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Quantum phase transitions, and the quantum critical (QC) behavior displayed
near these transitions, arise from quantum fluctuations, which involve the low-
est energy excitations of the material. In metals, these excitations lie at the
Fermi surface, and require some peculiar feature of the Fermi surface or the re-
lated near-zero-energy fluctuations to drive the transition and to give rise to the
quantum critical fluctuations around the critical point. A number of quantum
critical materials have been discovered experimentally and in some cases have
been studied in great detail. Rarely has any Fermi surface feature been iden-
tified as clearly responsible for quantum criticality, possibly because most QC
metals are strongly correlated systems whose Fermi surfaces, hence their low
energy band structures, are not given precisely enough by the available mean
field band theories and material-specific self-energy corrections. The transition
metal intermetallic compound NbFe2 is more likely than f-electron materials
or doped correlated insulators to be described accurately with moderately cor-
related approaches. In this QC compound we obtain an obvious candidate
for the origin of quantum criticality: an accidental Fermi surface “hot stripe”
corresponding to a vanishing quasiparticle velocity on the Fermi surface at an
unconventional band critical point (uBCP) of NbFe2, which can be accessed by
tuning the stoichiometry.

Nb1−xFe2+x is a rare example of an itinerant transition metal intermetallic compound
displaying antiferromagnetic quantum criticality. Its unusual magnetic behavior and its sen-
sitivity to off-stoichiometry (Nb deficiency x) has been known for over two decades,1,2 and
its phase diagram and low temperature (T), small x behavior has recently been clarified.3–5

At stoichiometry, its susceptibility is Curie-Weiss-like down to the SDW transition (prob-
ably long wavelength) at Tsdw=10 K with vanishing Curie-Weiss temperature, reflecting
antiferromagnetism (AF) in close proximity to a FM QCP. Strongly negative magnetoresis-
tance and a metamagnetic transition around 0.5 Tesla (at 2 K) reflect the removal of strong
magnetic fluctuations by a relatively small field. The QCP occurs at the small Nb excess of
xcr = -0.015, for which resistivity scaling as T1.5 and linear specific heat coefficient γ ∝ ln T
below 4 K reflect non-Fermi liquid behavior characteristic of a QCP. Even off stoichiometry
the samples are rather clean (residual resistivity as low as4 5 µΩ cm). For x < xcr and for
x > 0.008, ferromagnetic (FM) (including possibly ferrimagnetic [FiM]) order is observed.4

This system has been featured in recent overviews of quantum criticality in weak magnets6,7

and that in searching for the mechanism of quantum criticality more emphasis should be
given to transition metal compounds8 (versus f -electron systems).

There is no viable explanation of why this particular itinerant system should display such
unusual quantum criticality, and this is the question we address here. The most detailed
theories of quantum criticality suppose that the physics is dominated by fluctuations around
the critical point, and treat the effects of low energy fermionic excitations without specifi-
cally addressing their origin.9–13 The shortcomings of current theories for itinerant quantum
criticality have been re-emphasized recently.14 A necessary assumption is an underlying well



behaved non-interacting fermionic system. Imada et al.15 have suggested itinerant quantum
criticality arises either from proximity to a first-order transition (quantum tricriticality),
a metal-insulator transition (which is not the case here), or a Lifshitz transition, which
accompanies a change in topology of the Fermi surface. Frustration of magnetic order on
the Fe2 Kagome sublattice has also been suggested as playing a part.16 The study of inter-
acting systems near conventional BCPs (van Hove singularities) indicates non-Fermi liquid
behavior17 and a profusion of possible phases.18 Stronger singularities may be expected to
further complicate the phase diagram.

NbFe2 ≡ NbFe10.5Fe21.5 forms in the hexagonal Laves phase C14 space group P63/mmc
(#194), with Nb at 4f ( 1

3 , 2
3 , u) which can be considered to lie within Fe cages, Fe1 at 2a

(0,0,0) which lies on a hexagonal sublattice, and Fe2 at 6h (v,2v, 3
4 ) sites that form Kagome

lattice sheets in the basal plane. We perform all calculations with the experimental lattice
constants a=4.841Å, c=7.897Å, and relaxed internal parameters u=0.0652, v=0.1705.

The complex band structure (due to 12 transition metal atoms in the unit cell) is shown
in a 2 eV region centered on the Fermi energy (EF ) in Fig. 1. The Fermi surfaces are
correspondingly many and varied. The point to note is the wiggle in the band just crossing
EF along the Γ-M direction that produces an unusually flat portion only 6 meV (equivalent
to 70 K temperature) above EF . This critical region produces electronic excitations that
can account for anomalous behavior, viz. a quantum critical point at a low doping level, as
is observed in NbFe2 (xcr = -0.015), which is the point we return to below.

Referencing the energy and wavevector to the point of the anomaly, the uBCP dispersion
is given to lowest order along each axis by

εk =
1

3meκ
k3

x +
k2

y

2my
− k2

z

2mz
, (1)

i.e. it is effective-mass-like along ky and kz with opposite signs of the masses my, mz, but
it is infinitely massive along the kx direction, with cubic rather than quadratic variation.
(The calculated band is even flatter than this approximation.) We characterize this dis-
persion through the wavevector κ, corresponding heuristically to a mass suppression kx/κ.
The crossing bands have nearly pure Fe2 dxz, dyz character (the Kagome sublattice), not
involving either Fe1 or Nb orbitals.

This anomalous dispersion is an accidental occurrence (not related to symmetry or normal
band edges), resulting from the crossing of two bands that occurs extremely near the Fermi
level of stoichiometric NbFe2. Its distinctive character is evident by noting that the change
in the constant energy surfaces near E=0 does not fit into the conventional categorization.19

Because it is accidental, it requires tuning to put EF exactly at the critical point, and the
value xcr of NbFe2 is of the right magnitude to provide this tuning [N(EF )× 6 meV =
0.02 electrons/f.u.]. Although alloy calculations can determine in systems such as this how
the Fermi energy will move with concentration, to do so at such small value of xcr is a
considerable numerical challenge beyond the scope of this paper. We pursue the scenario
that Nb doping to xcr places EF at this critical value, and begin to examine the consequences.

The Fermi energy EF lies in a region of steeply decreasing density of states (DOS) (the
full DOS has been presented by Takayama and Shimizu20 and by Subedi and Singh (SS)21),
corresponding to the gaps that open in much of the zone (along K-H, along L-H-A). The
DOS near EF is displayed in Figure 2 and gives an idea of the magnitude of the peak at the
uBCP; the form is given more precisely in the inset.

We first explore magnetic tendencies and the distribution of moments in NbFe2 by per-
forming fixed spin moment calculations. The energies and atomic moments are presented
in Fig. 4. Because in the absence of constraints the nonmagnetic state is calculated to
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FIG. 1: Band structure of NbFe2 within 1 eV of the Fermi level. The inset shows the band critical
point 6 meV above EF that lies one-third of the way along the Γ-M line.
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FIG. 2: The DOS of NbFe2 near EF on a fine scale, showing the steeply decreasing DOS in the region
of EF . The circle indicates the position in energy of the uBCP, 6 meV above EF , calculated without
the precision necessary to establish the shape of the anomaly. The inset shows a high resolution
calculation (in arbitrary units) in the uBCP region of the behavior of N(E) (black curve), and
indicating the divergence of the inverse velocity < v−1(E) > (red curve), which is a fundamental
quantity in Moriya’s theory of weak magnetism.

be unstable to magnetic order (as observed), the curves are not symmetric around zero
moment; however, there is a symmetry related solution at negative M where all spin direc-
tions are reversed. Two magnetic states are evident, a low net moment ferrimagnetic (FiM)
arrangement and a ferromagnetic (FM) state. The more stable state is the FiM one with
total moment of 0.4 µB (all moments are quoted per formula unit), comprised of moments
of about 1 µB on Fe2 and -1.8 µB on Fe1. For the range studied there is always a small
negative moment (of the order of 0.1 µB) or less) on the Nb atom. (Recall the atomic ratios
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FIG. 3: Fermi surface (constant energy E=0) around the uBCP (see text), which lies at the center
of the plot where the velocity vanishes; the anomalous kx direction is plotted vertically. The color

map indicates the relative velocity; the ~k, energy, and velocity scales are arbitrary.

are NbFe10.5Fe21.5.) As the imposed total moment is increased, the moments on both Fe
atoms initially change by comparable amounts (but of course change in opposite directions).
In the region of M=1.4 µB the small downward moment of Fe1 becomes unstable, and it
flips direction in a first-order fashion to the FM state, where it rapidly approaches the same
moment as Fe2. The minimum energy of the FM state (2.4 µB) occurs with moments of
about 1.1 µB and 1.5 µB on the Fe1 and Fe2 atoms respectively. The energy is 120 meV/f.u.
higher than the FiM state. The strong variation in moments with applied field indicates
itinerant character of the magnetism, in agreement with the conclusion of SS. SS obtained
five types of magnetic solutions, all with much larger moments than seen experimentally
(as are ours), which (independently of the quantum criticality) points to the dominating
influence of magnetic fluctuations.

The FSM calculations, and the results of SS, establish there are many ordered collinear
states at stoichiometry differing in energy by only ∼ 100 meV/f.u.. Unlike in fluctuating
systems, magnetism in mean field approximation (as from DFT calculations with static
moments) is not very sensitive to small anomalies in the band structure, and FSM results at
xcr show little difference. The near degeneracy of two several magnetic states, as well as the
possibility of magnetic frustration on the Kagome Fe2 sublattice, raises the possibility of
non-collinear magnetism (i.e. SDW) as well. Such behavior can depend on the (complicated)
FSs, but SS found a relatively weak variation of the generalized susceptibility in NbFe2. We
do not pursue noncollinear magnetism here, but proceed to analyze the implications of the
uBCP that can be accessed by as little as 6 meV change in the chemical potential.

The occurrence of BCPs (vanishing velocity) was first studied systematically by van
Hove,22 who noted that in the absence of restrictions BCPs in a band occur at most as
isolated points. He studied the conventional (cBCP) case where the determinant of the
Hessian ∇k∇kεk evaluated at the BCP is non-vanishing, which corresponds to vanishing
velocity at (1) band edges, where the constant energy surface also vanishes, and (2) saddle
points, with ~v = 0 on a pinched-off surface. For our representation of the uBCP in NbFe2,
this determinant vanishes due to the cubic variation with kx, resulting in this unconventional
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FIG. 4: Atomic moments (symbols) and energies (solid lines) from fixed spin moment studies,
showing two distinct phases, ferrimagnetic (FiM) with minimum of energy around 0.3 µB/f.u., and
ferromagnetic (FM) with minimum at 2.3 muB/f.u. The minima differ by 130 meV/f.u. Here M=0
corresponds to a zero moment ferrimagnetic state, hence the curve is not symmetric around M=0.

type of BCP. This uBCP therefore does not correspond to the usual possibilities, which are
a (dis)appearing of a Fermi surface or to a pinching off of the Fermi surface. Instead, it
is an isolated vanishing of carrier velocity on an extended surface, which is shown in Fig.
3. A spectrum of soft excitations (arbitrarily low velocities on the Fermi surface) vanishing
more conventionally (linearly) in the ky and kz directions is joined by a line of quadratically
vanishing velocities off the Fermi surface along the kx direction. The anomaly in the DOS
is shown in the inset in Fig. 2 and numerically appears to behave roughly as -|E|2/3 away
from the peak. The behavior of < v−1(E) >, whose importance is discussed below, is also

shown, and is fit well with a E− 1

4 divergence.
The Fermi surface topology near the uBCP is given (for simplicity, scaling out the masses

and the coefficient κ to get εk = k3
x + k2

y − k2
y) from εk = 0 by

kx = sgn(k2
y − k2

z)|k2
y − k2

z |1/3. (2)

This warped FS is displayed in Fig. 3 and is centered on the peculiar singular uBCP. As
the uBCP is approached, the FS tangent plane becomes strongly dependent on the angle of
approach, and the curvature becomes highly singular. Such a zero velocity point leads to
arbitrarily low energy single-particle excitations around the uBCP on the FS, plus a “hot
stripe” of low velocities just off the Fermi surface along the ±kx axes whose impact on
magnetic behavior may be crucial.

In Moriya’s widely applied theory of nearly FM (and AF) metals, the inverse susceptibility
has an imaginary part at low energy given by N(EF ) < v−1 > ω/q. It is straightforward to
show that when there is a BCP on a (non-vanishing) FS, < v−1 > diverges. From Fig. 2,
numerical scaling gives < v−1(E) >∼ E−1/4 for this uBCP. The divergence of this inverse
moment of carrier velocity means that Moriya’s theory as currently used breaks down, and
requires generalization for the case of chemical potential approaching a BCP. At the BCP
(vk ≡ 0) a higher order expansion of the non-interacting susceptibility is required. If the
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dispersion expansion Eq. 1 holds up to km (a few percent of the Brillouin zone dimension)
we obtain (in the limit ω/Q2 → 0 followed by Q → 0)

χ◦(Q, ω) = χ̄◦(Q) +
∑

j

f(εk) − f(εk+Q)

εk+Q − εk − ω + iη
→

∑

k

∑
j

Q2

j

2m(k)j

∑
k

Q2

j

2m(k)j
− ω + iη

δ(εk), (3)

where the first term arises from |~k| > km and is essentially that presented by SS, and the
second term arises from the uBCP region. Here η is an infinitesimal and the masses m(k)j

along the three axes are (meκ/kx, my, -mz). Neglecting the kx dependence (which also
changes sign) in the integrand for the real part will be a good approximation for k < km,
and the bare fluctuation spectrum acquires a new kind of contribution from the region of
the uBCP of

∆χ◦(Q, ω) ≈ ∆N(εF )
Q2

y/2my − Q2
z/2mz

Q2
y/2my − Q2

z/2mz − ω
− iπω

∑

k<km

δ(εk)δ(
3kx

meκ
− [

Q2
y

2my
− Q2

z

2mz
]),(4)

Due to the different signs of the masses along y and z, the Q-dependent term in the de-

nominator changes sign with the direction of ~Q, hence the low energy magnetic fluctuation

spectrum is highly anisotropic and is not a simple function of ~Q and ω. The damping (imag-
inary part) arises from the intersection of surfaces of constant kx with the Fermi surface.
Both are enhanced at the lowest energies by scattering processes involving the uBCP. This
behavior replaces the conventional expansion χ◦(Q, ω)−1 = χ◦(0, 0)−1+AQ2−iCω/Q+ ...),
and it will be important to learn how interactions will renormalize this bare low energy be-
havior.
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FIG. 5: Color plot representation of the velocity spectrum D(E , V ), which provides the decompo-
sition of velocities (vertical axis) for each energy (horizontal axis). All scales are arbitrary. The
spectrum is sharply and narrowly peaked very near the onset, with a long tail at higher velocities.

Going beyond averages over the FS, the spectrum of carrier velocities (hence, single-
particle and pair excitation energies) is of fundamental concern for spin fluctuations and
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quantum criticality. We have evaluated the distribution of velocities V at energy E for the
uBCP,

D(E , V ) =
∑

k

δ(εk − E)δ(|~vk | − V ), (5)

and displayed the results in Fig. 5. For isotropic free electrons this distribution vanishes
except for a highly singular value along the line V =

√
2mE , where it becomes the product

of two δ-functions. The small V region of D(E , V ) is sharply peaked in the vicinity of
Vm(E) = 3E2/3, arising from the quadratically small velocity along the x-axis with relatively
large phase space. The spectrum vanishes at smaller velocities V < Vm, but has a tail at
higher velocities where the other two axes contribute.

So far we have only discussed the isolated uBCP, which would be most relevant to fer-
romagnetic, rather than antiferromagnetic, quantum criticality. In the hexagonal lattice

there are six symmetry related such hot spots Qc(±1, 0), Qc(± 1
2 ,±

√
3

2 ), with Qc ≈ 0.30
Qzb in terms of the zone boundary distance. There are therefore five non-zero Q-vectors
spanning these hot spots, for which the large-Q susceptibility at zero or small energy will be
correspondingly large, thus providing a driving force for spin-density waves (SDW) at the
corresponding wavevectors. Note that, quite generally, the q → 0 susceptibility approaches
N(EF ), which also possesses a weak divergence at the BCP. Thus both FM and AF (SDW)
susceptibilities will be strongly enhanced (hence competing); for transitions between inver-
sion related hot-spots the SDW susceptibility will be particularly large, since the hot stripe
axes will then be aligned.

Two other intermetallics, both with the cubic (C15) Laves structure rather than the
hexagonal (C14) Laves structure of NbFe2, have attracted much attention due to their
weak magnetism. TiBe2 at stoichiometry is a highly enhanced paramagnetic that was long
believed to have weak order because magnetic order appears in impure samples. Van Hove
singularities occur very near EF ; if non-stoichiometry moves EF upward by as little at 3
meV, the velocity spectrum23 D(EF , V ) extends nearly to V =0 and < v−1 > is enhanced by
a factor of two, though there is no uBCP as in NbFe2. Weak magnetism and metamagnetic
transitions in ZrZn2 have been attributed19 to a saddle point van Hove singularity (a cBCP)
very near EF . The Ni3Al (FM with small moment < 0.1µB/Ni below 40 K) and isovalent
Ni3Ga ( highly enhanced but not ordered) pair have also attracted attention. The distinction
was attributed by Aguayo et al.24 to stronger spin fluctuations in Ni3Ga, using analysis
based on LDA results applied within Moriya theory. The band structure themselves are
very similar except for one Al- (resp. Ga-)derived band, with no apparent anomaly in the
band structure near EF .

The NbFe2 system, providing a rare example of itinerant, low temperature antiferromag-
netism and non-Fermi liquid quasiparticle behavior at low temperature, seems to require a
specific microscopic mechanism compared to the few other known weak itinerant magnets.
We have proposed that an unconventional band critical point, in which an isolated point of
vanishing carrier velocity on an extended Fermi surface, provides the explanation. Moriya’s
theory of weak magnetism requires generalization when the Fermi level lies near an uBCP,
and the phenomenological renormalized Landau theory25 that has been applied26 to ZrZn2

also must be generalized in this case. Generalizing the theory of itinerant quantum critical-
ity to encompass such a uBCP should help to illuminate the mechanisms and the behavior
around such itinerant QCPs.
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