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Abstract. The change in potential when an ion is displaced is shown to have pseudoatom 
qualities i.e. the total potential can be divided exactly into atomic-like potentials which 
move rigidly with the ions to first order in the displacement. An additional non-rigid potential 
arises under the ionic distortion. Relations between the pseudoatom potential and the pseudo- 
atom charge density of Ball, which is mathematically similar, are pointed out. Some pre- 
vious approximations to the dielectric screening are shown to be inconsistent; it is suggested 
that, for transition metal systems, a consistent treatment of the pseudoatom potential may 
be necessary to achieve further progress. This pseudoatom behaviour of the potential will 
have consequences for lattice dynamics and the electron-phonon interaction. 

1. Introduction 

In the adiabatic approximation, electrons in a molecule or solid respond instantaneously 
to the motion of the ions. When a single ion is displaced from its equilibrium position, a 
change in the electronic charge density results. In the early (weak) pseudopotential 
theory, the concept of a ‘pseudoatom’ was developed (Ziman 1964). An ion, together 
with a rigidly attached charge distortion and accompanying potential, could be treated 
as a single entity. This pseudoatom could be used to construct two-body potentials, 
and hence to calculate dynamic properties such as phonon spectra and liquid-metal 
structure factors. This simplification unfortunately survives only to lowest order in the 
pseudopotential: higher-order terms introduce N-body interactions, where N >, 3, 
and the pseudoatom concept loses its usefulness. 

Ball (1975) made the important observation that a pseudoatom concept for the charge 
density of any solid can be retained, to first order in the ionic displacements. His main 
result, that the total electronic charge density can be decomposed uniquely into ‘pseudo- 
atom’-like contributions which move rigidly with the nuclei, is a conceptual breakthrough 
which facilitates understanding of the processes that are involved and suggests the con- 
struction of reasonable approximation schemes, even if it does not simplify exact cal- 
culations. This new pseudoatom also contains a non-rigid charge density distortion 
and, we emphasise, is valid only to first order in the nuclear displacements. 

We develop a similar ‘decomposition theorem’ for the total one-electron potential, 
We find that, to first order in nuclear displacements, the potential decomposes straight- 
forwardly into components which move rigidly with the nuclei. This ‘rigid-atom-like’ 
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potential is supplemented by a non-rigid potential, mathematically similar to the corre- 
sponding charge distortion. This separation of the potential is qualitatively different 
for simple metals, transition metals and compounds, covalent semiconductors, and 
insulators. Our primary interest here is in transition metal systems, where poorly 
understood peculiarities in electronic screening are known to produce phonon anomalies. 
These anomalies have been strongly correlated with high-temperature superconductivity 
and reflect actual or incipient lattice instabilities. The potentials we describe ultimately 
become the basis of many electronically-driven phase transitions. In particular, we are 
interested in structural instabilities and the superconducting transition. 

The plan of the paper is as follows: after presenting the theorem in § 2, we discuss in 
5 3 the relationship between the pseudoatom potential and the pseudoatom charge 
density. A reformulation of the screening problem in crystals in terms of the pseudoatom 
potential is presented in Q 4, where two widely used approximations are reviewed. Section 
5 contains a short discussion of the role of the pseudoatom potential in lattice dynamics. 

2. The decomposition theorem 

The many-body problem of N interacting electrons in a region of external potential 
~ j , ~ ~  is usually reduced to a one-electron problem involving an effective potential c. 
In this 'mean-field approximation' the potential v(r, R) is a parametric function of the 
nuclear coordinates ( R j )  R. The change, S jv  5 &(r; R)/BRj, of the potential per unit 
displacement of nucleus j is a vector field which can be decomposed into its irrotational 
and purely rotational parts: 

GJc(r, Ro) = - V U ~ ( V  - Rp) + V x wJ(v - Rp), (1) 

where the equilibrium position of atom j is denoted RY. In this equation, uj may be inter- 
preted as a potential which moves rigidly with the nucleus and is defined only to within 
a constant. The potential oj is undetermined to within the gradient of an arbitrary scalar 
function and describes non-rigid potential distortions around RY. 

and oJ to be defined (uniquely) through the Helmholtz 
construction 

It is reasonable to consider 

u J ( r  - RP) = -(1/4n) [V x Sjv(v', Ro)/I Y - Y']] d3r' (2b) 

although only Vuj  and V x oj are physical quantities. Of course Sjv ,  which we refer to 
as the pseudoatom potential, is determined from the electron dynamics; equations (2a) 
and (2b) are simply more explicit forms of equation (1) which eliminate the arbitrariness 
in uJ and oj With these definitions it follows that u j  and oj vanish at large distances. 
Some mathematical details relating to equations (2a) and (2b) and to the manipulations 
which follow, are given in the Appendix. 

Translational invariance implies that, for a rigid displacement of the system by an 
amount E .  

~ ( r  t E. Ro + E )  = ~ ( r ,  RO). (3) 
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Expanding in powers of 1 E 1, we have 

zj(r + e, Ro + E) = v(r, Ro)  + E. VU(V, Ro) + 6,v(r. Ro)  + @e2) (4) 
1 1 

and upon using equation (1) and (3 ) ,  the first-order term gives 

Since the first term is irrotational and the second is purely rotational, they are each 
identically zero. Thus we have 

j 

up to a constant,'which can be made zero by a trivial shift of the scale of L. and 

C W ~ ( Y  - RY) = Vf(r). 
.i 

(7) 

Accepting equation (2b) as the definition of oj requires in addition that the scalar func- 
tion f be harmonic: 

V'f = 0. (8) 

Gathering these results together, we find that the total potential v can be written, 
to first order in SR, = R j  - RY, 

u(r,R) = C { u j ( r -  Rj)  + 6 R j .  [V x WJ(Y - R y ) ] )  
j 

(9) 

In making the change RJ" -+ RI in the argument of uJ ,  we have changed only second- and 
higher-order corrections, which do not concern us here. 

Equation (9) holds for a collection of nuclei at arbitrary positions RP. Although Ro 
will ordinarily be an equilibrium configuration in applications, no such requirement 
has been used in the derivation. There are two important consequences: firstly, the total 
potential decomposes into rigid-atom potentials uj given by equation (2a), and secondly, 
an atomic displacement gives rise to two potentials with distinctive characters. Previous 
attempts to divide the potential into atomic-like contributions have been plagued by the 
arbitrariness believed to be inherent in any such procedure. The unique procedure given 
above constitutes the proper decomposition for calculating electronic transition rates, 
phonon spectra and any other quantities involving only first-order lattice displacements. 
The distinctive characters of uj and o, will be studied in subsequent sections. 

One important function of the relation (6) may be to provide a constraint on models 
of uj. For many crystalline systems it is now quite possible to solve for the self-consistent 
potentials v(r, RO). Calculating uj or 6,t; is a much more difficult problem, involving the 
computation of the full dielectric matrix or the self-consistent treatment of a large cluster 
with a single atom displaced from the reference configuration. Hence the introduction 
of models of, or approximations to, uj  becomes a reasonable approach. From equation 
(6) it follows that, for a crystal, uj can be expanded in lattice harmonics consistent with the 
point group of atom j .  (Similarly oj, or V x oj, can be expanded in the corresponding 
symmetrised vector harmonics.) Equivalent ions in a crystal will produce identical 
pseudoatom potentials. On the other hand, identical nuclei at inequivalent sites or in 
the amorphous state will be associated with different pseudoatom potentials. The new 
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and important restriction, is, of course, that C j u j ( r  - RQ)  must actually be a good 
approximation to c(v, RO), and that cjV x o J ( r  - RP) must vanish. We show in $ 3  
that u j  and w j  are not independent, since they arise from the same physical screening 
mechanisms. In addition, we discuss some of the approximations for the pseudoatom 
potential which have been used previously. 

3. Relationship of the potential to the charge density 

We discuss the connection between the change djn = ai+,. R)/aRj in the charge density 
n(r, R) where atom j is displaced and the corresponding pseudoatom potential Sjv. 
Ball’s original result is that the electron charge density can be expressed as 

valid to first order in the nuclear displacement. We do not include the nuclear (or ionic) 
charge in P , ~ .  Following the density functional formalism, we begin with the relation 
(Hohenberg and Kohn 1964, Kohn and Sham 1965) 

The dependence on nuclear coordinates will not be denoted explicitly unless necessary. 
The exchange-correlation potential p,, is the functional derivative, GExc[n]/Sn(r) ,  of 
E,,, the exchange-correlation contribution to the total energy, and uc denotes the 
Coulomb interaction. We can write 

dJc(u) = djveYt(u) + [t.,(u - U’) + u,,(u, u’)]djn(t) d3r‘ 

v,,(u, U’) E S p x , ( v )  Sn(v’) = d2Ex , /Sn(u)~n(r ’ ) .  

djuex,(U) = VVjex,(l’ - RjO). 

(12) s 
where we have defined an exchange-correlation interaction L’,, (F’ickett 1975) by 

(13) 

(14) 

The contribution from the external potential is rigid : 

Rigorously, v ix t  should be the nuclear potential - Z e / J  Y - RjI, but in practice, the diffi- 
culties in screening the bare nucleus require that the core electrons be removed from the 
problem and replaced by an effective pseudopotential. 

Defining the screening part of the rigid potential 

u . - u  -, j - UeJxt’ (15) 
substitution of equation (12) into equations (2a) and (2b) gives, after some manipulation, 
a Coulomb contribution 

and an exchange-correlation contribution 
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The Coulomb interaction preserves the ‘rotationality’ of the fields, so that the rigid 
charge produces a rigid potential and the rotational charge produces a rotational 
potential. The exchange-correlation interaction evidently produces complicated cross 
terms arising from its non-diagonality [vXc( r , r” )  # oXc(r - Y’)]. 

4. Screening of crystalline solids 

The decomposition of the potential that was achieved in 82 can be applied to study the 
screening of perturbations arising from lattice displacements and finally to give a better 
understanding of the restrictions imposed by the various approximations which have 
been used previously. We begin with a relation which defines the dielectric function E :  

6,v(r) = d 3 ~ ’ ~ -  ‘ ( r ,  Y ’ ) ~ ~ U ~ , ~ ( V ’ )  j p  
= - J d3r’e- ‘ ( r ,  r ’ ) V ~ ~ ~ , ( r  - Rg). 

We also introduce the polarisability x which describes the density response to an external 
perturbation, defined by 

djn(r) = d3r’x(r, r’)djueXt(r’) s 
and using equation (12), we find that 

E -  ‘ ( r ,  r ’ )  = 6 ( r  - Y‘) + 
is given by 

s V ( P ,  Y”)X(Y”, r ’ )  d3r“ 

where 
V(r ,  Y’) = uC(r - Y’) + uxc(r, r ’ )  

is the total electron-electron interaction. This relation in fact defines the electron dielectric 
function (Ballentine 1967, Kleinman 1967, 1968, Kugler 1975, Pickett 1975). The test- 
charge dielectric function is defined similarly but with U,, replaced by zero, since a test 
charge feels no exchange-correlation interaction; exchange-correlation corrections 
are of course still present inx. We show that the electron dielectric function enters naturally 
into lattice dynamical expressions. All of the above results hold for an arbitrary configura- 
tion of atoms. Now we restrict ourselves to crystalline solids. 

Defining the Fourier transforms appropriate for a crystal 

u{,~(Y) = 1 UiXt(Q + G )  ex~[i(Q + GI. VI 
Q, G 

E -  ‘(Y, r’) = 1 exp[i(Q + C) . Y]E(Q + G, Q + G’j exp [ - i(Q + (3’). I ” ]  ( 2 W  
QGG‘ 

where Q is restricted to the first Brillouin zone and G, G’are reciprocal lattice vectors, we 
insert equation (18) into equations (2a) and (2b) to find 
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Since the cross product vanishes if G = G’, wj  is seen to arise solely from the off-diagonal 
(G # G’) screening. There are contributions to uj from both diagonal and off-diagonal 
screening. 

In simple s-p metals a common practice is to use the (diagonal) electron-gas dielectric 
function to screen the bare electron-ion pseudopotential. In this approximation E(Y. v’) = 
E(r  - v’) and wj is zero. This procedure is consistent to first order in the pseudopotential 
and gives the traditional pseudoatom again. To higher order in the pseudopotential, 
which may have to be considered in this approach (Bertoni et a1 1974), the diagonal ele- 
ments of E are altered. In addition, the off-diagonal elements become non-zero, giving 
rise to a potential deformation wj,  and perturbation theory in the pseudopotential rapidly 
becomes complicated. 

Where the pseudopotential ~ z : ~  is weak, it has a linear relationship with the total 
potential v and E -  : 

~ ( r )  = d3r‘C ’( Y - u’)v::,(r’). (24) I 
Since the dielectric function E is a linear response function, this equation does not hold 
for strong potentials. Instead we have the relation (18), as for small displacements, Gjvext 
is small. There does however exist a generalisation of equation (24) to arbitrary potentials. 
If equation (23) is written in real-space form 

integrating by parts on r“ and summing overj  gives 

1 d3r’d3r” 
u(v) = + - ___ vexl (r”) [Vr , .  Vr.,c- ‘(Y’, v”)]. 

4z I l v -  r’l (24‘) 

Thus we have, from (6) and (18) a linear relation between v, vext and (uc multiplied 
by derivatives of) E - ‘ .  When E - ’ ( v ,  i )  = E-’(v  - v’), we can use Vp,. Vy, ,L- l (~‘ ,  r”) = 
- V:,E- ‘(v’ - v”) to integrate over v’ by parts to give equations (24). As stated above, 
E -  ’ is only diagonal for weak potentials, showing that equation (24‘) is consistent with, 
and indeed is, a generalisation of, equation (24). Equation (24) is, however, valid for 
arbitrary configurations R, as the screening of the pseudopotential is the same for the 
band structure (R = RO) and for lattice dynamics ( R  = Ro + 6R) (Heine et a1 1966). 
Equations (18) and (24’) show how these screening processes differ for strong lattice 
potentials. 

For semiconductors and insulators it has long been recognised that the G # G‘ 
matrix elements must be included consistently. Due to the lack of metallic screening, 
a diagonal approximation for E will not give acoustic modes with the correct long- 
wavelength behaviour. The acoustic sum rule (Pick et a1 1970) gives a necessary condition 
for the dielectric matrix to have the proper acoustic-mode behaviour. The principle effect 
of the off-diagonal screening is to set up long-range dipolar potentials (in insulators) 
or to describe ’bond-bending forces’ or ‘bond-charge displacements’ (in semiconductors) 
(Sinha 1973). Only recently have proper calculations of the full dielectric matrix for 
covalently bonded semiconductors become practical (Louie et a1 1975, Baldereschi and 
Maschke 1978, Wendel and Martin 1978); study of the longitudinal (U,)  and rotational 
(wj)  parts of the pseudoatom potential should provide physical insight into the screening 
processes. 
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In transition metals and compounds, the G # G' terms in care known to be important. 
The complexity of the screening mechanisms in these systems is evident from the great 
variety of structures in their phonon spectra (for a review see Sinha 1978). Johnson (1974) 
has given a sum rule which allows an estimation, from the charge density, of the number of 
reciprocal lattice vectors which contribute to off-diagonal screening. Crude estimates 
suggest this number to be -lo3. One approach for attempting to circumvent these 
mathematical difficulties is to study (screened) potentials of simplified form. In the 
remainder of this section we study two such model potentials in the light of the previous 
developments. 

4.1. Rigid-ion and deformable ion models 

The difficulty in calculating the full dielectric matrix has led to derivation of model 
potentials which attempt to account for the full matrix in some approximate way. 
Typically this reduces to the (inconsistent) modelling of uj and discarding of oj. The rigid 
muffin-tin (RMT) approximation (Gaspari and Gyorffy 1972, Evans et al 1973), in which 
it is assumed that 

I Y  - Rjl < Rm, 
U . ( V  - R.) = 

constant, otherwise, J 

probably accounts rather well in transition metals for the diagonal plus off-diagonal 
screening contributions to u j  inside the muffin-tin radius Rm. Otherwise, it is difficult 
to understand the rather impressive successes (Butler 1977, Papaconstantopoulos et al 
1977) of the model. A screened Coulomb tail (Sinha and Harmon 1976), proposed to 
account for the non-neutrality of the muffin-tin region, may contain the main corrections 
to u j  outside the muffin-tin for transition metals. It has apparently never been argued, 
let alone proven, that contributions to the scattering of electrons from oj are negligible. 
It would appear likely that these corrections are not negligible, and that developments 
in the theory await a consistent modelling of the potential deformation of Without 
going into detail, we suggest that these corrections are even more important in transition 
metal compounds than in the transition elements themselves. 

The RMTA discussed above is just one form of the more general rigid-ion (RI) (or 
rigid-atom) potential, a model which has also been used extensively in tight-binding 
calculations. In general, a rigid-ion potential has the form of a sum of atomic-like poten- 
tials 

leading to the change in potential 

G , v ~ ' ( P )  = - VvjR'( I' - RQ) 
which completely ignores the possibility of a rotational contribution like of An alter- 
native form which relaxes this restriction is the deformable-ion (DI) model, defined by 

uD'(r, R) = U(Y - { ( r ,  R), Ro) (28) 
where { ( r )  is the local dilation of the lattice, defined by 
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The DI model assumes that the potential deforms smoothly with the lattice. This model 
is usually only applied to single long-wavelength phonons and its limitations are well 
known. For the general case, Sham and Ziman (1963) have noted that the definition, 
equation (29), is not unique and probably not even ‘best’, although the model seems never 
to have been carefully tested. 

Nevertheless, it can be instructive to consider the predictions of the DI model. For a 
single displaced nucleus SR,, taken to be at the origin, we have 

5(r) = 6R, 1 exp(iQ. v )  = SR,d(v). (30) 
Q 

The deformation function d depends on the lattice type but has the general properties 

d w y )  = d j ,  0’ (31a) 

d(r)“l ’z [sin(QDr) - (QDr) ~os(Q,r)]r-~ (31b) 

where the second relation follows from approximating the Brillouin zone by a Debye 
sphere of radius QD. This ‘kinematical deformation’ of the potential vanishes at all 
nuclear sites except the origin and decreases in an oscillatory r-’ fashion. 

From equations (29) and (30) we find 

SjvD1(r) = - Vu(r) . [Sj{(r)] = - d(r)Vv(r) (32) 
for R: = 0. Thus in the DI model the potential deformation is just the gradient modulated 
by the kinematical deformation d.  To see that SjuD‘ contains both rigid and rotational 
components, it is only necessary to substitute equation (32) into equations (2a), (2b) to 
obtain 

{$‘ ( r )  ] - - - _  1 j” d3r‘ { V ,  [d(r‘)Vv(r’)])  
oq’(v) 471 Vd(v’) x Vu(v’) ‘ 

(33) 

In this form, it becomes obvious that the rotational contribution oj must come from the 
radial part of V d  coupling to a non-radial part of V v ,  or vice versa. The non-radial part of 
V d ,  which is missing from equation (31 b) due to the spherical approximation used there, 
is present in every crystal and is largest for very anisotropic unit cells and low-symmetry 
sites. 

As a final application, we consider a model wherea muffin-tin potential (at equilibrium) 
is considered to deform according to the DI model; this could be called the deformable 
muffin-tin (DMT) model. The rotational potential becomes (setting the origin at R:) 

wY’(r) = 1 XJ,(v) x RY, (34) 
1’ 

with 

where d‘, vlMT denote the radial derivatives. There is no contribution from the muffin-tin 
at the origin, since the deformation d is (assumed) spherical. The distortion field X,i ,  
arises because the spherical potentials centred at I$, # 0 are distorted by the spherical 
(about the origin) deformation function d. From the expression for uD1 (equation 33), 
we see that the rigid-potential change is given by 

r 1 
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This expression is different from the corresponding rigid-ion term in two ways: (i) the 
rigid shift ubMT(r) arising from the muffin-tin at the origin is modulated by the deformation 
function d and (ii) additional contributions arise from other muffin-tins. This kinematical 
deformation, d - r-’ for large r,  probably overestimates the true potential deformation 
at large distances in metals, since the screening is not taken into account properly. 

The use of the DI model has been confined primarily to long-wavelength deformations. 
In view of the relative successes of the RMT approximation in transition metals, it would 
be most interesting to know the changes that the DMT model would make. The main 
difficulty in studying the DMT model is in the evaluation of matrix elements, so simple for 
RMTS, but complicated for DMTS (see equations (34) and (35)). A formalism developed 
by Whitfield (1961), in which the Bloch functions are deformed according to equation 
(29), could simplify the treatment of the potential in a DI approximation. 

5. Lattice dynamics and the pseudoatom potential 

In view of the formidable problem of screening in transition metal systems, it has recently 
become necessary to formulate and calculate lattice dynamics in terms of the unknown 
screened (pseudoatom) potential rather than the known bare (ionic) potential. The 
pseudoatom potential is then approximated in an appropriate fashion. The relations 
have so often been presented in a form of limited applicability (generally the RI approxi- 
mation) that is is worthwhile to present the general relationships. 

Within the adiabatic approximation, a rigorous exprpssion for the change in energy 
of the electronic system 6,E = aE(R)/dRj  when the ion at Rj  is moved, is (Sham 1969) 

6,E = [d j vex t ( r ) ]n ( r )  d3r s (37) 

The harmonic force constants require the second derivative, of which only the R,  # Rj  
term need be kept. Using equation (19), we can write 

i # j  

r r  
d3r d3r’8,uext(r)~(~*, I ” ) ~ ~ U , ~ ~ ( Y ’ ) .  = J  J 

Together with the ion-ion Coulomb force constants 

(39) 

where 2, denotes the ionic (or nuclear) charge associated with uixt, the dynamics of the 
lattice in the harmonic approximation are completely determined. 

Introducing the susceptibility x0 which describes the response of the density to the 
total potential change 

r 
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which can be written in an abbreviated real-space matrix notation 

Sjn = xodjv, (40‘) 

we have from equations (18x21) that 

x = x o E -  

E = 1 - vxo. 
and 

The force constants can be written (for i # j )  

Qij diSjU + SidjE = (6,SjU - S i ~ x o V x o S j ~ )  + Sivx0SjU. (43) 

This regrouping was advocated by Pickett and Gyorffy (1976) to study phonon spectra, 
and especially anomalies, in transition metal systems. The ‘neutral-object’ force constants 
(in brackets) are short range, as was demonstrated explicitly by Allen (1978), and are 
not reponsible for the phonon anomalies. The ‘band-structure force constant’, QBs, as 
the last term in equation (42) has been referred to, has been shown to give rise to long- 
range force constants. Using the result of § 2 for the pseudoatom potential Sjv, the force 
constant aBS is the sum of four terms 

QBS = vu,xovuj + Vu,x,(V x oJ) + (V x Oi)X0VUj + (V x Oi)X0(V x Oj). (44) 

The last three contributions are not present if an RI model for the potential is used. How- 
ever, when off-diagonal screening is crucial, as is the case in transition metals systems, 
oj is necessarily present and the contributions from V x w j  to QBS may not be negligible. 
The recent calculation of Varma and Weber (1977), which is based on equation (43) but 
ignores V x oj, seems to account fully for the phonon anomalies in the Nb-Mo alloy 
system. 

The more traditional approach to the description of phonon anomalies has utilised 
expression (38) (rather than equation (43)), which when added to the ion-ion force 
constant (39), can be rewritten as (again, for i # j )  

Qij  = SiSjU + SiZ)ext(%OE- l ) S j v e x t .  (45) 

Both Sinha and Harmon (1975) and Hanke et al(1976) have suggested models in which 
‘resonant screening’, or resonant denominators in expressions for E -  l, can give rise to 
the observed anomalies. Although the two models differ in spirit and in some predictions, 
each assumes a local pseudopotential for vext and includes large local-field corrections. 
The predictions of the models were studied only in relation to the effect on the dynamical 
matrix. From the present point of view, a study of the screened potential e-lduext 
e.g. the magnitude and character of w and of the corrections to U .  would be a more 
fundamental approach. Such a study will be left to a later publication. 

Another approach (Gupta and Freeman 1976, Gupta et al 1977 and Myron et a1 
1977) uses the fact that the underlying band structure entering through xo [in either 
equation (45) or in QBS in equation (43)], can account for the anomalies whenever the 
intraband contributions are dominant. For the well studied case of N b  (Cooke et al 
1974, Pickett 1975), however, it appears that the matrix elements of the potential are 
necessary (Pickett and Allen 1977) even for a qualitative understanding of the anomalies. 
The question of the effect of V x oj on QBs may be an important one in the under- 
standing of anomalous phonons. 
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6. Summary 

Our main result is the decomposition of the one-electron potential into atom-like 
contributions which (1) move rigidly with the ions to first order in the displacement, 
and (2) at equilibrium, sum exactly to the total potential. The formalism provides an 
explicit prescription for this rigid-ion-like potential. When the ions are displaced, an 
additional potential deformation is produced which is explicitly nonrigid. Although this 
latter deformation can be thought of as involving no ‘net potential’, its effects are crucial 
in semiconductors and insulators. It is suggested that its effects in transition metal 
systems may be important in crystalline screening effects and phonon spectra. 

We have not given any explicit discussion of the application of our results to the 
electron-phonon interaction. This is so fundamental to the theory of metals that it 
deserves special attention. Transport properties, deformation potentials and ultrasonic 
attenuation are examples of properties crucially dependent on the electron-phonon 
matrix element. The electron-displaced ion cross section, i.e. matrix elements of djv ,  
is, however, the fundamental quantity entering into the electron-phonon interaction; 
this partially justifies our study of the somewhat ad hoc rigid-ion and deformable-ion 
models for djv .  This same cross section is involved in phonon spectra and anomalies, 
and strong electron-phonon interactions and is intimately related to electronically- 
driven phase transitions. 
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Appendix 

The Helmholtz decomposition of a continuous vector field F into longitudinal (I) and 
transverse (t) fields 

F = F ,  + F ,  (All 

such that 

V x F , = O  V .  F ,  = 0: 

can be accomplished by using 

It is straightforward to substitute (Al) into (A3), integrate by parts, use 

2 1  V --I = -4n6(1. - J”), 
I Y  - Y I  

and find (A3) to be consistent. (A2j is satisfied by construction. 
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The use of the Helmholtz construction in the text requires that the integrals over the 
crystal volume R 

exist. In metals, the itinerant electrons screen the perturbation and result in an exponential 
decay of U and o. The worst case occurs for semiconductors and insulators, where the 
energy gap prevents metallic screening. For other than elemental crystals, ionicity may 
be present, with the result that u(r) - r - l  for large r .  It is easily verified that, even for this 
case, the integrals converge and that partial integration, which is used freely, introduces 
no surface terms. 

The decomposition theorem and following formulae are expressed in terms of the 
total potential, which in principle contains a discontinuity at the nucleus. It is a straight- 
forward matter to separate out the nuclear term, apply the Helmholtz construction to the 
(continuous) electronic screening contribution to Su, and then to restore the nuclear term 
to obtain the displayed equations. 
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