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Abstract. A model for the density response function recently proposed and applied to the 
lattice dynamics of Si is now used to calculate the phonon frequencies in Ge and GaAs. 
Furthermore as an alternative method to the linear response theory, the quasi-ion approach 
has been developed using Si as an example, and is now extended to Ge and GaAs. Finally, 
this approach is also used to calculate the electronic contribution to phonon dynamics in 
termsof quasi-ion potentials. An application is presented for Si andcompared to the previous 
investigations within the rigid-ion approximation. 

1. Introduction 

The microscopic theory of lattice dynamics and electron-phonon interaction deals 
quantitatively with the response of the electronic charge distribution to the motion of 
the ions. Over the last few years progress has been achieved mainly following two 
different routes: (i) the density response or dielectric approach to lattice dynamics, 
proposed by Pick et af (1970) and by Sham (1969); (ii) the density functional theory of 
Hohenberg and Kohn (1964) and Kohn and Sham (1965), which has led to the frozen- 
phonon approach. In this method (Wendel and Martin 1979, Kunc and Martin 1981, 
Yin and Cohen 1982) the lattice dynamical properties are calculated from the total 
ground state of the solid as a function of the atomic positions by comparing the energies 
and density distributions of the solid with the atoms in different displacement patterns. 
In this way the energy corresponding to high-symmetry phoncn modes can be calculated 
to all orders in the perturbation. 

In contrast to the frozen-phonon method, the density response approach imposes no 
restrictions to the symmetry of the distortion. If the density response function D or the 
inverse dielectric function c1 has been calculated, the electronic response of the crystal 
to any perturbation is known in linear order. In the following we focus our interest on 
the density response approach in connection with the quasi-ion description. 

In § 2 the formal theory of lattice dynamics is briefly reviewed and a renormalised 
expression for the density response function is given. Section 3 deals with the application 
of the renormalised density description to the lattice dynamics of covalent materials. 
The model response function previously proposed has already been used to calculate 
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the phonon dispersion in Si (Falter et a1 1984c) and is now applied to Ge and GaAs. 
Section 4 then gives a review of the quasi-ion description of crystals (Falter etaI1984a, b, 
1985a, b, c, d). This method has led to models of bonding in solids as well as of lattice 
dynamics. The recent calculations of the phonon dispersion of Si within the quasi-ion 
model is extended to investigations of the phonon dispersion of Ge and GaAs. Finally, 
in 0 5 the quasi-ion approach is used to express the electron-phonon interaction in terms 
of quasi-ion (-atom) potentials. By this procedure it has become possible to include 
approximately the information about the charge density redistributions which 
accompany the displacements of the ions into the electron-phonon interaction. An 
application is presented for Si and compared to previous investigations within the rigid- 
ion approximation. 

2. Formal theory of lattice dynamics and the renormalised density response function 

We shall not review the derivation of the theory as originally worked out by Pick et a1 
(1970) and Sham (1969). Instead we start from a formulation already proposed by Brenig 
(1954,1955) and Leibfried (1955). Their derivation is based on the Hellmann-Feynman 
theorem, which provides the following expression for the electronic contribution to the 
force in i-direction exerted on an ion located at RA = Ra + Ra in short A = a + a) in the 
crystal. a and adenote the cell and the non-primitive basis indices of the crystal structure. 
Accordingly we have 

aE[ . . .  A' . . . I  aH 
EFA = = (VI IW). aA j 

H is the Hamiltonian of the electrons in the field of the fixed ions (adiabatic approxi- 
mation) and 'v, the corresponding many-electron ground-state function depending on 
the electronic coordinates rl . . . r, as well as on the coordinates { . . . A' . . . }of the ions 
as parameters. From equation (1) we obtain the expression 

a 
aA i 

EF;' = dup(r; [ . . . A ' .  . . 1) - V,(r  - A )  

because H contains the coordinates of the ions only through their potential energy: 
" 

p is the electronic density depending on the coordinates of the ions as parameters. 
Differentiating equation ( 2 )  with respect to a second ionic coordinate (B j )  yields for the 
electronic part of the harmonic force constants 

which can also be written (using translational invariance) as 
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The correspondence to linear response theory is easily accomplished by noting that in 
case of small ionic displacements (harmonic theory) the change of the electronic density 
can be expressed by the density response function D 

a 
aA i 

a 
- p( r )  = Pf ( r )  = d V'D(r,  r ' )  - V,(r' - A ) .  aA 1 

The vector field PA(r)  has the meaning of the charge density variation caused by a unit 
displacement of ion A and plays a central role in the definition of quasi-ions in 0 4. The 
phonon frequencies w,(q) and the corresponding normal modes of vibrations eW(qu) 
are determined by diagonalisation of the dynamical matrix t(q), which is the Fourier 
transform of the force constants. q is a wave-vector of the first Brillouin zone and U 

numbers the normal modes for a definite q-vector. The microscopic expression for t(q) 
follows from equations (4-6) if the corresponding direct ion-ion contribution to the 
force constants is also taken into account. Thus we obtain 

t&B(q) = (M,MB)-"*(A;B(q) - 6, E At'(0)) ( 7 )  
Y 

with 

Af;B(q) = 'A$B(q) + EA$p(q). 

M ,  is the mass of the ion of type a in a cell a. The direct ion-ion term IA is treated 
following Ewald's method, resulting in ( B  = b + p) 

1 
'A;P(q) = - 2 (q + G)i (q + G)j exp{i[G. (R* - R B ) ] }  V',(q + G) vz G 

V ,  is the volume of the elementary unit cell, Z, is the ionic charge, G is a reciprocal- 
lattice vector and r ]  is the convergence-parameter of the Ewald procedure. The electronic 
contribution to the dynamical matrix 'A is described by the (static) density response 
function D and the bare-ion pseudopotential VA(r) or its form factor V"(q + G )  by the 
relations 

1 
EA;B(q) = - 7 Vk*(q + G) D(q + G, q + G ' )  V { ( q  + G') (11) 

2 G,G' 

with 

v;Si(q + G )  = -i(q + G ) ~  va(q + G )  exp[-i(G -R@)]. (12) 
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The formulation given above presents a formal solution of harmonic lattice dynamics. 
An actual solution requires a detailed investigation of D which involves complicated 
quantum mechanical many-electron problems. In most cases definite calculations of the 
density response function start with the polarisability function n and the (inverse) 
dielectric function E - ~  using the relations (with the sign of n according to the definition 
in equation (15)) 

D = XE- '  = n(l + fin)-' 

ij = U - vxc. 

(13) 

(14) 

where we have introduced the effective electron-electron interaction 

U is the direct Coulomb interaction and U,, the exchange-correlation contribution. In 
order to visualise how the microscopic elements of the electronic structure and also the 
different problems enter the response formulation we give the self-consistent field 
expression for the polarisability for a crystal in Bloch basis, see e.g. Sham (1974) 

X (nk + qlexp[i(q + G') r]i n'k).  (15) 

From this equation we see that the microscopic elements like the particle statistics 
expressed by the Fermi factorsf,(k), the band structure ~ , ( k ) ,  and the wavefunction Ink) 
enter the expression for the polarisability. Two problems arise. We get a summation 
problem concerning the higher excited states (n ,  n ' )  which is rather slowly convergent 
(Van Camp eta1 1983), and also an inversion problem for E with respect to the reciprocal 
lattice vectors ( G ,  G'). In 0 3 we comment on a model which tries to overcome these 
problems at least approximately within the renormalised density response description. 
According to this method (Falter and Selmke 1980,1981) the density response function 
is subdivided into the response of a suitable reference system (0) and a complementary 
part where all the interactions are renormalised by the dielectric function of the reference 
system. This allows for a renormalised perturbation theory of the lattice dynamical 
properties of a solid. Such a transformation is achieved by choosing an arbitrary but 
suitable reference system characterised by a polarisability 5 and defining the remaining 
part A ,  by 

n = j Z + A  (16) 
A contains all the polarisation processes not considered in the reference system. Such 
a decomposition yields the following renormalisation transformation for the density 
response 

D[B, n] = n E - 1  = n(l + fin)-'+ D + (E- ' ) tDrE- '  (17) 

(18) D,[z ,  A] = he;' = A(1 + EA)-' 

(19) D =nE-l = n(1 - + fin)-' 

E - l [ 6 ,  n] + &;1E-'. (20) 

with 
- 
ij = E-16 

and 
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Equations (16-20) reveal the effect of the renormalisation on the density response 
function: the 'change of scale' induced by the decomposition of the polarisability in 
equation (16) allows for a partition of the density response function D in equation (17). 
The latter is expressed by the sum of the response of the reference system D and a 
remaining term, which contains only renormalised quantities. Inserting now equation 
(17) into equation (1 1) results in acorresponding decomposition of EA and the dynamical 
matrix t into ionic ('A), 'reference' (EA), and renormalised (EAr) contributions, i.e. 

Atb(q) = 'Afb(q) + E A t b ( q )  + EArb(q). (21) 
The detailed form of the particular terms is given by Falter et a1 (1984~). 

3. A renormalised density response model with application to Si, Ge and GaAs 

First we give a short review of the renormalised density response model as proposed 
by Falter et a1 (1984~) for an approximate description of the dielectric properties in 
semiconductors and being applied to the calculation of the phonon dispersion of Si. In 
the renormalised density response description discussed above the polarisability iz is 
decomposed according to equation (16) by separating the polarisation processes within 
an effective gap approximation into contributions from the lower and higher excited 
states. Then, the inversion problem is solved in the subspace of the lower excitations ( Z )  
while the effect of the higher excited states, which are contained in A ,  is treated in 
perturbation theory using a closure approximation. In this way the inversion and the 
cut-off problem are handled in the same approximation. It should be noted that the 
procedure differs from the type of calculations by Van Camp et a1 (1979a, b) where the 
energy denominators appearing in the polarisability function are put to a constant value 
equal to the Phillips gap for all type of states and closure is used to sum over all the 
intermediate states. The decomposition of iz in our model is given in Fourier space 
representation by 

n(q + G ,  q + G ' )  = Z(q + G ,  q + G ' )  + A(q + G ,  q + G ' )  (22) 
with 

and 

A(q + G, q + G ' )  = 'A(q + G, q + G ' )  + "A(q + G ,  q + G ' ) ,  (24) 
where and "A represent the separable and non-separable part of A ,  respectively: 

( p :  valence charge density.) In deriving these formulae the projection operators appear- 
ing in the effective gap approximation have been expressed in a localised representation. 



506 C Falter et a1 

For the Fourier transformed overlap densityf", d' between the localised basis functions 
(rlap) belonging to valence states (V) and conduction states (C), respectively, this leads 
to 

f;+G = f,"'t"kP = j d v (a'p' I4 exp[i(q + G )  * 4 (rlap) (27) 

( p  E valence states, p' E lower conduction states.) 

9 + G  d v  (a'p'lr) exp[i(q + G )  r](rlap). (28) d i + G  E da'P'aP = 

( p  E valence states, p' E lower conduction and valence states.) Now the corresponding 
density response function of the reference system 0, which is defined by 5, follows as 

with 

With the help of equations (17,18) and the equations (1-9) the contributions EA, EAr to 
the dynamical matrix can be calculated. Up to linear order in A we obtain 

1 
EAcfi((q) 'I = - -E vz aa' T $ ( q ) ( l +  B ( q ) ) i i , T s j ( q )  (31) 

and 

EI\.Tfi(q) EAfyfi(q) + EI\yfi(q) 

with 

"AYfi(q) = - - 1 
vF(q + G )  'A(q + G, + G ' )  vi(q + G ' )  v, G,G' 

In equations (34,35) the following definitions have been used 

(33) 
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and 

Finally, because the double-gap approximation as used by the above equations over- 
estimates the influence of the highest excited states we modify the polarisability by 
approximately taking into account the increase of the energy for these states. Instead of 
assuming a constant value for AEh we choose a lower limit AEh > AE,, where AEl is 
determined from the lower maximum of the optical spectrum and apply an effective- 
mass approximation for the diagonal elements of n in the limit IGl+ = 

hEh+ AEh + /q + GI2/2m*. 

For the non-diagonal elements in A we assume AEh to have the form of a product 

A&+ h&(l + Alq + 
A = (2m*AEh)-' 

(1 + A / q  + G'I2)lI2 

for m* we take the free-electron mass which is correct for /GI + =. For the localised 
wavefunctions (rlup) entering the overlap densities f" and d' we assume bonding and 
anti-bonding functions centred in the bond directions. These functions are constructed 
from a set of ansatz functions which are expanded in terms of gaussians for computational 
reasons. The ansatz functions are then orthonormalised in a way that the function on a 
given bond and its six back bonds are orthogonal (Selmke et a1 (1984)). The bonding 
functions correspond to the four valence bands and the anti-bonding functions represent 
the four lowest conduction bands. The additional input quantities for the model are the 
ionic pseudopotential V ,  and the exchange-correlation contribution uXc of the effective 
electron interaction 8. For the pseudopotential we use a soft-core potential of Appel- 
baum-Hamann type and for U , ,  an approximately screened Coulomb potential which 
takes approximately into account the semiconducting gap in the screening of the Cou- 
lomb interaction. For the details concerning the determination of the wavefunctions, 
the potentials and of the exchange-correlation contributions we refer to Falter et a1 
(1984a) where this model was applied for the calculation of the density response function 
and the phonon dispersion of Si. In particular the influence of the higher excited states, 
the larger reciprocal lattice vectors, determining the dimension of the dielectric matrix 
in reciprocal space, and of the exchange-correlation contributions U , ,  was investigated. 
The main results are summarised as follows: 

(i) In order to obtain convergence for the phonon frequencies a sufficient number of 
reciprocal lattice vectors has to be summed. The actual number depends on the kind of 
pseudopotential used. If higher excitations are taken into account in the calculations of 
D, 331 reciprocal lattice vectors have to be considered. Neglecting higher excitations, 
169 are sufficient. The reason for this lies in the fact that the contribution A and in 
particular " A  decreases only very slowly with increasing /GI. For this reason direct 
inversion in reciprocal space is very difficult. 

(ii) Neglecting higher excitations leads to optical phonon frequencies being far too 
high. This is true in RPA as well as in the calculation including approximately exchange 
correlation contributions in 8. A reason for this behaviour can be found in the fact that 
ignoring the polarisation processes of the higher excited states leads to an insufficient 
amount of screening charge in the case of these phonon modes. The stronger distortions 
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of the local environment in these modes correspond to more important contributions to 
the charge redistribution from high excitations. Neglecting those leads to an insufficient 
(short-ranged) screening. 

(iii) For the transverse acoustic modes, both effects, neglecting higher excited states 
as well as exchange correlation leads to imaginary phonon frequencies. 

We conclude from these investigations that a reliable model for the density response and 
phonon dispersion in covalent crystals should include a sufficient number of reciprocal 
lattice vectors, higher excited states and exchange-correlation corrections. 

In our calculations of the phonon dispersion of Ge  and GaAs we have used the same 
type of ansatz functions, pseudopotentials and exchange-correlations as for Si; the model 
construction is completely analogous to that given previously (Falter et af 1984~).  The 
parameters involved in the ansatz functions are obtained by adjusting them to give a 
reasonable first approximation of the valence charge densities of Ge and GaAs. AEl  is 
determined from the lower maxima of the corresponding optical spectra and AEh/AEl,  
is obtained by fitting it to the macroscopic dielectric constant E,. Finally the parameters 
of the Appelbaum-Hamann-type pseudopotentials are chosen from a fit of the phonon 
dispersion at 0.4(2n/a) in the A-direction and at the X-point. For internal consistency 
this procedure should then be checked by recalculating the charge density p from the 
obtained model density response function D and the corresponding pseudopotential V,. 
This can be achieved by using equations (3&40), which also play a central role for the 
construction of the quasi-ion model discussed in 0 4. Such an investigation has been 
performed earlier by Falter et a1 (1985a) in case of Si. It was found (figure 2 of Falter et 
a1 198%) that the result for p determined in this way agrees rather well with band- 
structure calculations (Chelikowsky and Cohen 1976, Wang and Klein 1982). A similar 
quality for p is now obtained within the model construction as described above for Ge 
and GaAs. As an example we have displayed the result for the valence charge density 
of GaAs when calculated with the help of equations (38-40) in figure 8(a). As in Si and 

A 

Figure 1. Phonon dispersion of Ge along the main symmetry directions A ,  Z and A (full 
curves) as calculated from the model-density response function within the renormalised 
density response approach. The dotted curves represent the spline fitted experimental 
results. 
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Ge the agreement with band-structure calculations (Walter and Cohen 1971, Cheli- 
kowsky and Cohen 1976, Wang and Klein 1982) is satisfactory. 

The actual calculations have been performed with 331 reciprocal lattice vectors and 
take into account higher excited states and exchange correlation. The results for the 
phonon dispersion is shown for the main symmetry directions in figure 1 for Ge and 
figure 2 for GaAs. For a comparison the earlier calculations for Si have also been 

r X r L 
h r A 

Figure 2. Phonon dispersion of GaAs along A ,  X and A (full curves as calculated within the 
renormalised density response model). The full circles represent the experimental data. 

reproduced in figure 3. Our calculations for Si, Ge and GaAs show that for most of the 
phonon frequencies we obtain satisfactory results. The difficulty concerning the LA mode 
for q + 0, i.e. the violation of the acoustic sum rule (ASR), which is also inherent in other 

0 0.5 1.0 0.5 0 0.25 0.5 

A L  
r r X 

r L i  

Figure 3. Phonon dispersion of Si as reproduced from our earlier calculations (Falter et a1 
1984~).  
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microscopic calculations using the dielectric response approach (see e.g. Resta et a1 
198l), is largest for Si and improves considerably for Ge and GaAs. The other critical 
q-space region in our calculations in Si was the region around the K point (0.75(27c/a)) 
in the Z direction. Here the deviation of the calculated frequencies is still relatively large. 
This is particularly true for GaAs. In spite of this shortcoming at special q-points the 
overall agreement with the experimental data is sufficient, especially if one considers 
the simple treatment of the electronic energy bands in our model by a modified gap 
approximation and the restricted range of overlap of the wavefunctions. A possible 
improvement of the phonon dispersion could be expected essentially from three different 
sources: the inclusion of the band structure of the lower conduction bands, an extension 
of the overlap region of the wavefunctions and finally by including the next-order term 
of the renormalised series expansion in ‘‘6,’’. 

4. A quasi-ion description for lattice dynamics with application to Si, Ge, GaAs 

The calculations of the phonon dispersion reported so far are based on a modelling of 
the density response function. In this section we shall discuss an alternative approach, 
the quasi-ion model, which is derived within linear response theory from a unique 
decomposition of the valence charge density p into contributions of the individual ions. 

Recently, we have given such a decomposition of the total valence charge density 
p ( r )  of a crystal into parts (partial densities p,(r)) which are uniquely assigned to the 
different sublattices or ion species a, respectively (Falter et a1 1984a, 1985a, d),  i.e. 

The decomposition of the valence charge density is obtained from the acoustic sum rule 
(Keating 1968,1969, Pick et af 1970, Sham 1969) of the charge density. In Fourier space 
we obtain for these partial densities 

and the decomposition can be expressed as 

p(G) = lim z P a ( 4  + GI. 
q-0 a 

The bare Coulomb potential is 

vb(q)  = -iqj 4n/q2. (40) 
These relations are related to the invariance of the system under rigid translations of the 
potential and provide a condition between the charge density and the two-particle 
response function. More general sum rules relating the N-particle density response 
function with the (N + 1)-particle response function can be obtained from invariance 
under rigid translations and rotations of the system. This is analogous to the Ward 
identities in quantum field theory as a consequence of gauge invariance of the lagrangian 
under consideration. Physically the decomposition as provided by equations (38-40) 
expresses the fact that the static density of a crystal can be calculated from the partial 
densities which are determined by displacing the ions. 

The ion cores located at R” together with the corresponding distributions of electronic 
charge pa define the quasi-ions in a crystal. The introduction of these charge densities 
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as composite entities building up the crystal can be considered as a generalisation of 
Ziman's neutral pseudo-atoms in simple metals (Ziman 1964,1972). This idea has been 
formally generalised in the work of Ball (1975) leading to a separation of the charge 
density which would be equivalent to determining pa from the ASR. Recently, Pickett 
(1986) has carried out a calculation for the pseudo-atom charge density in Si using the 
method of Ball. His result is similar to our calculation for the partial charge density for 
Si according to equation (39) which is reproduced in figure 4 (Falter et aZ1984a). The 
most remarkable features shown by pa are: 

(i) It is highly anisotropic with maxima at about 4 of the bond length reflecting the 
tetrahedral symmetry of the local environment. 

(ii) The enhancement of the density response in the bond directions leads to a very 
effective (anisotropic) screening of the ionic potential at short distances. On the other 
hand this overscreening gives rise to space regions surrounding the neighbouring ions 
where the electrons are pushed away resulting in negative minima. For a detailed 
discussion of the bonding mechanism in covalent crystals in terms of quasi-ion densities 
we refer to Falter er a1 (1984a, b, 1985a, b). 

Figure 4. Partial density p l ( r )  in the (0 i 1) plane for one sublattice of Si. Bonds lying in the 
plotted plane are indicated by broken lines, atoms are indicated by full circles. p1 is in units 
of electrons per cell. The coordinates are in units of a (lattice constant). 

For lattice dynamical applications the quasi-ion picture can be used to achieve a 
decomposition of the displacement induced changes of the valence electron density 
described by the vector field P"(r) from equation (6) into two parts (Falter et a1 1985d) 

PA(r )  = Vp"(r) + V x w"(r) (41) 
with 

p"(r) = - - [ d V'Vu(r - r')  P"(r') 
1 
4n 

1 a 
4n i aAj = - - [ dV '  dV" 2 vi(' - r ' )  D(r ' ,  r") - Va(r" - A )  (42) 

(43) 
1 

WA(r) = - J dV'V x (u(r  - r ' )P"(r ' ) ) .  
4n  
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The fields @ ( r )  and WA(r) are not independent from each other and are controlled 
by certain invariance requirements like the ASR. In the decomposition according to 
equation (41) the gradient term represents the density distribution (the ‘quasi-ion’) 
which follows rigidly the motion of the ions, while the remaining term is due to the 
distortion during the motion. The relative importance of the two contributions on the 
charge density redistributions induced by certain phonon modes and on the phonon 
dispersion itself has been investigated in Falter er al(1985d) for Si. The numerical results 
for Si indicate that a model description of lattice dynamics of covalent crystals in terms 
of rigidly displaced partial densities yields an adequate approximation for most of the 
phonon frequencies. 

In the approximation of rigid partial densities, i.e. neglecting the distortions in 
equation (41) and equations (4-6) , the dynamical matrix gets simplified drastically 
compared to the full expression from equations (7-12). The electronic contribution to 
A is (in a short notation) 

with 

P:(q  + G) = -i(q + G)jpB(q + G) exp[-i(G * R @ ) ]  (45) 
and 

This approximate formulation of the theory reduces the expense of calculations to a 
large extent, though being strictly based on the quantum mechanical response theory. 
The ion and its screening cloud of electrons represented by the partial density pn can be 
treated as the basis for calculating phonon frequencies, charge density redistributions, 
and the electron-phonon interaction (see Falter et af 1985d). So it is very appealing to 
propose model calculations based directly on the microscopically well determined partial 
densities. 

We have constructed a model (Falter er a1 1985c, d) for the partial density of Si by 
expanding p,(r) in terms of a set of spherical gaussians, while requiring also that the 
total density p( r )  is described as well as possible by the superposition of these model 
partial densities. Using these partial densities together with the Appelbaum-Hamann 
potential (Appelbaum and Hamann 1973) we obtain the phonon dispersion for Si as 
reconstructed in figure 5 using equations (44-46). These curves show good agreement 
with the experimental data with some deviations for the TA branches which could be 
expected from our calculations (Falter er a1 1985d) where the additional flattening was 
shown to arise from the distortion contributions of the density response. Because the 
anisotropic shape of pn introduces a certain violation of rotational invariance for the 
force constants if distortions are neglected these deviations of the phonon frequencies 
(being largest at the zone boundary in diamond structure) are a measure for the import- 
ance of satisfying rotational invariance. 

In the case of Ge and GaAs we use an analogous model description for p,(r) in terms 
of spherical gaussians requiring also that the total density p(r)  is described as well as 
possible by the superposition of these model partial densities. As in the direct density 
response model described in 0 3 the ionic pseudopotentials we assumed to be of Appel- 
baum-Hamann type. Such a model construction appears to be useful, because we know 
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from the Hohenberg-Kohn theory (1964) that the charge density p plays a central role 
in the determination of the cohesive and dynamical properties of the lattice. For the 
actual representation of the model density for Ge we have used a simple set of three 
gaussians centred on an ion and another three functions centred along each of the four 
bond directions. The result is very similar to that in the case of Si and therefore not given 
here. In the case of GaAs an additional function is placed along the directions to the 
second neighbours and another one on the back-bond axis of the nearest neighbours. 

The results of our calculations within the rigid partial density model for Ge and GaAs 
are shown in figures 6-10. The results for the partial densities of Ga and As in GaAs are 
displayed in figures 6 and 7 respectively. Both distributions exhibit the qualitative 
features already discussed in connection with the partial density of Si. In the case of Ga, 
however, the bond maxima show an outward relaxation towards the As-ion and a less 

Figure6. Partial densityp,,(r) in the (07 1) plane of GaAs. Description of units, coordinates, 
bonds and ions as in figure 4.  
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( - 0 . 4 ,  - 0.125 ,-0.125) (0.6,-0.125, -0.125) 

Figure7. Partial density p,,(r) in the (07 1) plane of GaAs. Description of units, coordinates, 
bonds and ions as in figure 4 .  

Figure 8. (a )  Valence charge density p of GaAs in the (Oil) plane as calculated from 
equations (38-40). Bonds lying in the plane are indicated by broken lines, ions are marked 
by full circles (As, lower left; Ga, ucper right). pis in units of electrons per cell. ( b )  Valence 
charge densityp(r) of GaAsin the (011) plane asobtained by superposing the partialdensities 
from figures 6 and 7.  
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deep negative minimum region at the neighbouring ions. This could be expected for 
physical reasons because the ionic potential is less attractive. The partial density of As, 
on the other hand, is higher as well as more localised in the bonds which derives from 
the fact that the As potential is more attractive than the Ga potentials in the environment. 
Moreover, the bond maxima show an inward relaxation towards the As ion opposite to 
the relaxation in Ga. Altogether we observe a contraction of charge at the anion site. 
Figure 8(b) is then the valence charge density of GaAs as obtained by superposing the 
partial density of the Ga ion with the partial density of the As ion. 

Our results for the phonon dispersion curves of Ge and GaAs within the quasi-ion 

Figure 9. Phonon dispersion for Ge (full curves) as calculated from the rigid partial density 
model. Experimental data are represented by a spline fit (dotted curves). 

model are given in figures 9 and 10 for the main symmetry directions A ,  C and A. The 
calculations are of similar quality as our earlier results for Si in figure 5 ,  In particular the 
deviations at the X-point should also be due to distortions as it is the case in Si. For ionic 
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Figure 10. Phonon dispersion of GaAs within the partial density model. The calculations are 
compatible with the partial densities from figures 6,7.  Experimental data are given by dots. 
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Figure 10. Phonon dispersion of GaAs within the partial density model. The calculations are 
compatible with the partial densities from figures 6,7.  Experimental data are given by dots. 
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crystals of zincblende structure like GaAs the symmetrisation used in equation (44) leads 
to a violation of effective charge neutrality and as a consequence the ASR and the LO-TO 
split for the frequencies at the r-point are not correctly reproduced. The condition for 
satisfying the ASR within the rigid partial density model is obtained to be 

ZuPg(4+ 0) = ZgPu(d+ 0) 
which is obviously violated when inversion symmetry is broken as is the case for GaAs. 
The violation of this equation is also a measure for violation of the ASR. Furthermore in 
order to obtain the correct LO-TO split at the r-point the following charge correction has 
to be included in ‘A in the limit q -+ 0: 

where Zk,B is the longitudinal (Callen) charge (see Falter et a1 1985a). With this cor- 
rection term the ASR is satisfied, too. 

Summarising we can say that the rigid partial density model evolving from the 
microscopic response theory seems to be a very promising basis for future calculations. 
Improvements c m  be expected by extending the present model to also include distortion 
contributions yielding an improved description in particular for the TA modes. Such 
extensions are currently being investigated and a few remarks can be made here. In the 
case of non-spherical partial densities this approximation is equivalent to introducing 
general anisotropic two-body forces which reduce to central forces for spherical densit- 
ies. On the other hand proper three-body (and higher many-body) forces can be intro- 
duced into the quasi-ion description by coupling the charge density variation induced by 
displacing an ion A to the positions of the neighbouring ions maintaining rotational 
invariance. 

A simple model being now investigated includes as a special type of distortions 
rotations of the (non-spherical) partial densities of the neighbouring atoms ( N ( A ) ) ;  it 
leads to the following contribution to the distortion part of the vector field P A :  

Here the parameters of rotation @ can be chosen in order to guarantee rotational 
invariance. 

Such an extension of the rigid partial density model points in a similar direction as a 
discussion recently given by Kane (1985), where it is noted that the usual interpretation 
of the bond bending interaction used in empirical models is in a sense misleading since 
it implies that the bond remains straight and the angle between bonds changes. A better 
picture seems to be a set of rigid tetrahedrally oriented hybrids on each atom which are 
free to rotate relative to each other. Unfortunately, such a model is difficult to realise 
and so it was abandoned by Kane. 

5. Application of the quasi-ion description to the electron-phonon interaction 

The basic quantity to be calculated in the electron-phonon interaction problem is the 
change of the total self-consistent crystal potential v t ( r )  felt by an electron at space 
point r in the case of a unit displacement of ion A in the i-direction. For small enough 
ionic displacements, we can use for the calculation of V $ ( r )  linear response theory. 
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Accordingly we have (Pickett 1979, Falter et a1 1985d) 
a 

dV 'C l ( r ,  r r )  - Va(rr - A )  
aA ; (47) 

or in compact notation 

(48) V A  - - E-lVyt = (1 - OD) vyt = Vf - d P f .  

Equation (48) shows that the vector field P A  and its decomposition into rigid and 
distortion parts from equation (41) is likewise of great importance for the calculation of 
the electron-phonon interaction as in microscopic lattice dynamics. 

Almost all approximations for Vf are versions of the rigid-ion approximation which 
assumes that the V$ are derivatives of some atomic potentials u,(r - A )  which sum up 
to give the 'band-structure potential' 

V(r) = U , ( T  - A ) .  (49) 
A 

Following this procedure no contributions of the distortion parts of the field P' are 
taken into account and the rigid part remains completely arbitrary. Furthermore no 
information on the charge density redistributions induced by the displacements of the 
ions is contained in the potentials. A typical modelling of the rigid part is for example 
provided by the rigid muffin-tin approximation (Gaspari and Gyorffy 1972, Evans er a1 
1973). 

The arbitrariness in the procedure to divide the potential into atom-like contributions 
is overcome in the work of Pickett (1979) in a way that is mathematically similar to the 
approach of Ball (1975). Pickett has shown that the total crystal potential can be uniquely 
divided into atom-like potentials which move rigidly with the ions. Additional non-rigid 
contributions to the potentials are due to the distortions. 

Our method of decomposing the valence charge density p with the help of the ASR 
into partial densities pa is equivalent to the method of Ball and Pickett. Consequently it 
is also possible to express the potentials of the quasi-atoms (or quasi-ions in ionic 
compounds) in terms of the pa. The rigid partial density approximation of Vf from 
equations (47,48) means, when expressed in Fourier space representation, that the full 
expression 

E & - y q  + G ,  q + G ' )  V t ( q  + G ' )  

VfP"(q + G )  = +i(q + G I ,  vEP(q + G )  

(50) 

(51) 

C' 

should be approximated by 

where the effective electron-phonon potential VE'(q + G )  is defined in terms of the 
partial densities by 

VE,P(q + G )  = Va(q + G )  + d ( q  + G )  pa(q + G ) .  (52) 
In equations (51, 52) we have assumed a diagonal approximation for the effective 
electron4ectron interaction d which means a diagonal approximation for exchange 
correlation. We note, that in case of a non-diagonal exchange-correlation contribution 
U,, to d the form-factor for the crystal potential has to be determined from a more general 
expression, i.e. 

x D(q  + G", q + G ' )  v p  + G ' ) .  (53) 
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This form reduces to equation (52) for a diagonal vxc. 
In the work of Allen and Cardona (1981, 1983) on the temperature dependence of 

the energy bands in Si and Ge the contribution deriving from the renormalisation of the 
band energies by electron-phonon interactions is calculated by taking for the expression 
from equation (50) a rigid pseudo-ion model where (50) is replaced by 
i(q + G ) ,  V(q + C ) .  The numerical values for the (screened) form factor V(G) of the 
pseudopotential are taken from band theory (Cohen and Bergstresser 1966). In this 
approach the ambiguity in the pseudopotential components V(q + G )  for q # 0 is still 
present because in reciprocal space an infinite variety of curves V(q)  can be drawn which 
pass through the known values V(G) when q = G. Allen and Cardona (1983) assume for 
the pseudopotential of Si to pass through the Cohen-Bergstresser (1966) empirical 
values of V(C) for G # 0. For the extrapolation of V(q)  for q+ 0 two choices have 
been considered. One uses V(0)  = -$eF, eF: Fermi energy (Allen and Cardona 1981, 
1983; for a similar choice see also Glembocki and Pollak (1982)). The other, pro- 
posed by Bednarek and Rossler (1982), assumes a very different extrapolation taking 

Our calculation for the electron-phonon potential pp(q) for Si from equation (52) 
is displayed in figure 11 for the A and 2 directions and should be compared with the 
form-factor interpolations as listed by Allen and Cardona (1983). For comparison we 
have also included the Cohen-Bergstresser (1966) values as dots. Our potential uses the 
same partial density and bare ion potential as has been used in the calculation of the 
phonon dispersion displayed in figure 5 and therefore includes a good deal of information 
on the charge density redistributions of the electronic system when the ions are displaced. 
The expression for U,, was taken from Falter et a1 (1984c, equation (52)). 

V(q+ 0 )  = 0.  

0.2 

0 

-0.2 

- 
0 z 

-0.4 E 
1 

-0 .6  

-0.8 

I I I I 

I I I I 
10 20 30 LO 

q ( l i a i  

Figure 11. Effective electron-phonon potential VEp(q) for Si according to equation ( 5 2 )  for 
q along A (full curve) and I: (broken curve). The Cohen-Bergstresser values (1966) are 
indicated by dots. 

We observe some anisotropy in VEp(q) for different q-directions. The q+ 0 limit of 
our potential is a bit larger than the extrapolation of about -0.84 Ryd by Glembocki 
and Pollak (1982). In figure 12 we have shown a contour-line plot of the direct space 
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Figure 12. Contour plot of the Fourier transformed effective electron-phonon potential for 
q-’ 0 of one sublattice of Si in the (07 1) plane. Units are in (e2/4ne,9) (l/Vz). Bonds in the 
plane are indicated by broken lines. 

representation of this quasi-ion potential in the (0, -1, 1) plane. As a characteristic 
feature we observe a spherical shape of the potential in the neighbourhood of the ion 
and a ring-shaped minimum at a distance of about Q of the bond length which is just the 
distance at which the bond maxima of the partial densities are located. On the other 
hand, the potential as well as the partial density are fairly flat in the interstitial region. 
Moreover, in these most open parts of the structure the potential is repulsive and non- 
spherical. 

From the present status of our investigations, we think that the analysis of the phonon 
dispersion as presented in 0 4 and of the electron-phonon interaction according to 0 5 ,  
eventually with an improved representation of the partial densities and an inclusion of 
distortions, will provide a useful area of study for future work. 
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