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The NRL developed tight-binding method has been very successful in describing the properties of
nonmagnetic elemental metals and semiconductors with accuracy comparable to first-principles
methods. In this article we discuss extensions of the method to magnetic systems. We first show that
the method correctly predicts equilibrium ground state structures, elastic constants, and phonon
frequencies in ferromagnetic iron. We also show how the magnetic calculations can be extended to
noncollinear systems, focusing on the electronic behavior of iron. © 2001 American Institute of
Physics. @DOI: 10.1063/1.1356031#

I. INTRODUCTION

Spin-dependent density functional theory ~SDFT!,1 when
coupled with an appropriate exchange-correlation func-
tional,2 provides an excellent framework for the first-
principles study of magnetic systems. The original formula-
tion of von Barth and Hedin1 even included noncollinear
magnetization. Unfortunately SDFT cannot be used to study
large-scale magnetization because, in most practical formu-
lations, the computational time scales with the cube of the
number of atoms. In practice one can study systems contain-
ing on the order of 100 atoms or less. Thus large magnetic
clusters and the motion of bulk domain walls is beyond the
current capabilities of SDFT.

There has been extensive work showing that nonpolar-
ized density functional theory ~DFT! results can be used as a
database to produce parametrized atomistic potentials which
can be used to study large systems. Predominant among
these is, of course, the embedded atom method3,4 and its
generalizations.5 Extensions for magnetism can be made in
the same fashion. For example, Krasko6 has developed a
semiempirical method for determining the magnetic energy
in iron from a Stoner model. This allows one to use the same
potentials for both magnetic and nonmagnetic systems.

While these parametrized atomistic models are ex-
tremely valuable, they are not based on quantum mechanics,
but only fitted to a database of results which contains first-
principles and/or experimental energies. Thus these models
will fail unpredictably when one is calculating configurations
which are not ‘‘close’’ to the fitted database.

Parametrized tight-binding ~TB! methods, on the other
hand, implicitly include quantum mechanical features. The
TB method developed at the Naval Research Laboratory

~NRL-TB!7 has been shown to accurately predict correct
ground state structures, elastic constants, phonon frequen-
cies, stacking fault energies,8 surface energies, and vacancy
formation energies in transition metals,7 the heavier row IIIA
metals,9 carbon and silicon,10 and lead.11 This article pre-
sents an extension of the tight-binding method to magnetic
systems, including noncollinear spins.12

II. EXTENSION OF THE TIGHT-BINDING METHOD TO
MAGNETIC SYSTEMS

The formalism of the NRL-TB has been presented in
detail elsewhere.7 Here we note that it is a two-center non-
orthogonal Slater–Koster13 method with environmentally
sensitive on-site parameters, and otherwise only discuss the
changes needed to implement spin dependent polarization.

In collinear SDFT, the total energy of a system can be
written as

E@n↑ ,n↓#5(
i

@«↑i f ~«↑i2m !1«↓i f ~«↓i2m !#

1G@n↑ ,n↓# , ~1!

where «↑i and «↓i are the eigenvalues for the majority and
minority spin states, respectively, f (x) is a Fermi broadening
function,14 m is the Fermi level, n↑ and n↓ are the electron
densities of the majority and minority states, and G@n↑ ,n↓#

is the SDFT energy not included in the band structure sum.
We eliminate the latter term by defining a potential shift

V05G@n↑ ,n↓#/N , ~2!

where N is the total number of electrons in the system. We
shift all of the eigenvalues and the Fermi level by V0 :
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so that the total energy ~1! becomes

E@n↑ ,n↓#5(
i

@«↑i8 f ~«↑i8 2m8!1«↓i8 f ~«↓i8 2m8!# . ~4!

We assign the polarization dependence to the on-site
terms, which are sensitive to the neighboring environment.
We therefore define two ‘‘densities,’’ r↑ and r↓ , for each
atom:

r (↑ ,↓)i5(
jÞi

exp~2l↑ ,↓
2 uRi2Rju!F~ uRi2Rju!, ~5!

where the l↑ ,↓ are to be fit, Ri is the position of atom i , and
F(R) is a cutoff function which vanishes for R.Rcut .

7 Here
we set Rcut516.5 Bohr. These densities then control the on-
site parameters for atom i by

h (↑ ,↓)l i5a (↑ ,↓)l 1b (↑ ,↓)l r (↑ ,↓)
2/3

1c (↑ ,↓)l r (↑ ,↓)
4/3

1d (↑ ,↓)l r (↑ ,↓)
2 , ~6!

where l is the angular momentum of the orbital, and the
various a , b , c , and d are fitting parameters. Here we restrict
ourselves to l 5s , p , or d . For nonmagnetic calculations
(n↑5n↓) we average the above on-site parameters.

The two-center hopping and overlap parameters are kept
spin-independent, and have the quadratic form used in Eq.
~11! of Ref. 7. All of this leads to 106 parameters which are
used to reproduce the volume and structural dependence of
the electronic eigenvalues and total energies found in a da-
tabase of first-principles results. For iron we used calcula-
tions from the ferromagnetic bcc phase and the nonmagnetic
fcc and bcc phases. The method for determining the param-
eters is described in Ref. 7. The reliability of these param-
eters will be described below.

Pickett12 has shown that the atomic moment approxima-
tion ~AMA! to the noncollinear spin problem can be imple-
mented in a parametrized tight-binding scheme. A general
matrix element between the L (5l ,m) orbital of atom i and
the L8 (5l 8,m8) orbital of atom j can be written as

h iL , jL8
5t iL , jL8

s021/2DiL , jL8
•s, ~7!

where s is the Pauli spin matrices and DiL , jL8
is the ex-

change splitting, which is assumed to be in the direction of
the magnetic moment. We determine t and D from the spin-
polarized tight-binding matrix elements above by aligning
the spins, and hence all of the D, in the ẑ direction. Then

t iL , jL8
51/2~h↑iL , jL8

1h↓iL , jL8
!, ~8!

and the magnitude of the exchange splitting is just

D iL , jL8
51/2~h↓iL , jL8

2h↑iL , jL8
!. ~9!

Note that the spin polarization only affects the on-site part of
the Hamiltonian ~6!, so D is diagonal.

III. APPLICATION TO IRON

The first-principles energies and electronic eigenvalues
in our database were computed using the full-potential lin-
earized augmented plane wave ~LAPW! method15,16 and the
Perdew–Wang generalized gradient approximation for the
exchange and correlation energy.2 We also performed first-

principles calculations for the hypothetical ferromagnetic fcc
phase, but these were not included in the fit. In Fig. 1 we
show the energy/volume behavior resulting from the fit. The
interesting thing to note here is the behavior of fcc iron.
First-principles calculations have shown that fcc iron has a
high-spin and a low-spin ~nearly nonmagnetic! solution. Our
calculations show only the lowest energy phase as a function
of volume. Note that our ferromagnetic TB calculations track
the high-spin LAPW solution, while the nonmagnetic calcu-
lation tracks the low-spin LAPW solution.

We used the NRL-developed TB program ‘‘STATIC’’ 17

to calculate the elastic constants and some phonon frequen-
cies of bcc iron at the equilibrium volume. These results are
compared to experiment18,19 in Table I. The agreement is
impressive, since none of these calculations were included in
the fit. This supports our belief that the tight-binding param-
eters are transferable to systems which are not included
within the fit.

We plan to use the noncollinear spin theory of Sec. II to
study the behavior of magnetic domain walls in iron. To this
end, we present here a test case, using a two atom simple
cubic supercell of bcc iron. One of the atoms in the unit cell
has its spin vector aligned along the ẑ axis, and we tilt the
other atom so that its spin is at an angle u to the ẑ axis. Since
we were only concerned with the behavior of the electronic
structure, for these calculations we used a set of parameters
which were fit to only ferromagnetic and nonmagnetic bcc
iron. Figure 2 shows the resulting density of states when u
5(45° and 90°). Note the development of a pseudogap just
below the Fermi level as u increases. This gap becomes more
pronounced as we approach the antiferromagnetic state (u
5180°).

FIG. 1. Comparison of LAPW ~points! and tight-binding calculations ~lines!
of the total energy of iron. The solid line is the ferromagnetic bcc phase. The
dotted ~highest! line is the nonmagnetic bcc phase. The other lines represent
the TB ferromagnetic ~— - —! and nonmagnetic ~- - - -! fcc phases. The
LAPW phases match the adjacent TB lines.

TABLE I. Elastic constants ~in GPa! and high-symmetry phonon frequen-
cies ~in cm21! of bcc ferromagnetic iron at the experimental lattice constant.

Elastic constants Phonon frequencies

TB Exp. ~Ref. 18! k point TB Exp. ~Ref. 19!

C11 223 237 H 289 286
C12 95 141 P 262 240
C44 78 116
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IV. SUMMARY

We have shown that the NRL tight-binding method can
be extended to handle both collinear and noncollinear spins.
The method properly predicts the behavior of ferromagnetic
fcc iron, including the low- and high-spin regions. In addi-
tion, the computed elastic constants and phonon frequencies
have an accuracy comparable to those we found for nonmag-
netic materials. Finally, we show that the method can be
applied to noncollinear systems.
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FIG. 2. The electronic density of
states for a two atom supercell of iron
where one spin is in the ‘‘up’’ direc-
tion ( ẑ) and the other is at an angle of
u. The ‘‘up’’ and ‘‘down’’ densities of
state are projections relative to the ẑ
axis. The vertical line is the Fermi
level.
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