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Cukrovarnická 10, 162 53 Praha 6, Czech Republic

A. V. Lukoyanov

Ural State Technical University-UPI, 620002 Yekaterinburg, Russia

V. I. Anisimov

Institute of Metal Physics, Russian Academy of Sciences-Ural Division,

620041 Yekaterinburg GSP-170, Russia

R. T. Scalettar and W. E. Pickett

Department of Physics, University of California Davis, Davis, California 95616

(Dated: July 27, 2007)

∗Electronic address: jan.kunes@physik.uni-augsburg.de

1



I. SUPPLEMENTARY METHODS

Here we describe the computational method used in the paper and present some nu-

merical details. The single particle part of the Hamiltonian was obtained by a Wannier

function projection method [1], which amounts to a unitary transformation in the Hilbert

space containing Mn 3d, O 2p bands and the next lowest empty (polarization) conduction

band. The site energy of the Mn 3d orbitals was corrected for double counting of the d − d

interaction by subtracting a Hartree like term (N − 1)ŪnLDA, where N = 10 is the total

number of orbitals per Mn site, Ū is the average Coulomb repulsion and nLDA is the average

occupancy per d-orbital. The DMFT equations were solved numerically on a Matsubara

contour (using asymptotic expansions for frequencies ωn > 500 eV), and the k-space in-

tegrals were performed by summation over 3375 k-points in the first Brillouin zone. The

chemical potential was adjusted in each DMFT iteration to guarantee the total electron

count of 11± 10−6. The impurity problem was solved using the Hirsch-Fye QMC algorithm

modified for multiple orbitals.

The key innovation in this application to MnO in the transition regime was introduction of

global Monte-Carlo moves in addition to the usual single-flips of the Hubbard-Stratonovich

fields. These moves allow for fluctuations between HS- and LS-like configurations, which

are otherwise practically unreachable with the standard single-Hubbard-Stratonovich-field-

flip moves. The acceptance rate of the global moves was found to be non-negligible only

in the transition regime, which had been characterized by unusually slow convergence of

the DMFT cycle. We checked for the possibility of multiple solutions, but found none at

the temperature of these simulations. The numerical value of the total energy, limited by

the stochastic error of the EDMFT term, was converged to the accuracy of 0.06 eV in the

transition regime and 0.02 eV anywhere else. The spectral densities were calculated by the

maximum entropy analytic continuation technique[2] applied to the imaginary-time Green

functions from 4 × 107
− 6 × 107 QMC-simulation sweeps collected into 2000-20000 bins.

II. SUPPLEMENTARY BACKGROUND

The first experimental indication of a transition in the range of the Mott transition in

MnO (in the vicinity of one Megabar [100 GPa]) was obtained in 1996 from shock compres-

2



sion experiments (both single stage and two-stage) reported by Noguchi et al.[3] The onset,

obtained from Hugoniot data, was recorded at v ≡ V/V0 ≈ 0.72, with quoted pressure of 90

GPa. A volume collapse of 8% was reported.

In 2000 Kondo used a diamond anvil cell (DAC) for static pressure x-ray studies to 137

GPa at room temperature. They confirmed the transition to rhombohedral symmetry at

30 GPa (associated with magnetic ordering) that had been reported earlier. A structure

change was clearly seen around 90 GPa, but the structure in the 90-120 GPa region was not

deduced. A change in reflectivity strongly suggested metallization occurred around 90 GPa.

The phase above 120 GPa was determined to be the B8 (NiAs) structure.

In a Raman and optical study at static pressure in 2001 by Mita and collaborators[4, 8]

a change in the Raman peak at 30 GPa and room temperature was seen, reaffirming the

magnetic ordering transition. The vanishing of the Raman signal at 89 GPa was interpreted

as due to metallization.

In 2004 Patterson et al. performed electrical conductivity measurements in a DAC, in

two runs up to 90 GP and 106 GPa. A drop in resistivity of 4-5 orders of magnitude occurred

between 90 GPa and 103 GPa. With no data points between these two pressures, it was

unknown just where, or how abruptly, the metallization transition occurred. At 106 GPa,

the resistivity had a temperature dependence of a metal.

X-ray emission spectroscopy was used by Rueff et al.[6] in 2005 to monitor the magnetic

moment (via the exchange splitting of core levels). A LS moment was found at 80 GPa. A

more recent interpretation by this group[7] is that the high spin (HS) state moment decreases

smoothly, reaching the low spin (LS) value around 100 GPa.

Yoo and collaborators[9] in 2005 obtained x-ray diffraction and x-ray emission data up to

132 GPa. 90 GPa marks the onset of a sluggish B1 (NaCl) to B8 (NiAs) structural transition,

and the Mott transition occurs around 105 GPa, in a first-order transition within the NiAs

phase that involves a simultaneous volume collapse (6.6%), moment collapse (consistent

with S = 1

2
or less), and metallization (from the above experiments). Unlike the data of

Rueff et al., Yoo et al. observed no change in the XES spectrum (and hence in the magnetic

moment) in the 40-98 GPa range, then an abrupt change to the LS state. (The disagreement

between the actual XES data obtained by Yoo et al. and Rueff et al. is minor, emphasizing

the need for a clean and precise interpretation of the spectrum.)

Although all of these data (rather, analysis and inferences from the data) are not fully
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FIG. 1: The conceptual phase diagram constructed by Yoo et al. from the data discussed here.

The Mott transition occurs, at room temperature, in the NiAs (B8) crystal structure, and is

comprised of a 6.6% volume collapse, HS→LS moment collapse, and insulator-to-metal transition.

Our calculated transition at 1100 K and 120 GPa lies very near an extrapolation of the heavy black

line beyond the critical point (black dot) in the “crossover” region (gray fan area). here).

consistent, a reasonably clear picture of the experimental situation has emerged. The Mott

transition occurs within the NiAs structure, very close to 105 GPa at room temperature. The

data up to 2005 were gathered by Yoo et al. into the conceptual phase diagram displayed in

the Figure. It is gratifying to note that the Mott transition obtained from our calculations

are fully consistent with the current understanding of the phase diagram (see the Figure

caption).
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