leave further discussion of proposed H
materials to future papers, and address below the pai
instability of the HM AFM normal state, and its conse
quences.

C. Experimental consequences

An important practical consideration is how a HM ma
netic material can be identified. The anticipated proper
~questions of many-body corrections20 aside! have not previ-
ously been enumerated. We include a partial list here to p
vide guidelines. The general feature of course that as
temperature is lowered through the magnetic ordering~Curie
or Néel! temperatureTM , the material changes from an non
magnetic~conducting or nonconducting! system to a metallic
magnetically ordered system at lowT where the spin excita-
tions are frozen out.21

~a! Metal with fully polarized transport at low T. Metal-
lic resistivity, but vanishing magnetoresistance at lowT.
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57 559SINGLE-SPIN SUPERCONDUCTIVITY: FORMULATION . . .
There is no clear signature in the Hall or Seebeck coe
cients. At intermediate temperature there may be a nega
magnetoresistance for a HM FM, reflecting the field-induc
increase in magnetic order and reduced spin scattering a
carriers in one channel become nonconducting. For H
AFM, this field-induced effect will not apply.

~b! Magnetic order.There is no obvious signature of th
HM character in the spin-wave spectrum or temperature
pendence of the magnetic order parameter.

~c! Vanishing spin susceptibility.However, core diamag
netism, van Vleck~orbital! paramagnetism of the metalli
channel, Landau diamagnetism of the insulating channel,
temperature variation of the net order of the local mome
will make the magnetic susceptibility difficult to analyze.

~d! Non-Korringa behavior in NMR.This technique may
provide the most direct indication of HM character. The lo
gitudinal relaxation rateT1

21, which is a measure of the
conduction-electron spin flips, is proportional to the prod
of the densities of states of each spin chan
@N↑(EF)N↓(EF)#, which vanishes for a HM phase. Th
Knight shift, normally dominated by the spin susceptibili
in normal metals, should be small. An NMR study of t
proposed HM magnet UNiSn has been reported.22

~e! Spin-polarized electron spectroscopies.At first
glance, these spectroscopies seem ideal, but both photo

FIG. 2. Total densities of states for each spin direction in
double perovskite compound La2VCuO6. Top panel: parallel align-
ment of the Cu21 and V41 spins, with exchange splitting of 0.25 e
for the lower lying~Cu! states and 0.5 eV for the higher lying~V!
states. Bottom panel: antiparallel alignment of the spins, resultin
a HM AFM system with the Fermi levelEF lying in the gap of the
down-spin channel.
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tron emission and scanning tunneling microscopy tunne
are sensitive to surface properties. In addition, the magn
order may be different at the surface, mitigating against H
character in the surface region. Spin-polarized photoemis
studies of CrO2 were inconclusive.23

~f! Spin-polarized positron annihilation.This technique,
which takes advantage of the natural polarization of the p
itron beam, has been claimed to establish within narr
bounds that NiMnSb is a HM ferromagnet.17 It is a bulk
probe.

~g! Thermodynamic properties.We will show that SSS’s
necessarily have point or line nodes of the gap~not always
the case in previously studied cases of triplet pairing!. The
resulting gapless excitations lead to heat capacity, pene
tion depth, thermal conductivity, etc. That have power law
T ~or v! rather than exponential.

~h! Tunneling.Tunneling between an SSS and a ferr
magnet will show a strong dependence on the direction
magnetization of the ferromagnet. Josephson coupling
tween an SSS and a singlet pairing superconductor sh
not occur.

III. PAIRING INSTABILITY IN THE HM AFM

The HM AFM is a single component fermion liquid as
result of underlying magnetic order and electronic struct
that renders one spin channel insulating. The lack of a
croscopic magnetic field in a HM AFM suggests the pos
bility that a superconducting instability may occur in th
metallic channel. The Cooper instability1 is spin blind: the
two fermions that undergo the pairing instability can ha
antiparallel spins as in BCS theory, or they can have para
spins as in3He, and the instability is straightforwardly ex
tended to a spinless fermion system. We now show that
instability maps directly onto the BCS model o
superconductivity1 in a simple but not quite trivial manner
This superconducting state has been called single-
superconductivity.11

A. Formal relationship to BCS theory

In BCS theory an electron in stateK is paired with its
time-reversed partnerTK. K5(k,↑) is an index that togethe
with its partnerTK5(2k,↓) exhausts all states on the~↑
and ↓! Fermi surface~s!. In a SSS, an electron in stateK
5(k,1) is paired with its inversion partnerIK5(2k,2).
To cover all states on the Fermi surface once only,K must
range over only half of the Fermi surface, say the ‘‘top’’ ha
with kz.0 ~hence the notation ‘‘1’’ !, and states withkz
50 can be assigned to1 and 2 components of the pairs
also.

In terms of the general two-body interaction

V̂5 (
k1 ,k2 ,k3 ,k4

Vk1 ,k2 ,k3 ,k4
ak1

† ak2

† ak3
ak4

, ~3.1!

all terms exceptk152k2[k, k352k4[k8 are irrelevant
for pairing. To count the pair states properly, the full Br
louin sums in the above expression must be expresse
terms of pair indicesK. Using the anticommutation relation
of the electron field operatorsak ,ak

† , and defining the pair

e
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560 57ROBERT E. RUDD AND WARREN E. PICKETT
annihilation operatorbk5aka2k , the resulting interaction is
~making the notational simplificationVk,2k,k8,2k8→Vk,k8!,

V̂pair5(
k

1

(
k8

1

@Vk,k81V2k,2k82Vk,2k82V2k,k8#bk
†bk8

[(
k

1

(
k8

1

Uk,k8bk
†bk8 . ~3.2!

The ‘‘1’’ sign indicates that the summation extends on
over the ‘‘top’’ half kz.0 of the Brillouin zone. The sym-
metry of the matrix element noted by Sigrist and Ued2

results in all terms in the braces being identical, soUk,k8
54Vk,k8 . We return to the implications of the form o
the matrix element in the next subsection. FromVk,k8
[^k8,2k8uVuk,2k&5^K8,IK8uVuK,IK&5VK,K8 , and
similarly for UK,K8 , and the expression for the kinetic e
ergy in terms of pair labels~running over half of the Ferm
surface!, the pairing Hamiltonian then is

Hpair5(
K

ek~aK
† aK1aIK

† aIK!1(
K

(
K8

UK,K8bK
† bK8 ,

~3.3!

wherebK[aKaIK . Note that we do not use the BCS co
vention of separating out a negative sign from the interac
matrix elements.

The Bogoliubov-Valatin transformation24 is analogous to
its form in BCS theory,

aK5uKaK1vKaIK
† , ~3.4!

aIK
† 5uIK* aIK

† 1vIK* aK , ~3.5!

and the formalism of SSS pairing theory maps onto B
theory. Specifically, the SSS ground state is

F05)
K

~uK1vKbK
† !Fvac, ~3.6!

and the gap function is given by

DK5(
K8

UK,K8^bK8&. ~3.7!

The gap is a scalar, i.e., it has no spinor indices, which
tinguishes SSS from all superconducting systems discu
previously. The gap equation is formally identical to BCS

DK52(
K8

UK,K8
2EK8

DK8tanh~ 1
2 bEK8!, ~3.8!

whereb51/kT is the inverse temperature. Withm denoting
the chemical potential,

EK[Ek5@~ek2m!21uDku2#1/2 ~3.9!

is the quasiparticle excitation energy, which is even ink.
It is useful to express the gap equation as usual in term

a full Brillouin-zone summation. It is readily verified tha
extending the sum over the full zone introduces an expe
factor of 1

2, and the gap equation,
n

S

s-
ed

of

d

Dk52(
k8

Wk,k8
2Ek8

Dk8 tanh~ 1
2 bEk8!, ~3.10!

where Wk,k85
1
2Uk,k852Vk,k8 , indicates the final formal

equivalence to the BCS equation.

B. Simple consequences of single-spin pairing

The combination of matrix elements in Eq.~3.2!, and the
symmetry noted by Sigrist and Ueda,2

Vk,k852V2k,k852Vk,2k85V2k,2k8 , ~3.11!

indicate explicitly thek-space structure that is necessary
SSS pairing. Ak-independent attractive potentialVk,k85

2V̄, which leads to singlet pairing in the BCS model, co
tributes nothing toward SSS pairing; likewise, ak-
independent repulsion is harmless. The simplest form of s
coupling, which is odd in bothk and k8, is of the form
Wk̂• k̂8. When this is substituted into the gap equation E
~3.10! ~see below!, a nonvanishing solution requiresW,0.
Thus the pairing interaction must be attractive for sm
angle ~‘‘forward’’ ! pair scattering and repulsive for larg
angle scattering of pairs. This behavior is reminiscent of
situation in high-Tc theory, where the spin-fluctuation pic
ture has an everywhere-positive interaction, which peak
large q @more specifically, at (p/a,p/a)#.25 That type of
interaction favors adx22y2 symmetry ofD for singlet pairing.

Using the pairing interaction in normalized form

Wk,k852uWu
k•k8

kF
2/3

, ~3.12!

wherekF is the Fermi wave vector, theT50 gap equation
can be solved readily for several trial gap symmetries. G
functions of the formDk}d̂• k̂, for some constant vectord̂,
give the lowest-order possibilities~in terms of polynomials
of the components ofk!. If d̂ is real, or purely imaginary, its
direction can be taken as theẑ axis @ d̂5(0,0,1)# so Dk}kz
with a line of nodes on the equator of the Fermi surfa
Complex d̂ can be represented byd̂5(1,i ,0)/&, in which
caseDk}kx1 iky with point nodes at the poles. We als
consider the ‘‘highest symmetry’’ single dimensional fun
tion G1

(2)}kxkykx(kx
22ky

2)(ky
22kz

2)(kz
22kx

2) ~see the follow-
ing section! as an exotic possibility—it has nine lines o
nodes.

We treat the usual weak-coupling case, where

(
k
→E

2vc

vc
deN~e!E dV~ k̂!

4p
→N~0!E

2vc

vc
deE dV~ k̂!

4p
,

~3.13!

where N(e) is the density of states per spin which is a
sumed to be constant over the energy scalevc of the pairing
interaction. We display in Fig. 3 the resultingT50 gap
value, relative to the energy cutoffvc , versus the coupling
strengthl5N(0)uWu for these gap symmetries. The BC
result is given for comparison. Given the same couplingl, it
is evident that the zero-temperature gap magnitude is c
parable to the BCS value, even for theG1

(2) function.
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It is straightforward to obtain the limiting behaviors of th
zero-temperature gap from Eq.~3.10!. In the weak-coupling
limit,

D rms52vce
21/lC1~11C2e22/l!, ~3.14!

while for largel the asymptotic form is

D rms5vclS D12
D2

l2 D . ~3.15!

Here C1 ,C2 ,D1 ,D2 are symmetry-dependent constants~cf.
Appendix B!. This latter relation explains the linear behavi
at largerl that is evident in Fig. 3. Note that strong-couplin
corrections will change this to aAl behavior.26

At T5Tc , Ek→ek ~we takem50!. Takingk alongd̂ ~or
along one nonzero component ifd̂ is complex!, the only
difference from the corresponding BCS equation is an an
lar integral. This integral is unity, however, due to the e

FIG. 3. The rms value of the gap function atT50 relative to the
coupling boson frequency cutoff,vc , for the singlet BCS case, an
for three SSS cases. The coupling strengthl is defined in the text.
Note that the point nodes of the ‘‘1i0’’ gap, the line nodes of the
‘‘001’’ gap, and the set ofnine line nodes for theG1

(2) case do not
affect the rms gap value drastically.
u-
-

pansion ofWk,k8 , in normalized functions. Thus the equ
tion for Tc versus coupling constantl5N(0)uWu is identical
in form to that of BCS.

1

l
5E

0

vc
de

tanh~bce/2!

e
, ~3.16!

wherebc51/kBTc .
Although there is every reason to expect that SSS w

arise in the appropriate transition metal~or f electron! com-
pounds, there is not yet any expectation of highTc . For one
thing, the necessary interactionWk,k8 is of a particular kind
~see above!; however, this is also the case for thed-wave
scenario in high-Tc cuprates. More to the point, however,
that at largerT transverse spin fluctuations increase stron
and tend to reduce the AFM order parameter, finally caus
the system to revert to the paramagnetic state above the´el
temperature. The manner in which the HM AFM state w
thereby by weakened has not yet been explored.

IV. SYMMETRY: RELATIONS TO PREVIOUS THEORY

It is instructive to clarify the relationship between the d
gree of symmetry of the normal state and the degree of r
ness of broken symmetry in the condensed phase.3He has
the highest symmetry possible in its~liquid! normal state. It
has continuous real spaceL and spin rotationS symmetries,
it has time reversalT and inversionI, and of course gauge
symmetry U~1!. The group of its normal phase then
L3S3T3I3U(1). In the condensed superfluid phas
U~1! is a broken symmetry and one or more of the oth
symmetries can be broken concomitantly. Much work h
been done to characterize the more likely cases among
infinite possibilities~infinite because the relative angular m
mentumL of the pair can be any non-negative integer!. The
observed phases correspond to particular states within
~pair spin and orbital angular momentum quantum numbe!
S51, L51 complex that is described by an 18 compone
order parameter in general.

When considering pairing in a crystal, the continuo
real-space rotation symmetry is replaced by the finite cr
talline point groupG ~see Table I, where the classification
of this subsection are collected!. The group of the norma
tates,
tal
parate
rmion
e

TABLE I. Categorization of normal-state symmetries, number of allowed broken symmetry broken s
and allowed values ofS andL for several fermion liquids~S, L values for the BCS case refer to cubic crys
symmetry!. HFS refers to the picture where the spin is frozen into the lattice and therefore is not a se
symmetry of the normal state; it is still unclear if this picture gives the best description of the heavy-fe
superconductors. NoI indicates HFS without inversion~see text!. Symmetry group notation is given in th
text.

System Normal Broken symmetries Pairing type

3He L3S3T3I3U(1) ` S50, L5even
S51, L5odd

BCS G3S3T3I3U(1) Finite S50, L50,2,4,6
S51, L51,3,5,9

HFS G3T3I3U(1) Fewer S,L coupled
Even or odd parity

No I G3T3U(1) Still fewer Impure states
SSS G3I3U(1) Fewest L5odd
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562 57ROBERT E. RUDD AND WARREN E. PICKETT
state then isG3S3T3I3U(1). The number of broken
states is finite because the space of basis functions of ir
is spanned by a few small-L sets. The necessary values ofL
for cubic crystals are presented under the BCS case in T
I. The allowed symmetries in cubic, tetragonal, and hexa
nal crystals have been exhaustively categorized.2,27

In crystals with strong spin-orbit coupling, it may be a
propriate to consider the spin as frozen into the crystal
lattice, in which case spin rotation is no longer a separ
symmetry.~On this matter there are arguments bothpro and
con in the literature.! Then the normal-state symmetry
lowered further, and the number of distinct broken symme
states is further reduced. The next lowest symmetry si
tion, where inversion symmetry is absent from the po
group, has been considered by Polue´ktov28 with the spins
frozen to the lattice, distinction between singlet and trip
pairing vanishes and the order parameter becomes a
symmetry combination.

For the SSS discussed in this paper, the two spin syst
are inequivalent, so time-reversal and spin rotation sym
tries are strongly broken by the normal state. The symm
of the normal state is described byG3I3U(1). Thenum-
ber of distinct possibilities for broken symmetry state
which we enumerate below, is reduced still further. In fa
this state of affairs gives the lowest possible symmetry n
mal state that still allows pairing in the usual sense of z
net momentumQ of the pair. Inversion symmetry ensure
thatek[eK5eIK[e2k , so that ifk lies on the Fermi surface
then so does2k, and these two states can pair to total m
mentumQ5k1(2k)50. Without inversion symmetry, i.e.
for G3U(1) normal-state symmetry,Q50 pairing is not
allowed. This result indicates that inversion, not tim
reversal symmetry, is the minimal symmetry requirement
a pairing instability. For convenience, inversionI will be
considered part of the point groupG below.

Because for a SSS state time-reversal symmetry is alre
broken in the normal state, it is natural to expect~and indeed
we find! that broken symmetry phases with unusual prop
ties are likely to arise. Such considerations occupy the res
the work reported here.

V. GINZBURG-LANDAU FREE ENERGY

A. Allowed superconducting phase symmetries

The spontaneous symmetry breaking at the supercond
ing phase transition is governed by the free energy. BelowTc
the minimum is a superconducting phase whose order
rameter breaks the U~1! gauge invariance and possibly oth
symmetries as well. This physics may be described throu
phenomenological Ginzburg-Landau free energy that
scribes the mean-field theory of the superconductor in te
of a few parameters related to matrix elements of the ef
tive potential. Despite its simplicity, the mean-field free e
ergy captures all of the generic information about the
lowed symmetries of the superconducting phase.

The order parameter describing the Cooper pair cond
sate is taken to be the gap function,

Dk5(
k8

Wk,k8^ak8a2k8&, ~5.1!
ps
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which was introduced in Eq.~3.7!. Below Tc the gap func-
tion is nonzero, and it transforms under the full symme
group of the normal phase. In particular, it is not invaria
under the U~1! Abelian gauge symmetry@and the concomi-
tant global U~1! of electron number#, since Cooper pairs
have electric charge22 ~electron number 2!. The U~1! sym-
metry is broken to the cyclic groupZ2 . The gap function
may break other symmetries as well, and this is the m
focus of this section.

The gap function must form an irreducible representat
~irrep! of the symmetry group,G5G3U(1), at least in the
vicinity of the phase transition. This follows from the fa
that near the transition, the gap function satisfies the line
ized gap equation, which for a spherical Fermi surface
given by

D k̂52g~vc /kTc!E dk̂8Wk̂,k̂8D k̂8

with

g~x!5N~0!E
2x

x

dy
tanh~ 1

2 y!

y
, ~5.2!

where vc is the cutoff for the interaction. This is aG-
invariant eigenvalue equation whereD is an eigenvector and
therefore must transform as a member of an irrep ofG. As
usual, we start with the assumption that the transition te
perature for the first irrep to condense is much higher th
that of the others. This lets us focus on each irrep separa

Under a U~1! gauge transformationak→e2 iwak ,
D→e22iwD. D may transform under the point group,G, as
well. Consider the case where there is an element ofG that
sendsD to another function which is not related toD by a
gauge transformation; i.e., there isgPG such thatĝD5D8
whereuDuÞuD8u. This breaks the point-group symmetry to
subgroupH of G that does leaveD invariant up to a gauge
transformation. This nontrivial form of spontaneous symm
try breaking occurs exactly whenD is in an irrepG of G
whose dimension is greater than one.29

The overall symmetry-breaking scheme may be descri
as follows. WhenD is in the irrepG of G, there is a maximal
subgroupH of G under which D transforms as a one
dimensional irrepG8. ThenG is broken to the little groupH,
G→H. All such decompositions of irreps of the crystallo
graphic points groups are tabulated in ‘‘compatibili
tables.’’30 It is merely a matter of looking up the maxima
subgroupH in which each distinct one-dimensional irrep a
pears. This classifies all of the possible superconduc
phases according to symmetry.

There is one subtlety in this analysis. The gap function
not gauge invariant, so it is not a physical observable. T
physical residual symmetry groupHphys may be larger than
H. For example, the spectrum of quasiparticle excitatio
~3.9! has the symmetry of the gauge-invariant productD* D.
If D is in a complex irrep, there may exist an elementg of G
that switchesG8 and its complex conjugateḠ8; that is, ĝc̄
5c for cPG8. Theng leavesuDu2 invariant, but it is not an
element ofH. The residual symmetry of the physical obser
ables belowTc is the groupHphys generated byH and g
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(Hphys>H3Z2). On the other hand, if there is no suchg
such as when the irrep is real, thenHphys5H.

It is convenient to expand the gap function in terms
explicit representatives of the irrepG. A general form of the
mode expansion ofDk is

Dk5(
G,m

(
ni

hm~G;ni !c~G,m;ni ;k! ~5.3!

wherehm(G;ni) is a complex coefficient,m51, . . . ,dimG
labels the components ofG and the indicesni distinguish
polynomials of different degrees.~For multiple or aspherica
Fermi surfaces Allen’s Fermi surface harmonics31 would be
used.! A suitable choice of basis elementsc(G,m;ni50;k)
is given in Table II. A complete basis of higher modes of t
linearized gap equation may be constructed using stan
techniques.

B. Construction of the free energy

At this point we have identified the possible residual sy
metries of the superconducting phase. It remains to sh
how each is realized as a minimum of the free energy. T
Ginzburg-Landau free energy,F, is a functional of the mean

TABLE II. Leading basis functions for the irreps ofOh , D6h ,
andD4h .

Irrep G Basisc(G,m;k)

Octagonal—Oh

G1
2 c(G1

2,1;k)5kxkykz(kx
22ky

2)(ky
22kz

2)(kz
22kx

2)
G2

2 c(G2
2,1;k)5kxkykz

G3
2 c(G3

2,1;k)5kxkykz(2kz
22kx

22ky
2)

c(G3
2,2;k)5)kxkykz(kx

22ky
2)

c(G3
2,18;k)5kxkykz(kz

21vkx
21v2ky

2)
c(G3

2,28;k)5kxkykz(kz
21v2kx

21vky
2)

G4
2 c(G4

2,1;k)5kx

c(G4
2,2;k)5ky

c(G4
2,3;k)5kz

G5
2 c(G5

2,1;k)5kx(ky
22kz

2)
c(G5

2,2;k)5ky(kz
22kx

2)
c(G5

2,3;k)5kz(kx
22ky

2)

Hexagonal—D6h

G1
2 c(G1

2,1;k)5kxkykz(kx
223ky

2)(ky
223kx

2)
G2

2 c(G2
2,1;k)5kz

G3
2 c(G3

2,1;k)5ky
323kx

2ky

G4
2 c(G4

2,1;k)5kx
323kxky

2

G5
2 c(G5

2,1;k)5kx

c(G5
2,2;k)5ky

G6
2 c(G6

2,1;k)5kxkykz(ky
223kx

2)
c(G6

2,2;k)5ky
2kz(ky

223kx
2)

Tetragonal—D4h

G1
2 c(G1

2,1;k)5kxkykz(kx
22ky

2)
G2

2 c(G2
2,1;k)5kz

G3
2 c(G3

2,1;k)5kxkykz

G4
2 c(G4

2,1;k)5(kx
22ky

2)kz

G5
2 c(G5

2,1;k)5kx

c(G5
2,2;k)5ky
f

rd

-
w
e

field Dk in which the fluctuations about the mean field ha
been integrated out.32,33 It must be invariant under the ful
symmetry groupG which describes the physics of the norm
state. This constrains the combinations of the modes ofDk
Eq. ~5.3! that enterF. Only invariant (G1

1) combinations
contribute. In a perturbative expansion ofF in terms ofDk ,
the form of the low-order terms is highly constrained byG
invariance.

The group symmetry imposes a very restricted for
Many terms that could appear in the free energy vanish. T
is usually computed with a Clebsch-Gordo
decomposition,2,30 but we develop a more powerful tech
nique in which the group symmetry is used directly. T
result is an explicit computation of the allowed terms in t
free energy to arbitrarily high order in perturbation theory

The group symmetry imposes a number of constrain
Gauge invariance requires that the polynomial have eq
numbers ofh’s and h̄ ’s. The restrictions due to the poin
group are implemented as follows. Each group operat
may be considered to act on theh’s in a way that leaves the
free energy invariant. IfD is transformed under an operatio
from G, it may be restored to its original form by a linea
transformation of the constantshm ; that is, they form the
contragredient representation ofG of G with charge 2 under
global U~1!. The free energy is invariant underG, so it must
be an invariant polynomial inhm under the action ofG. In
addition to the symmetry constraints, the free energy mus
real and bounded below for stability.

Invariant polynomials have been studied extensively
the mathematics literature. In particular, invariant polynom
als for the symmetric and alternating groups34 and for Abe-
lian and non-Abelian gauge groups35 have been constructe
explicitly. These polynomials play an important role
gauge theory.36,37 Invariant polynomials forG3U~1! require
an extension of this theory, and since it has not been
cussed in the condensed-matter literature, we will give so
details.

SinceG is a finite group, its action on the coefficientsh j
is isomorphic to a direct product of finite simple groups,
particular the symmetric groups,S3 and S2 , the alternating
groupsA3 and A2 and the cyclic groups,Z3 and Z2 . The
form of invariant polynomials for each of these groups
well known, and our task is to form combinations of the
that are invariant underG3U~1!.

The free energy is almost trivially constructed for the on
dimensional representations. Gauge invariance requires
the free energy be a function ofuh1u2. This is also invariant
under the point-group operations. The perturbative expan
of the free energy takes the form

F5auh1u21buh1u41guh1u61••• for dimG51,
~5.4!

wherea, b, andg are parameters describing the expansion
the effective potential for the order parameter in terms of
basis elements of the irreducible representation. Note tha
k integrals for matrix elements of the effective potent
Wk,k8 have been included in these parameters, so they
code the physics. In general, there are exponentially sm
corrections to this perturbation series of the for
P(uh1u2)e21/(a8uh1u2), whereP is a polynomial. These non
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564 57ROBERT E. RUDD AND WARREN E. PICKETT
perturbative corrections can be important at very low te
peratures or in strongly coupled systems, but they are bey
the scope of this paper.

The treatment of higher dimensional representations
more involved. The first step is to find a basis for the poi
group irrep that respects the simple group decomposit
Each simple group generator should correspond to a spe
element ofG. This makes the symmetries of the invaria
polynomials manifest, permitting a straightforward descr
tion. Using invariant polynomial techniques, we will co
struct the free energy forG3

2 andG4,5
2 of Oh , G5,6

2 of D6h and
G5

2 of D4h .
Consider the two-dimensional representationG3

2 of Oh .
The standard real basis shown in Table II does not res
the simple group decomposition. The appropriate basi
composed of the complex functions

c185@c1~G3
2!1 ic2~G3

2!#/&5kxkykz~kz
21vkx

21v2ky
2!,

c285@c1~G3
2!2 ic2~G3

2!#/&5kxkykz~kz
21v2kx

21vky
2!.
~5.5!

The action ofOh on this basis is isomorphic toZ33Z23I,
whereZ35$E,C3a ,C3a

21%, Z25$E,C2a8 % and I is inversion
~anotherZ2!. In addition to U~1!, we only need to conside
the following two point-group operations:

Ĉ3a5S v2

0
0
v D , Ĉ2a8 5S 0

21
21
0 D . ~5.6!

Consider a monomial (h18)
N1(h28)

N2(h̄18)
N̄1(h̄28)

N̄2 in the per-
turbative expansion of the free energy. Invariance un
Oh3U(1) imposes the following constraints;

~a! U~1!: N11N25N̄11N̄2 .
~b! C3a : N12N22N̄11N̄2[0 ~mod3!.
~c! C2a8 : invarianceh18→2h28 , h28→2h18 .

This leads to a basis of invariant polynomials of the form

~ uh18u
2buh28u

2g1uh18u
2guh28u

2b!Re@~h18h̄28!3a#.

and

~ uh18u
2buh28u

2g2uh18u
2guh28u

2b!Im@~h18h̄28!3a#. ~5.7!

They can be reexpressed in terms of the polynomial g
erators forG3

2 of Oh

P15uh18u
21uh28u

2,

P254uh18h28u
2,

~5.8!

P358 Re@~h18h̄28!3#,

P458~ uh18u
22uh28u

2!Im@~h18h̄28!3#,

where the complete set of invariant basis elements are p
ers of these four elements, in one of the two forms

P~m,n,p!
1 5P1

nP2
pP3

m ,
~5.9!

P~m,n,p!
2 5P1

nP2
pP3

mP4 .
-
nd

is
-
n.
fic
t
-

ct
is

r

n-

w-

These invariant polynomials have not been constructed
viously.

Using the invariant basis the most general form of t
perturbative expansion of the free energy may be written

F„Oh~G3
2!…5 (

m,n,p
F ~m,n,p!

1 P~m,n,p!
1 ~h18 ,h28!

1F ~m,n,p!
2 P~m,n,p!

2 ~h18 ,h28!

5a~ uh18u
21uh28u

2!1b18~ uh18u
21uh28u

2!2

14b28uh18h28u
21••• , ~5.10!

wherea5F (0,1,0)
1 , b185F (0,2,0)

1 , b285F (0,0,1)
1 , etc. For com-

parison, Sigrist and Ueda2 use the coefficientsb15b181b28
andb25b28 . The minima of this free energy will be studie
in the next subsection.

The next case is the two-dimensional representationsG5
2

and G6
2 of D6h . The analysis is essentially identical to th

case ofG3
2 of Oh . Again the action ofD6h on these two

irreps is isomorphic to Z33Z23I, where Z3
5$E,C3z ,C3z

21%, and Z25$E,C2x%. The difference in the
two cases comes from the wayZ23I is embedded in the
group; e.g.,Ĉ2y(G5

2)5IĈ2y(G6
2). A complex basis is nec-

essary to make the simple group decomposition manifes

c185@c11 ic2#/&

5~kx1 iky!/& for G5
2

5kykz~kx1 iky!~ky
223kx

2!/& for G6
2 ,

c285@c12 ic2#/&

5~kx2 iky!/& for G5
2

5kykz~kx2 iky!~ky
223kx

2!/& for G6
2 . ~5.11!

The generators for the invariant polynomials ofG5,6
2 of D6h

are the same as those forG3
2 of Oh ~5.8!, and the free energy

may be expressed

F„D6h~G5,6
2 !…5 (

m,n,p
F ~m,n,p!

1 P~m,n,p!
1 ~h18 ,h28!

1F ~m,n,p!
2 P~m,n,p!

2 ~h18 ,h28!

5a~ uh18u
21uh28u

2!1b18~ uh18u
21uh28u

2!2

14b28uh18h28u
21••• . ~5.12!

This is identical in form toF„Oh(G3
2)…, so the phase transi

tions take place at the same values ofa, b i , g i , etc. Of
course, the symmetries of the phases are different in the
cases. Also, the dependence of the parametersa, b i ,... on
physical quantities such as couplings, masses, the temp
ture, and the pressure are different, so systems with diffe
normal-state symmetries do not sit at analogous location
the superconducting phase diagram in general.

Next we consider the two-dimensional representationG5
2

of D4h . The action ofD4h on this irrep is isomorphic to
S23Z2

2; that is, it permutesh1 and h2 and changes thei
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signs. In particular, S25$E,C2e%, and Z25$E,C2y%,
$E,C2z%. The generators for the invariant polynomials ofG5

2

of D4h are

P15uh1u21uh2u2,

P25@ uh1
21h2

2u22~ uh1u21uh2u2!2#524@ Im~h1h̄2!#2,

P354uh1h2u2,

P454~ uh1u22uh2u2!Im@~h1h̄2!2#. ~5.13!

The basis elements are generated exactly as in the case oG3
2

of Oh Eq. ~5.9!, and the free energy is given by

F„D4h~G5
2!…5 (

m,n,p
F ~m,n,p!

1 P~m,n,p!
1 ~h1 ,h2!

1F ~m,n,p!
2 P~m,n,p!

2 ~h1 ,h2!

5a~ uh1u21uh2u2!1b1~ uh1u21uh2u2!2

24b2@ Im~h1h̄2!#214b3uh1h2u21••• .

~5.14!

The coefficients agree with those used by Sigrist and Ue2

to fourth order, except forb3 which differs by a factor of 4
with theirs larger.

The final irreps are the three-dimensional representat
G4

2 andG5
2 of Oh . The action ofOh on each of these irrep

is isomorphic toS33Z2
3; that is, it permutesh1 , h2 , andh3

and changes any of the signs. Of course, the correspond
between specific group elements and these transforma
differs in the two cases. InG4

2 , S3 is generated byC3d and
CiC2 f8 and the three copies ofZ2 are generated by the reflec
tions sx , sy, and sz . On the other hand, inG5

2 , S3 is
generated byC3d andC2b8 and theZ2 actions are generate
by the reflectionssy , sz , andsx . The details of the con-
struction of these invariant polynomials and those for
two-dimensional irreps are presented elsewhere.38 The gen-
erators for the invariant polynomials ofG4,5

2 of Oh are

P15uh1u21uh2u21uh3u2, @SO~6!# ~5.15!

P25uh1h2u21uh2h3u21uh1h3u2, @U~1!33Oh#

P35uh1h2h3u2, @U~1!33Oh#

P45uh1
21h2

21h3
2u2, @U~1!3SO~3!#

P55uh1
2h̄2

21h2
2h̄3

21h3
2h̄1

2u22P2
2,

P65Re@ uh1u2~h2
2h̄3

22uh2h3u2!#1cyc,

P75Im@h1
2h̄2

2~ uh1u22uh2u2!#1cyc,

P85Re@ uh1u2h2
2h̄3

2~2uh1u22uh2u22uh3u2!#1cyc,

P95Im@h1
4h̄2

2h̄3
21h2

4h̄1
2h̄3

21h3
4h̄1

2h̄2
2#,

P105Im@h1
2h̄2

2uh3u2~ uh1u22uh2u2!#1cyc,
a

ns

ce
ns

e

P115Re@~h1
4h̄2

2h̄3
22uh1

2h2h3u2!~ uh2u21uh3u2!#1cyc,

P125Im@h1
4h̄2

2h̄3
2~ uh2u21uh3u2!#1cyc,

P135Im@h1
2h̄2

2uh3u4~ uh1u22uh2u2!#1cyc,

where cyc, denotes additional terms with the indices cy
cally permuted and we have noted that four of the genera
have extra continuous symmetries. Also,P5 , P9 , P11, and
P12 have a Z6 symmetry in addition to the requisit
U(1)3Oh for fixed r 5P1

1/2. An arbitraryOh(G4,5
2 ) invariant

polynomial may be expressed in terms of the genera
~5.15!

P~h1 ,h2 ,h3!5 (
n1 ,...,n5 ,X

Cn1 ,...,n5

~X! Pn1 ,...,n5

~X! ~h1 ,h2 ,h3!,

~5.16!

where the basis is given by

Pn1 ,...,n5

~X! 5P1
n1P2

n2P3
n3P4

n4P5
n5PX , ~5.17!

where PX51,P6 ,P6
2,P6P7 ,P6

3,P7 ,P8 ,...,P13. This basis
has not been constructed previously.

The free energy forOh(G4,5
2 ) is expressed in terms of th

invariant polynomials~5.15!:

F5 (
n1 ,...,n5 ,X

Fn1 ,...,n5

~X! Pn1 ,...,n5

~X!

5aP11b1P1
21b2P41b3P21g1P1

31g2P1P41g3P1P2

1g4P31g5P61g6P71••• , ~5.18!

where the sum runs over the indices described above. T
coefficients agree with those used by Sigrist and Ueda2 to
fourth order, and they do not consider the free energy
G4,5

2 of Oh at higher order.

C. Minimization of the free energy

The physical gap function minimizes the free energy. T
minimum determines both the magnitude and the direction
D in representation space. The magnitude depends on
parametersa,b,g, . . . in acomplicated fashion. Fortunately
its exact value is unimportant. It is zero aboveTc , small just
below the second-order critical point and possibly large
low temperatures. The direction inh space is more interest
ing, since it determines the symmetry of the superconduc
phase.

Theorem 2 in Appendix A guarantees that regardless
the value of the parametersa,b18 ,... at least one pair of
critical points of the free energy lies on each rotational sy
metry axis of the representation space~h space!. The theo-
rem does not say which of these critical points if any is t
absolute minimum, but sufficiently close to the critical poi
one of them is.39 This is a consequence of the Morse theo
of critical points combined with an accounting of the critic
points of a fourth-order polynomial (F) in terms of point-
group orbits. Even as the magnitude ofD grows, an interme-
diate symmetry phase is the ground state for most value
the parameters.
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1. 1D irreps

Because of its simple form, the minimization of the fr
energy for one-dimensional representations~5.4! is a
straightforward, in principle. To fourth order, the free ener
is given by

F5auh1u21buh1u41••• . ~5.19!

For a;(T2Tc),0 andb.0, the minimum ish1
05r 0e2iu

with

r 05Auau
2b

1••• , ~5.20!

whereu is an arbitrary phase angle which parametrizes
ground-state degeneracy. This breaks the U~1! symmetry to
Z2 , but it does not break the point-group symmetry.

Higher terms in the free energy may be considered
well. The Ginzburg-Landau formulation is best near t
second-order critical point where it is well known that t
fourth-order free energy~perturbed by a few higher-orde
terms to break the residual degeneracy! provides a good de
scription of the system. At lower temperatures, the mag
tude of the gap grows and higher-order terms become im
tant. Eventually the perturbative expansions inD/vc and
Vk,k8 may break down due to a finite radius of convergen
and asymptoticity, respectively. Also, the exact form of t
temperature dependence of the coefficients becomes im
tant, so it no longer suffices to make the ansatz that
coefficients are independent of temperature except foa
;(T2Tc). Nevertheless, there does exist an effective f
energy even at low temperatures which is related to the
turbative Ginzburg-Landau free energy through resumm
tion, and information about the system at low temperatu
~especially the symmetries! can be extracted from the highe
order terms.

As these terms are considered, the magnitude of the
function r 0(a,b,...) takes values on a branched cover of t
parameter space. Consider the minimization of the six
order free energy,F5auh1u21buh1u41guh1u61•••, which
is of interest in the case of higher-dimensional irreps. T
minimum becomes

r 05A~2sgn~b!1A113uaug/b2!
ubu
3g

1••• .

~5.21!

The value of the free energy at the minimum is convenien
expressed in terms of the function

F~x,y![
21

27uxuy2 $2~113y!3/22sgn~x!~219y!%

5
21

4x
~12 1

2 y1 9
16 y22••• ! x.0, uyu, 1

3 ,

~5.22!

where the series is its critical~small a! expansion. The free
energy is given by

Fmin5a2F~b,uaug/b2!. ~5.23!
e
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The functionF(x,y) is convenient because it is a monoton
cally increasing function of bothuxu andy.

It is possible to have first-order phase transitions in t
parameter space at eight order, where a small change in
parameter causes a large change in the gap function bec
the minimum hops from one sheet to another. The location
these critical points is nonuniversal. The symmetry of t
superconducting state need not change at this type of p
transition, and we do not consider them further. Note t
away from the transitions, the higher-order terms sim
renormalize the leading nonzero couplingb according to Eq.
~5.22!, and we definebR[21/„4F(b,uaug/b2)… so that
Fmin52a2/(4bR).

2. 2D irreps

The free energy for the two-dimensional irreps has
same general features, but it also allows the point-gro
symmetry to be broken. We expressF in terms of one real
and one complex variable

r 25uh18u
21uh28u

2, ew5
h18

h28
, ~5.24!

and conversely,

h185re2iu1w/2sech1/2~Rew!/&,

h285re2iu2w/2sech1/2~Rew!/&. ~5.25!

The remaining degree of freedom inh18 andh28 is a phase,u.
This is the zero mode of the Goldstone boson which is irr
evant by gauge invariance. These variables behave ni
under Oh3U(1). For example, inG3

2 of Oh , C3a :w→w
12p i /3 and C4z :w→2w. Consider the two-dimensiona
irrepsG3

2 of Oh andG5,6 of D6h first. The generators of the
invariant polynomials for these irreps~5.8! become

P15r 2,

P25r 4sech2~Rew!,
~5.26!

P35r 6cos~ Im3w!sech3~Rew!,

P45r 8sin~ Im3w!sech3~Rew!tanh~Rew!,

which are manifestly invariant under the symmetry ope
tions. In the (r ,w) variables, the free energy is

F5ar 21b18r
41b28r

4sech2~Rew!1g1r 6

1g2r 6sech2~Rew!1g3r 6cos~ Im3w!sech3~Rew!

1••• ~5.27!

with the same coefficients defined in Eq.~5.10!.
The order parameterD(r ,w) is nonzero below the critica

point, breaking the U~1! symmetry. The value ofw ~the di-
rection of D in h space! below Tc determines whether an
how the point group is broken. A glance at the functio
P1 ,...P4 Eq. ~5.26! which generate the invariant polynom
als reveals that the generic extrema arew51`,
2`,0,ip/3, . . . ,5p i /3. These are the critical points ident
fied by Theorem 2 in Appendix A, since the rotational sym
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metry axes in the two-dimensionalh8 representation spac
are~1,0!, ~0,1!, (1,61), (1,6v), and (1,6v2). They give a
nontrivial residual symmetry.

The minimization of the free energy is straightforwar
We considerF to sixth order. The imaginary part ofw only
enters through cos(Im,3w), so

Imw5H 0,
2p

3
,

4p

3
g3R,0,

p

3
,p,

5p

3
g3R.0,

~5.28!

where the renormalized couplingg3R5g3 at sixth order. At
this order of perturbation theory, Imw is unconstrained if
g350. The free energy takes the formF5ar 21b18r

4

1b28r
4x21g1r 61g2r 6x22ug3ur 6x3 to sixth order with Imw

given by Eq.~5.28! and x5sech(Rew)P@0,1#. The minima
either havex50 or x51, since the coefficient ofx3 is nega-
tive and there is no term proportional tox. They correspond
to phases in which the point group is only partially broke
and D points along a rotational symmetry axis inh space.
Specifically, these phases are

x50:

D5r 0kxkykz~kz
21vkx

21v2ky
2!

D5r 0kxkykz~kz
21v2kx

21vky
2!,

for G3
2 of Oh;

D5r 0~kx6 iky! for G5
2 of D6h;

D5r 0kykz~kx6 iky!~ky
223kx

2!

for G6
2 of D6h ~5.29!

x51:

D5r 0kxkykz~2kz
22kx

22ky
2!,cyc ~g3,0!

D5)r 0kxkykz~kx
22ky

2!,cyc ~g3.0!
for G3

2 of Oh

D5r 0kx ,r 0S 1

2
kx6
)

2
kyD ~g3,0!

D5r 0ky ,r 0S 1

2
ky6
)

2
kxD ~g3.0!

for G5
2 of D6h

D5r 0kxkykz~ky
223kx

2!,... ~g3,0!

D5r 0ky
2kz~ky

223kx
2!,... ~g3.0!

for G6
2 of D6h,

where r 0 is the value ofr for the ground state, and cy
means terms of the same form with the indices cyclica
permuted.

The magnitude of the ground-state gap function,r 0 , is
given by an expression of the same form as Eq.~5.21!, with
b5b18 and g5g1 for x50 and b5b181b28 and g5g1

1g22ug3u, for x51. It is natural to define the following
renormalized couplings:
.

,

y

b1R5
21

4F~b18 ,uaug1 /b18
2!

,

b2R52b1R

1
21

4F„b181b28 ,uau~g11g22ug3Ru!/~b181b28!2
…

,

~5.30!

so that the free energy of the ground state is given
Fmin(x50)52a2/(4b18) and Fmin(x51)52a2/„4(b181b28)….
The ground state isx50 when b2R.0 and x51 when
b2R,0. The ground-state gap functions for the three disti
phases are shown in Tables III and IV. Typically, the val
of r 0 changes discontinuously at the boundary between th
phases, so the transition is first order, as expected when
symmetry does not break to a subgroup.

At eighth and higher orders, there are small regions of
parameter space in which the ground state has 0,x,1 and
the point group is broken completely:G3

2(Oh)→G1
2(D2h),

G5
2(D6h)→G1

2(Ci) andG6
2(D6h)→G1

2(Ci), whereCi is in-
version. Second-order transitions to these phases can r
from frustration due to the competition between the ter
minimized atx50 and those minimized atx51 ~or from the
contribution of the symmetry-breaking generatorP4!. Con-
sider the eighth-order free energy. It has the termsb28r

4x2

andd4r 8x4 which compete whenb28,0 andd4.0. The free
energy is a fourth degree polynomial inx, which decreases
asx increases from 0, then reaching a minimum, it increas
If the minimum occurs atx.1, then the ground state isx
51 sincex5sech Rew<1. On the other hand, if the mini
mum occurs atx,1, the ground state is the low-symmet
phase. We can estimate the critical point takingub2Ru
!b1R , for which the low-symmetry phase exists when

uau>S 4ub2Rub1R
2

d4
D 1/2

~5.31!

with b2R,0 andd4.0. Sincea;(T2Tc)/Tc is small near
the initial superconducting critical point, this seconda
phase transition would occur at much lower temperature

The other two-dimensional irrep isG5
2 of D4h . Again, the

simple groups act nicely on the projective variable
C2y :w→w1 ip andC2e :w→2w. The rotational symmetry
axes in the two-dimensional representation space are~1,0!,
~0,1!, (1,61), and (1,6 i ), which correspond tow5`, 2`,
0, ip, ip/2, and 2 ip/2. The generators of the invarian
polynomials are

P15r 2,

P252r 4sin2~ Imw!sech2~Rew!,

P35r 4sech2~Rew!, ~5.32!

P45r 6sin~ Im2w!sech2~Rew!tanh~Rew!,

which are manifestly invariant. The free energy becomes
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TABLE IV. SSS symmetry-breaking phases.

Hexagonal—D6h

G1
2 D6h(G1

2) D6h 1 kxkykz(kx
223ky

2)(ky
223kx

2)
G2

2 D6h(G2
2) D6h 1 kz

G3
2 D6h(G3

2) D6h 1 ky
323kx

2ky

G4
2 D6h(G4

2) D6h 1 kx
323kxky

2

G5
2 D2h(G4

2) D2h b2R,0, g3R,0 3 kx

D2h(G2
2) D2h b2R,0, g3R.0 3 ky

C6h(G5
2) D6h b2R.0 1 kx1 iky

C6h(G6
2) D6h 1 kx2 iky

G6
2 D2h(G1

2) D2h b2R,0, g3R,0 3 kxkykz(ky
223kx

2)
D2h(G3

2) D2h b2R,0, g3R.0 3 ky
2kz(ky

223kx
2)

C6h(G2
2) D6h b2R.0 1 kykz(kx1 iky)(ky

223kx
2)

C6h(G3
2) D6h 1 kykz(kx2 iky)(ky

223kx
2)

Tetragonal—D4h

G1
2 D4h(G1

2) D4h 1 kxkykz(kx
22ky

2)
G2

2 D4h(G2
2) D4h 1 kz

G3
2 D4h(G3

2) D4h 1 kxkykz

G4
2 D4h(G4

2) D4h 1 (kx
22ky

2)kz

G5
2 C4h(G3

2) D4h b2R.b3R , b2R.0 1 kx1 iky

C4h(G4
2) D4h 1 kx2 iky

D2h(G2
2) D2h b2R ,b3R,0 1 kx1ky

D2h(G4
2) D2h 1 kx2ky

D2h(G2
2) D2h b3R.b2R , b3R.0 1 ky

D2h(G4
2) D2h 1 kx

TABLE III. SSS symmetry-breaking phases.

G H(G8) Hphys b i # C(k)

Octahedral—Oh

G1
2 Oh(G1

2) Oh 1 kxkykz(kx
22ky

2)(ky
22kz

2)(kz
22kx

2)
G2

2 Oh(G2
2) Oh 1 kxkykz

G3
2 D4h(G1

2) D4h b2R,0, g3R.0 3 )kxkykz(kx
22ky

2)
D4h(G3

2) D4h b2R,0, g3R,0 3 kxkykz(2kz
22kx

22ky
2)

Th(G2
2) Oh b2R.0 1 kxkykz(kz

21vkx
21v2ky

2)
Th(G3

2) Oh 1 kxkykz(kz
21v2kx

21vky
2)

G4
2 C3i(G2

2) D3d b3R,0,b2R 4 kz1vkx1v2ky

C3i(G3
2) D3d 4 kz1v2kx1vky

D3d(G2
2) D3d b2R ,b3R,0 4 kz1kx1ky

D4h(G2
2) D4h 4b2R,b3R , b3R.0 3 kz

C4h(G3
2) D4h 0,b3R,4b2R 3 kx1 iky

C4h(G4
2) D4h 3 kx2 iky

D2h(G2
2) D2h b3R50, b2R,0 3 kx1ky

D2h(G4
2) D2h 3 kx2ky

G5
2 C3i(G2

2) D3d b3R,0,b2R 4 kz(kx
22ky

2)1vkx(ky
22kz

2)1v2ky(kz
22kx

2)
C3i(G3

2) D3d 4 kz(kx
22ky

2)1v2kx(ky
22kz

2)1vky(kz
22kx

2)
D3d(G1

2) D3d b2R ,b3R,0 4 kz(kx
22ky

2)1kx(ky
22kz

2)1ky(kz
22kx

2)
D4h(G4

2) D4h 4b2R,b3R , b3R.0 3 kz(kx
22ky

2)
C4h(G4

2) D4h 0,b3R,4b2R 3 kx(ky
22kz

2)1 iky(kz
22kx

2)
C4h(G3

2) D4h 3 kx(ky
22kz

2)2 iky(kz
22kx

2)
D2h(G2

2) D2h b3R50, b2R,0 3 kx(ky
22kz

2)1ky(kz
22kx

2)
D2h(G4

2) D2h 3 kx(ky
22kz

2)2ky(kz
22kx

2)
v5e2p i /3
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F5ar 21b1r 42b2r 4sin2~ Imw!sech2~Rew!

1b3r 4sech2~Rew!1g1r 6

2g2r 6sin2~ Imw!sech2~Rew!1g3r 6sech2~Rew!

1g4r 6tanh~Rew!sech2~Rew!sin~ Im2w!1••• .

~5.33!

The structure of the solution is more complicated than in
case of the other two-dimensional representations bec
the generatorP4 that explicitly breaks the intermediate sym
metries occurs at sixth order rather than eighth order. T
leads to low-temperature phases in which the point grou
broken toI.
s
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We restrict our attention to the sixth-order free ener
with no symmetry-breaking parameter:g450. The relative
phase for the ground state is given by

Im w5H 0,p b2R,0

p

2
,

3p

2
b2R.0

~5.34!

with b2R5b21••• @see Eq.~5.35!#. The free energy reduce
to F(Im w5p/2)5ar 21b1r 42b2r 4x21b3r 4x21g1r 6

2g2r 6x22g3r 6x2, and F(Imw50) given by the same ex
pression withb25g250. Note that the free energy is qua
dratic inx. The phase boundaries are again best expresse
terms of renormalized couplings,
b1R[
21

4F~b1 ,uaug1 /b1
2!

,

b3R[2b1R1
21

4F„b11b3 ,uau~g11g3!/~b11b3!2
…

,

b2R[b1R1b3R1
1

4F„b12b21b3 ,uau~g12g21g3!/~b12b21b3!2
…

, ~5.35!
y of
to sixth order, so thatFmin52a2/(4b) with b5b1R for w
56`, b5b1R1b3R for w50, ip, b5b1R2b2R1b3R for
w56 ip/2. The ground states arew50,ip when b2R ,b3R
,0, w56` whenb3R.max(0,b2R), andw56 ip/2 when
b2R.max(0,b3R). Expressions for the gap function in term
of the original variables for each of the three phases
given in Table III.

3. 3D irreps

In analogy with the analysis of the two dimension irrep
the free energy for the three-dimensional irrepsG4

2 andG5
2

of Oh should be expressed in terms of complex project
coordinates. There are two relative magnitudes and two r
tive phases, soh1 , h2 , andh3 should be expressed in term
of a two-dimensional vector in complex projective spacew
PCP2; however, there is no known vector that behaves s
ply under theOh operations. The best we can do is to use
homogeneous coordinates,h j /(re2iu), and there is no appar
ent simplification of the free energy.

The ground state of the free energy to sixth order is giv
by a generic critical point provided the symmetry-breaki
parameterg6 is taken to be zero. The generic critical poin
are~0,0,1!, ~1,1,0!, ~1,1,1!, (1,i ,0), (1,v,v2), and (1,v,v2)
up to symmetry, according to Theorem 2 of Appendix A.
these points, the invariant polynomial generators~5.15! have
the following values:
re

,

e
la-

-
e

n
g
s

t

ĥ P1 P2 P3 P4 P5 P6 P7 – 13

~0,0,1! 1 0 0 1 0 0 0
~1,1,0! 1 1

4
0 1 0 0 0

~1,1,1! 1 1
3

1
27

1 0 0 0

(1,v,v2) 1 1
3

1
27

0 0 21
6

0

(1,i ,0) 1 1
4

0 0 0 0 0

at r 51. Let b1R[21@4F(b1 ,uaug1 /b1
2)#21, and define

the other renormalized couplings such that the free energ
each phase is given by

F ~0,0,1!5
2a2

4~b1R1b2R!
,

F ~1,i ,0!5
2a2

4~b1R1 1
4 b3R!

,

F ~1,1,1!5
2a2

4~b1R1b2R1 1
3 b3R!

1
g4R

27 S uau

2~b1R1b2R1 1
3 b3R!

D 3

,
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F ~1,v,v2!5
2a2

4~b1R1 1
3 b3R!

1S g4R

27
2

g5R

6 D
3S uau

2~b1R1 1
3 b3R!

D 3

,

F ~1,1,0!5
2a2

4~b1R1b2R1 1
4 b3R!

1••• , ~5.36!

where the couplings are defined sequentially,b2R by F (0,0,1),
thenb3R by F (1,i ,0) , theng4R by F (1,1,1) and finallyg5R by
F (1,v,v2) . The free energies may be expressed in terms of
original ~bare! couplings through theF function as before,
using the coefficients listed above. Note thatb jR5b j to
fourth order, but the renormalizedg’s receive corrections
even at sixth order,g4R5g41••• andg5R5g51••• .

The ground state of the cubic system is shown in Ta
III, and the phase diagram is shown in Fig. 4 takingg4R
5g5R5g6R50. When g4R and g5R are nonzero, the phas
boundaries shift by a small amount. They also have a m
interesting qualitative effect in that they allow the possibil
of stabilizing ~1,1,0! as the ground state. At fourth orde
even though~1,1,0! is a rotational symmetry axis, the~1,1,0!
phase only exists on the negativeb2R axis ~see Fig. 4! where
it is degenerate with the~0,0,1! and the~1,1,1! phases. This
degeneracy is the result of the enhanced SO~3!3U~1! sym-
metry ~see Appendix C!. The fact that theĥ5(1,1,0)/& is
only a saddle point at fourth order and not a minimum f
lows from Morse theory constraints. This is no longer true
the larger parameter space of the sixth-order free energy,
the ground state is allowed to be~1,1,0!. Taking b350, we
find this occurs forg4.2 27

12g3.0.

FIG. 4. The Ginzburg-Landau phase diagram for SSS withG4,5
2

cubic symmetry has five phases nearTc . The cubic group is only
partly broken in each of these phases. The notation is expla
fully in the text, but for G4

2 the gap function is proportional to
d̂•k, whered̂ is the vector labeling each phase. The phases at
top of the diagram have point nodes and those at the bottom
line nodes. The phase withd̂5(1,1,0) is only stable on the negativ
b2R axis ~see the text!. The ‘‘3’’ on the positiveb2R axis denotes
the weak-coupling point with a spherical Fermi surface and
interaction~5.38!. When the Fermi surface is deformed outward
inward at the diagonals as pictured, the ground state is a phas
the right or left side of the diagram, respectively.
e

e

re

-

nd

D. Weak coupling

This completes the construction of the generalized ph
diagrams for SSS with cubic, hexagonal, and tetragonal s
metry in the normal phase. We are now in a position
reexamine the superconducting phase transition in
weakly coupled theory. Using standard techniques,40 we find
that the weak-coupling expansion of the free energy forD in
an irrep ofG is given by

F5FN1
1

2
N~0!ln

T

Tc
^uD~vk!u2& k̂

1 (
m51

`

F2m12^uD~vk!u2m12& k̂ ,

~5.37!

F2m1252
1

2

~2m21!!!

~m11!!
~22m1121!z~2m11!

3S 2bc
2

8p2 D m

N~0!,

where FN is the free energy of the normal phase andbc
51/kBTc . Note that weak coupling means that the parame
bc

2uDuRMS
2 is small. As in Sec. III B, the simplest ansatz is

consider an interaction of the form~3.12!

Wk,k852uWu
vk•vk8
vF

2/3
, ~5.38!

where we have rewritten it in terms of the Fermi veloc
appropriate for nonspherical Fermi surfaces. The coefficie
in the free energy~5.18! are then integrals over Ferm
surface harmonics,31 which are found to equal a
5 1

6 N(0)ln(T/Tc), b15 2
15F4 , b25 1

15F4 , g15 2
35F6 , g2

5 3
35F6, and b35g35g45g550 assuming a spherica

Fermi surface. In this case, the free energy reduces to
form invariant under SO~3!3U~1! which is studied in Ap-
pendix C, and the weakly coupled system sits at the poin
the positiveb2R axis near the origin, denoted by an ‘‘3’’ on
the phase diagram in Fig. 4. As the Fermi surface is
formed outward at the diagonals inducing a positive hexa
capole moment,b3 becomes positive, and (1,i ,0) becomes
the ground state. On the other hand, if the Fermi surfac
deformed inward,b3 is negative, and (1,v,v2) is the ground
state. Therefore, we identify (1,i ,0) and (1,v,v2) in G4

2 of
Oh as the leading candidates for the SSS ground stat
cubic systems. In hexagonal and tetragonal systems, the
didates areD}(1,i ,0)•vk in G5

2 of D6h andD4h .

VI. THERMODYNAMIC PROPERTIES

The gap functionDk may be zero for certain values ofk.
This can occur accidentally, but in some cases the gap fu
tion is required to vanish by symmetry. Such zeros are rob
and have a marked impact on the low-temperature beha
of thermodynamic quantities such as the heat capacity
acoustic attenuation. The characteristice22D/kT exponential
behavior due to the finite gap, changes to a power-law
havior when the gap function has zeros.

The gap function for SSS always has zeros. This i
consequence of its odd parity and the fact that it has a sin

ed

e
ve

e

on
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TABLE V. Zeros of the gap function guaranteed by symmetry.

G H(G8) Nontrivial mappings Generic zeros

Octahedral—Oh

G1
2 Oh(G1

2) I ,86,3sh ,S4,6sd 9 circles:$ki50% i 51,2,3, $ki56kj% iÞ j

G2
2 Oh(G2

2) 6C4,6C28 ,I ,8S6,3sh 3 circles:$ki50% i 51,2,3

G3
2 D4h(G1

2) I ,2S4 ,sh,2sv,2sd 5 circles:$ki50% i 51,2,3, $k156k2%
D4h(G3

2) 2C4,2C29 ,I ,sh,2sv 3 circles and 8 points:$ki50% i 51,2,3, $(61,61,61)/)%
Th(G2

2) 4C3,4C3
21,I ,3sh,4S6,4S6

21 3 circles and 8 points:$ki50% i 51,2,3, $(61,61,61)/)%
Th(G3

2) 4C3,4C3
21,I ,3sh,4S6,4S6

21 3 circles and 8 points:$ki50% i 51,2,3, $(61,61,61)/)%
G4

2 C3i(G2
2) C3 ,C3

21,I ,S6 ,S6
21 2 points:$6(1,1,1)/)%

C3i(G3
2) C3 ,C3

21,I ,S6 ,S6
21 2 points:$6(1,1,1)/)%

D3d(G2
2) 3C28 ,I ,2S6~sh of D6d! 1 circle: $kx1ky1kz50%

D4h(G2
2) 2C28,2C29 ,I ,2S4 ,sh 1 circle: $kz50%

C4h(G3
2) C4 ,C2 ,C4

21,I ,S4 ,S4
21 2 points:$6(0,0,1)%

C4h(G4
2) C4 ,C2 ,C4

21,I ,S4 ,S4
21 2 points:$6(0,0,1)%

G5
2 C3i(G2

2) C3 ,C3
21,I ,S6 ,S6

21 2112 points:$(61,61,61)/)%, $(0,0,61)%1cyc.
C3i(G3

2) C3 ,C3
21,I ,S6 ,S6

21 2112 points:$(61,61,61)/)%, $(0,0,61)%1cyc.
D3d(G1

2) I ,2S6,3sd 3 circles:$ki5kj% iÞ j

D4h(G4
2) 2C4,2C28 ,I ,2S4 ,sh,2sd 3 circles:$kz50%, $kx56ky%

C4h(G3
2) C4 ,C2 ,C4

21,I ,S4 ,S4
21 2112 points:$(0,0,61)%1cyc., $(61,61,61)/)%

C4h(G4
2) C4 ,C2 ,C4

21,I ,S4 ,S4
21 2112 points:$(0,0,61)%1cyc., $(61,61,61)/)%
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spin component. The zeros are guaranteed by topolog
considerations very reminiscent of the Hopf, or Poinca´-
Hopf, index theorem~commonly known as the hairy ba
theorem!, which relates the total index of a vector field to th
Euler characteristic of the underlying~closed, orientable!
surface.41 Consider the fieldeif5D/uDu where f is real,
which is a well-defined field on the Fermi surface assum
that D has no zeros. It takes values on the unit circle in
complex plane. SinceD changes sign under inversion,f
(2k)5f(k)1(2k11)p. Following the value off(k) ask
is taken around any equatorial circle on the~closed! Fermi
surface, we find thatf comes back to itself up to an od
winding number,df52p(2k11). The nonzero winding
number prevents the equatorial circle from being contrac
smoothly to a point on the Fermi surface. It must encounte
zero of D. Although the gap function may have zeros
singlet and triplet superconductivity, only in SSS is it gua
anteed to have them. The gapped states of triplet super
ductivity ~the Balian-Werthamer ground state42! do not occur
becauseD only has one spin component in SSS.

These generic zeros of the gap function may be fou
using Theorem 1 in Appendix A. They are given by fixe
points of elements of the residual symmetry groupH with a
nontrivial character, and are tabulated in Tables V and
Isolated point nodes arise as fixed points of rotatio
whereas lines of zeros are associated with reflections.
nodal structure ofD determines the density of states near
Fermi surface and consequently the scaling of thermo
namic quantities. With a few assumptions the scaling ex
nents may be computed. For example, the heat capa
which for a constant gap vanishes exponentially, scale
T3, T2, and T with point nodes, line nodes, and vanishin
order parameter, respectively, in a defect-free sup
conductor.27 Multiple line nodes lead toT ln T.43 This
power-law scaling is a hallmark of unconventional sup
conductivity.27 It must occur in SSS. For example, the ca
al

g
e

d
a

-
n-

d

I.
,

he
e
y-
-

ty,
as

r-

-
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didate ground states~1,i ,0! and ~1,v,v2! of G4
2 of Oh dis-

cussed above have point nodes, so their intrinsic heat cap
ties scale asT3.

VII. SUMMARY

The occurrence of a HM AFM normal state, with on
conducting and one insulating spin channel, has been sh
to provide the possibility of a superconducting phase
which the operation of time reversal has no part. The stat
best considered as a condensed phase of spinless ferm
with a gap function that is odd ink and a pair wave function
that is odd upon interchange of particles. The form of ani
tropic interaction required to form this state was obtain
and the resulting gap equation is found to be of the B
form. The allowed symmetries of the gap function have be
enumerated for cubic, hexagonal, and tetragonal lattices,
the corresponding conditions on the parameters of the
energy have been determined. The quasiparticle spectru
necessarily gapless. For point nodes or a line of nodes,
gaplessness gives rise to power-law behavior inT or v. For
intersecting lines of nodes, there will be logarithmic term
such asT lnT as enumerated by Nazarenko.43

It is anticipated that examples of such phases can
found in transition-metal compounds. The recent suggest
that Sr2RuO4 may be displaying triplet superconductivity,44

together with predictions of HM AFM states in transition
metal oxides,19 both indicate that transition-metal oxide com
pounds present a favorable possibility of obtaining sing
spin superconductors.
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TABLE VI. Zeros of the gap function guaranteed by symmetry.

Hexagonal—D6h

G1
2 D6h(G1

2) I ,sh,2S3,2S6,3sd,3sv 7 circles:$ki50% i 51,2,3, $)kx56ky%, $)ky56kx%
G2

2 D6h(G2
2) 3C28,3C29 ,I ,sh,2S3,2S6 1 circle: $kz50%

G3
2 D6h(G3

2) C2,2C6,3C29 ,I ,2S6,3sd 3 circles:$ky50%, $)kx56ky%
G4

2 D6h(G4
2) C2,2C6,3C28 ,I ,2S6,3sv 3 circles:$kx50%, $)ky56kx%

G5
2 D2h(G2

2) C2 ,C29 ,I ,sv8 1 circle: $ky50%
D2h(G4

2) C2 ,C28 ,I ,sv9 1 circle: $kx50%
C6h(G5

2) C2 ,C3 ,C3
21,C6 ,C6

21,I ,S3 ,S3
21,S6 ,S6

21 2 points:$6(0,0,1)%
C6h(G6

2) C2 ,C3 ,C3
21,C6 ,C6

21,I ,S3 ,S3
21,S6 ,S6

21 2 points:$6(0,0,1)%
G6

2 D2h(G1
2) I ,sv ,sv8 ,sv9~sd8 ,sd9 of D6h! 312 circles:$ki50% i 51,2,31$ky56)kx%

D2h(G3
2) C28 ,C29 ,I ,sv~sd ,sd8 ,sd9 of D6h! 113 circles:$k350%1$k250%, $ky56)kx%

C6h(G2
2) C3 ,C3

21,C6 ,C6
21,I ,S3 ,S3

21,S6 ,S6
21,sh 113 circles:$k350%1$k250%, $ky56)kx%

C6h(G3
2) C3 ,C3

21,C6 ,C6
21,I ,S3 ,S3

21,S6 ,S6
21,sh 113 circles:$k350%1$k250%, $ky56)kx%

Tetragonal—D4h

G1
2 D4h(G1

2) I ,2S4 ,sh,2sv,2sd 5 circles:$ki50% i 51,2,3, $kx56ky%
G2

2 D4h(G2
2) 2C28,2C29 ,I ,2S4 ,sh 1 circle: $kz50%

G3
2 D4h(G3

2) 2C4,2C29 ,I ,sh2sv 3 circles:$ki50% i 51,2,3

G4
2 D4h(G4

2) 2C4,2C28 ,I ,2S4 ,sh,2sd 3 circles:$kz50%, $kx56ky%
G5

2 C4h(G3
2) C4 ,C2 ,C4

21,I ,S4 ,S4
21 2 points:$6(0,0,1)%

C4h(G4
2) C4 ,C2 ,C4

21,I ,S4 ,S4
21 2 points:$6(0,0,1)%

D2h(G2
2) C2 ,C29 ,I ,sd8 1 circle: $kx52ky%

D2h(G4
2) C2 ,C28 ,I ,sd9 1 circle: $kx5ky%

D2h(G2
2) C2 ,C29 ,I ,sv8 1 circle: $ky50%

D2h(G4
2) C2 ,C28 ,I ,sv9 1 circle: $kx50%
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APPENDIX A: TWO THEOREMS

The minimum of the free energy determines the or
parameter of the superconducting phase, and the zeros o
gap function in turn determine the scaling of thermodynam
properties with temperature. The generic values of th
minima and zeros are fixed by the symmetries of the syst
and they may be determined without resorting to expl
representatives of the symmetry.

This Appendix presents two theorems which are usefu
this regard. Theorem 1 may be used to find the generic z
of the gap function. The zeros arise as fixed points of e
ments of the residual symmetry groupH that have nontrivial
character. This is a refinement of the procedure used by
lovik and Gor’kov,3 who identified the zeros with specifi
group elements. The utility of our theorem is that the app
priate group elements may be read off of standard chara
tables.

Theorem 2 may be used to find the direction of the
neric critical points of the free energy in representat
space. Note that the magnitude of the solution~the magni-
tude of the gap function! is not determined, but this does n
affect the symmetry of the superconducting phase. The th
rem also applies to more traditional applications, such a
show that the Fermi surface is orthogonal to the axes
rotation of the crystal where they intersect. This theor
applies to the full nonperturbative free energy.

Theorem 1.SupposeD(k) is in the irrepG8 of the little
group H, and suppose gPH has a nontrivial character,
xG8(g)Þ1. ThenD(k0)50 for any fixed pointk0 of g (i.e.,
for any k0 such that gˆ k05k0!.

Proof: SinceH is the little group, dimG851 and
r
the
c
e
,

t

n
os
-

o-

-
ter

-

o-
to
f

g:D~k0!→D~ ĝk0!5xG8~g!D~k0!. ~A1!

But k0 is a fixed point, so

@12xG8~g!#D~k0!50. ~A2!

And we arrive at the result,D(k0)50 providedxG8(g)Þ1.
This theorem provides a relatively easy means to iden

the nodes of the gap function guaranteed by symmetry. A
example, consider the~1,v,v2! state ofG4

2 of Oh , which
transforms asG2

2 of the little groupC3i ~see Table III!. The
characters of the elements ofC3i are listed in common char
acter tables.30 C3 , C3

21, I , S6 , andS6
21 have nontrivial char-

acters and of those,C3 andC3
21 have fixed points, the two

points where the axis of rotation~1,1,1! intersects the Ferm
surface.

This information is tabulated in Table V. Note that
some cases any function in the specified irrep must hav
divisor whose little group is larger than the little group of th
function itself. Theorem 1 applies to these factors as w
and any zero of the factor is also a zero of the function.
example isky

2kz(ky
223kx

2) which transforms asG6
2 of D6h .

Its little group isD2h , but it has the factorkykz(ky
223kx

2)
that transforms as the one-dimensional irrepG4

1 of D6h .
This accounts for two additional lines of nodes.

Theorem 2.Suppose thath transforms as the irrepG of
G, a subgroup of Oh or D6h , whereh is a dim G dimen-
sional complex vector and suppose that the U(1) invariant
function F(h) is in the trivial irrep G1

1 of G. Also suppose
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that there exists an element gPG with a fixed pointh0 up to
a phase: ĝh05eifh0 . Then eifg lies in the little group of
the gradient]F(h0)/]h j .

Note that dimG8<3. Also note that]F/]h j[] jF is the
complex gradient, which could be expressed in terms of
2 dimG real components. The theorem states that all of th
components are invariant undereifg where the phase is
equal to the one that appears in theh0 transformation.

Proof:

g:] jF~h0!→] jF~h!u ĝh0
5ĝi j ] jF~h0!. ~A3!

Sinceĝh05eifh0 , we have

eifĝ jk]kF~h0!5] jF~h0!. ~A4!

Thus,] jF(h0) is invariant undereifg; that is,eifg is in the
little group of ] jF(h0). h

This theorem is particularly useful wheng is a nontrivial
rotation ~and fÞp!; i.e., when detĝ511 and ĝ is not the
identity matrix. Then the fixed points ofg are on the axis of
rotation. In this case, the theorem states that on an axi
rotation,] jF points along the axis:] jF(h0)}h̄0 . If we re-
strict to a surface of constantuhu25r 2, then we find

]F

]h j
~h0!U

uhu5r

50 ~A5!

on an axis of rotation. The axes of rotation are critical poi
of F in the angular variables.

We again consider (1,v,v2) of G4
2 of Oh as an example

This is a fixed point ofC3 about the~1,1,1! axis up to a
phase which is a third root of unity:Ĉ3(1,v,v2)
5v(1,v,v2). According to the theorem, the gradient of th
free energy at (1,v,v2) must be invariant undervĈ3 ;
hence, it is proportional to the dual vector (1,v2,v). This
radial vector projects to 0 whenr is held fixed, so (1,v,v2)
is a critical point of the free energy.

Note that perturbation theory is not used directly in t
proof of these theorems. To the extent that we can say
the functions of interest lie in a particular irrep, the theore
are nonperturbative.

Theorem 2 also has implications for solutions of the g
equation. Since it is an auxiliary equation of motion for t
free energy, the theorem implies that the full gap equatio
stable forD @or more precisely,hm(G)# pointing along any
of the rotational symmetry axes of the representation sp
Stability means that the function

2
1

Dk
(
k8

Wk,k8
2Ek8

Dk8tanh~ 1
2 bEk8! ~A6!

is invariant underG. This reduces the gap equation to a on
dimensional problem, only slightly less tractable that t
usual singlet BCS solution.

APPENDIX B: SOME EXACT RESULTS

In this Appendix we present an exact solution of the g
equation at zero temperature for two of the cases studie
Sec. III. These two gap functions,d̂5(0,0,1) andd̂5(1,i ,0)
of G4

2 of Oh , are plotted in Fig. 3, along with theG1
2 gap
ts
se

of

s

at
s

p

is

e.

-
e

p
in

function, which has not been calculated in closed form.

1

l~0,0,1!
5arcsinh~n/) !1 1

6 nA31n2

1
n3

6)
lnS n

)1A31n2D , ~B1!

wheren5vc /D rms,

1

l~1,i ,0!
5

n2

6
1

n~922n2!

6A6
arctanSA3

2
n21D

1 1
2 ln~11 2

3 n2!. ~B2!

It is evident from the plot that the magnitude of the g
function at low temperature decreases as the number of
function nodes increases, but that the effect is not drama

APPENDIX C: THE ROTATIONALLY INVARIANT FREE
ENERGY

In the text we constructed and analyzed the free ene
with the gap function in various irreducible representatio
of the cubic, hexagonal, and tetragonal point groups. T
resulting phase diagram is quite complicated because of
many couplings necessary to specify the pairing interact
Only a small subset of these couplings corresponds to ph
cal perturbations.

The free energy simplifies greatly if we make the natu
ansatz that the dominant channel for pairing comes from
interaction~3.12!

Wk,k852uWu
k•k8

kF
2/3

, ~C1!

and that the Fermi surface is spherical. This interaction
anO(3) symmetry, a higher symmetry than we have cons
ered in Sec. V. Let the gap function be inG4

2 of Oh , the only
cubic irrep that pairs under the interaction~C1!. It has two
noncyclic degrees of freedom, the magnituder and the angle
w between its real and imaginary parts:

D5r ~11 i cosw,i sinw,0!•k/&. ~C2!

The overall phase and the three Euler angles do not affec
energy. The free energy is expressed in terms of the w
known O(3) invariant polynomials45

P15uh1u21uh2u21uh3u25r 2,

P25uh1
21h2

21h3
2u25r 4cos2w, ~C3!

and it is given by

F5ar 21b1r 41b2r 4cos2w1g1r 61g2r 6cos2w1••• .
~C4!

According to Theorem 2@extended toO(3)#, the generic
critical points arer 0(0,0,1)•k and r 0(1,i ,0)•k/& up to ro-
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tation. Note that these have a line of zeros and 2 point ze
respectively. The free energy has nongeneric critical po
in small regions of parameter space at eighth order inD.

At sixth order, the ground-state gap function is given b

D5r 0kz b2R<0,

D5r 0~kx1 iky!/& b2R>0, ~C5!
s,
ts
where

b2R52@4F„b11b2,uau~g11g2!/~b11b2!2
…#21

and note thatb2R5b2 at fourth order. The value ofr 0 is
given by the expression in Eq.~5.21! with b5b1 and g
5g1 in the first case, andb5b11b2 andg5g11g2 in the
second.
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