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We develop high-temperature expansions for the uniform susceptibility and specific heat of the square-lattice
J1-J2 Heisenberg models. Combined with a perturbative mean-field theory, we obtain accurate results for the
uniform susceptibility of the large-J2 /J1 Heisenberg model at all temperatures. For the specific heat, the
high-temperature expansions show good convergence down to the peak temperature, where the specific heat
has a maximum. Exchange couplings are calculated for Li2VOSiO4 (Li2VOGeO4) using local-density ap-
proximation ~LDA! and found to be J150.75 K ~1.7 K!, J258.8 K ~8.1 K!, and J'50.25 K ~0.19 K!,
respectively. Using the high-temperature expansion results, we show that the specific heat and uniform sus-
ceptibility of these materials are well described by a large-J2 /J1 Heisenberg model in agreement with the LDA
predictions. Furthermore, the measured Néel temperature is consistent with our LDA derived J' values.
Further experiments which would be particularly suited to an accurate determination of the J2 /J1 ratio for
these systems are discussed.
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I. INTRODUCTION

Frustrated square-lattice spin-1/2 Heisenberg antiferro-
magnets with Hamiltonian

Hspin5(
i j

J i jSW iSW j , ~1!

with nearest-neighbor exchange J1 and second-neighbor ~di-
agonal! exchange J2 have received considerable attention
recently.1,2 Of particular theoretical interest has been the
phase diagram of the model as a function of J2 /J1 and the
possibility of a spin-liquid phase at intermediate J2 /J1. Sev-
eral results have been established. When J1 dominates
(J2 /J1<0.3), the system is Néel ordered. When J2 domi-
nates (J2 /J1>0.6), there are two interpenetrating Néel lat-
tices whose relative alignment is frustrated, and a columnar
antiferromagnetic order is selected by quantum fluctuations
with wave vector Q5(p ,0) or (0,p).3–5 In the intermediate
regime, almost all numerical studies find a spin-gap phase,
but whether one has a true spin liquid or a phase with broken
translational symmetry remains a matter of debate.1,2,6

Recent discovery of several quasi-two-dimensional ~2D!
materials, which are realizations of the J1-J2 model, has
raised the need for accurate theoretical calculations of the
thermodynamic properties of these models to compare with
experiments, and high-temperature expansions provide the
most accurate way to determine these properties. The J1-J2
materials include VOMoO4,7 Pb2VO(PO4)2,8 and especially
Li2VOSiO4 and Li2VOGeO4. These latter two compounds
have been reported by Melzi et al.,9,10 who provide data for
specific heat, magnetization, NMR, and muon spin rotation.
These data provide a reasonably firm value of J11J2
'8 K; further, these authors suggested a ratio J2 /J1;1
might be appropriate. In a recent report of some of the results
of the present paper, Rosner et al.11 presented a reanalysis of

the data spurred by ab initio estimates of J2 and J1 which
gave much larger J2 /J1 values.

The primary objective of this paper is to extend knowl-
edge of the behavior of the J1-J2 model ~through high-
temperature expansions! and thereby to provide detailed
quantitative understanding of the magnetic properties of the
materials Li2VOSiO4 and Li2VOGeO4. These compounds
are layered spin systems that are well described by the ionic
picture, leaving V41 ions with the d1, S5

1
2 moments whose

interactions within the layer are much stronger than between
layers, thus providing a good representation of the J1-J2
model. This paper provides the full analysis and some exten-
sion of the recent report of Rosner et al.11 To address the
behavior of this system, high-temperature expansions of the
thermodynamic properties of this model are presented. We
also apply local-density approximation ~LDA! calculations
to obtain ab initio estimates of exchange constants for these
materials. These are combined with the results of high-
temperature expansions to investigate the susceptibility and
specific heat. Although these thermodynamic properties are
not very sensitive to the J2 /J1 ratio, they still suffice to rule
out certain parameter ranges. Comparison with experimental
data shows that these materials are good realizations of large
J2 /J1 model in agreement with the LDA derived values.

The plan of the paper is as follows. In Sec. II, we discuss
the high-temperature expansions for the J1-J2 model, and
then we discuss a perturbative mean-field theory, valid for
small J1 /J2, which allows us to get accurate numerical val-
ues for the uniform susceptibility of the model at all tem-
peratures. In Sec. III, we present the LDA calculations for
the materials Li2VOSiO4 and Li2VOGeO4. A two-band
tight-binding ~TB! model is fitted to the LDA band structure,
and mapped onto a Heisenberg model with in-plane (J1 and
J2) and interplane (J') exchange constants.

In Sec. IV, we present comparisons of the experimental
data for uniform susceptibility and specific heat with our
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calculations. In Sec. V, we discuss the observed Néel tem-
perature for the material and relate it to LDA calculated in-
terplane couplings. In Sec. VI, we discuss some aspects of
the spin-wave spectra for the J1-J2 model, which are sensi-
tive to the J1 /J2 ratio, and can thus be used for accurate
experimental determination of these ratios. We summarize in
Sec. VII.

II. THEORETICAL TREATMENT OF THE J1-J2 MODEL

A. High-temperature expansions

Using cluster expansion methods,12 high-temperature se-
ries expansions are developed for the uniform susceptibility
and the internal energy of the J1-J2 model for arbitrary val-
ues of J1 /J2. Let b15J1 /kBT and x5J2 /J1. We write the
uniform susceptibility expansion as

Tx5(
n

b1
n(

m
cm ,nxm, ~2!

and the internal energy expansion as

U5(
n

b1
n(

m
em ,nxm. ~3!

The coefficients cm ,n and em ,n complete to order n59 are
presented in Table I. The specific heat is obtained by the
relation

C5dU/dT .

To obtain numerical estimates of the uniform susceptibil-
ity and specific heat for a given value of J1 /J2, we first
obtain a single variable series in inverse temperature. Since
in this paper, we are most interested in small J1 /J2 ratios,
the single variable series coefficients are obtained in the vari-
able J2 /kBT . These series are extrapolated beyond their ra-
dius of convergence using Pade and differential
approximants.13

TABLE I. Series coefficients for the high-temperature expansions of the uniform susceptibility x(T)5T21(nb1
n(mcm ,nxm and the

internal energy U(T)5(nb1
n(mem ,nxm, where b15J1 /kBT and x5J2 /J1. Nonzero coefficients cm ,n up to order n59 are listed.

x(T)
(m ,n) cm ,n (m ,n) cm ,n (m ,n) cm ,n (m ,n) cm ,n

~0,0! 2.50000000031021 ~4,4! 1.69270833331022 ~0,7! 6.28565228231024 ~6,8! 1.82775685131021

~0,1! 22.50000000031021 ~0,5! 29.24479166731023 ~1,7! 21.06933593731022 ~7,8! 1.76122271831022

~1,1! 22.50000000031021 ~1,5! 24.42708333331022 ~2,7! 21.26567925331021 ~8,8! 3.97842649431024

~0,2! 1.25000000031021 ~2,5! 21.57552083331021 ~3,7! 1.85275607631023 ~0,9! 25.21134741531024

~1,2! 5.00000000031021 ~3,5! 25.62500000031021 ~4,7! 23.23866102431021 ~1,9! 23.00297812831023

~2,2! 1.25000000031021 ~4,5! 21.79687500031021 ~5,7! 23.12679036531021 ~2,9! 5.43522910531022

~0,3! 24.16666666731022 ~5,5! 29.24479166731023 ~6,7! 24.63433159731022 ~3,9! 21.31964805631021

~1,3! 23.43750000031021 ~0,6! 1.99110243131023 ~7,7! 6.28565228231024 ~4,9! 21.45222352031021

~2,3! 25.00000000031021 ~1,6! 4.97395833331022 ~0,8! 3.97842649431024 ~5,9! 1.10198490231022

~3,3! 24.16666666731022 ~2,6! 4.07552083331022 ~1,8! 21.11409505231022 ~6,9! 22.60031499331021

~0,4! 1.69270833331022 ~3,6! 2.42795138931021 ~2,8! 4.54572405131022 ~7,9! 21.01286824531021

~1,4! 9.89583333331022 ~4,6! 4.65364583331021 ~3,8! 1.82210286531021 ~8,9! 25.75735909631023

~2,4! 5.23437500031021 ~5,6! 9.40104166731022 ~4,8! 23.27842106931022 ~9,9! 25.21134741531024

~3,4! 3.33333333331021 ~6,6! 1.99110243131023 ~5,8! 3.30236622631021

U(T)
(m ,n) em ,n (m ,n) em ,n (m ,n) em ,n (m ,n) em ,n

~0,1! 23.75000000031021 ~0,5! 26.34765625031023 ~1,7! 1.38802083331021 ~7,8! 22.04214913531022

~2,1! 23.75000000031021 ~1,5! 21.73437500031021 ~2,7! 23.94910249331021 ~9,8! 8.16250755731023

~0,2! 29.37500000031022 ~2,5! 4.36523437531021 ~3,7! 26.49367559531022 ~0,9! 3.23787669031023

~1,2! 5.62500000031021 ~3,5! 21.95312500031022 ~4,7! 5.98923456131022 ~1,9! 28.63358432031022

~3,2! 29.37500000031022 ~4,5! 27.67578125031022 ~5,7! 1.32905506031022 ~2,9! 2.22517164931021

~0,3! 5.46875000031022 ~6,5! 26.34765625031023 ~6,7! 3.96484375031022 ~3,9! 3.16143459731021

~1,3! 1.25000000031021 ~0,6! 22.11344401031022 ~8,7! 22.78814406631023 ~4,9! 23.15523016431021

~2,3! 21.56250000031021 ~1,6! 1.26692708331021 ~0,8! 8.16250755731023 ~5,9! 26.51598733631022

~4,3! 5.46875000031022 ~2,6! 1.89583333331021 ~1,8! 22.93884277331022 ~6,9! 1.19148214031021

~0,4! 4.88281250031022 ~3,6! 22.05305989631021 ~2,8! 23.08612496531021 ~7,9! 22.49356063031023

~1,4! 23.12500000031021 ~4,6! 21.92545572931022 ~3,8! 4.99087524431021 ~8,9! 22.92867832131022

~2,4! 21.95312500031022 ~5,6! 7.09798177131022 ~4,8! 2.15214320631022 ~10,9! 3.23787669031023

~3,4! 25.85937500031022 ~7,6! 22.11344401031022 ~5,8! 21.45015607631021

~5,4! 4.88281250031022 ~0,7! 22.78814406631023 ~6,8! 1.13124302531022
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B. Perturbative Mean-field theory and low-temperature
susceptibility

High-temperature expansions provide essentially exact
numerical values for the thermodynamic properties at high-
temperatures. However, below a certain temperature, their
convergence necessarily becomes poor. In this section, we
discuss how the knowledge of the uniform susceptibility for
the nearest-neighbor Heisenberg model, together with a per-
turbative mean-field theory, can lead to accurate estimates
for the uniform susceptibility of the small J1 /J2 Heisenberg
model at all temperatures.

Using series expansions (T50),14 nonlinear sigma model
theory15 ~very low T), quantum Monte Carlo ~QMC!
simulations16 ~low T) and high-temperature expansions
~HTE! ~high T!,17 the susceptibility of the nearest-neighbor
model (J150) is known accurately for all T. We treat the J1
term perturbatively,18 and set J251 for notational simplicity.
Due to strong frustration, the large J2 model appears as two
disconnected interpenetrating antiferromagnets. The applica-
tion of a field causes a uniform polarization of both the sub-
lattices. These polarized moments will now interact through
antiferromagnetic J1 leading to a suppression of the polar-
ized moment. To see the perturbative calculation, we write
the Hamiltonian as

H5H01J1(
i j

SW iSW j2h(
i

S i
z , ~4!

where H0 is the Hamiltonian for J150 and we have in-
cluded the external field term explicitly. In treating the J1
term perturbatively, note that the spins on the two sublattices
are decoupled without J1 and hence for spins on the two
sublattices ^S iS j&5^S i&^S j&. This leads to the following ex-
pression for the free energy per site f to first order in J1 and
second order in h:

f 5 f 02
1
2 x0h2

12J1m0
2
5 f 02

1
2 x0h2

12J1x0
2h2. ~5!

Here, f 0 and x0 are the free energy and susceptibility per site
for J150 ~a nearest-neighbor Heisenberg model!. From this,
it follows that

x~J1 ,T !5x0~T !@124J1x0~T !# . ~6!

As shown in the inset of Fig. 1, at T50 for small J1 /J2, this
expression compares very well with the perpendicular sus-
ceptibility x' calculated from Ising series expansions.14 Note
that the perpendicular susceptibility x' is equal to 2/3 of
uniform susceptibility x(T) at T50. Figure 1 also shows
that applying Eq. ~6! to the finite-T QMC data for x0 leads to
susceptibility values, which join smoothly with the high-
temperature expansion results. Thus, we have accurate cal-
culations for the susceptibility of the model with small J1 /J2
at all T.

III. LDA CALCULATIONS FOR Li2VOSiO4 AND
Li2VOGeO4

A. Crystal structure

The isostructural compounds Li2VOSiO4 and
Li2VOGeO4 crystallize in the tetragonal P4/nmm system
containing two formula units per cell with a56.3682 Å, c
54.449 Å for Li2VOSiO4 and a56.4779 Å, c54.520 Å for
Li2VOGeO4.19 A sketch of the crystal structure is shown in
Fig. 2. The magnetically active network of spin-1/2 V41 ions
is built up by @VOSi(Ge)O4#22 layers of VO5 square pyra-
mids sharing its four vertices with Si(Ge)O4 tetrahedra.
These complex layers are ‘‘intercalated’’ stoichiometrically
with Li ions. The structure of the V41 square network sug-
gests that both the nearest-neighbor ~NN! and the next-
nearest-neighbor ~NNN! in-plane coupling should be signifi-
cant, although it is at best difficult to decide from general
considerations whether one is dominant, or even which one
might be largest. The NN coupling is favored by the exis-
tence of two exchange channels and shorter distance, the
NNN coupling profits from a straighter connection between
pyramids oriented in the same direction forming a planar
V41 network ~see Fig. 2!. The magnetically active V41 ions
have the site symmetry 4mm , leading to a splitting of the V
3d states into four levels, preserving only the degeneracy of
the V 3dxz and 3dyz states.

B. Calculational method

Scalar relativistic band-structure calculations were per-
formed using the full-potential nonorthogonal local-orbital

FIG. 1. Susceptibility (x , with largest x for J150) for J2
59 K, g52, and J1 /J250,0.1,0.2. The low-temperature data is
obtained from QMC combined with Eq. ~6!, while the high-
temperature data comes from HTE. The inset shows the perpendicu-
lar susceptibility x' for T50,J251 calculated from Ising series
expansion ~points with errorbar! and from Eq. ~6! ~solid line!.
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minimum-basis scheme20 within the LDA to obtain the hop-
ping part of a TB Hamiltonian. For the exchange and corre-
lation potential, the parametrization of Perdew and Zunger21

was used. V(3s ,3p ,4s ,4p ,3d), O(2s ,2p ,3d), Li(2s ,2p),
Si(3s ,3p ,3d), and Ge(3d ,4s ,4p ,4d) states, respectively,
were chosen as the basis set. All states lying lower were
treated as core states. The inclusion of V(3s ,3p) and Ge 3d
states in the valence states was necessary to account for non-
negligible core-core overlaps due to the relatively large ex-
tension of the V (3s ,3p) and Ge 3d wave functions. The O
and Si 3d , Ge 4d , as well as the Li 2p states were taken into
account to get a more complete basis set. The spatial exten-
sion of the basis orbitals, controlled by a confining
potential22 (r/r0)4, was optimized to minimize the total en-
ergy. A k mesh of 432 points in the Brillouin zone ~70 in the
irreducible part! was used. Convergence with respect to the
basis set and the k mesh was carefully checked.

C. Electronic structure

The nonpolarized energy bands are very similar for these
compounds. We find in both cases a valence-band complex
of about 10 eV width with two bands crossing the Fermi
level. Figure 3 shows the total and partial density of states

~DOS! for Li2VOSiO4. Typical of vanadates, the valence
band has predominantly O 2p character, with some admix-
ture of V and small contributions from Li and Si ~note that
the partial DOS in Fig. 3 for Li and Si is scaled by a factor of
10!. The states at and right above the Fermi level are built
primarily from V 3d orbitals, with the dispersion arising
from hybridization with the O 2p states, and with practically
negligible admixture of Li and Si states. The isostructural
and isovalent replacement of Ge for Si in Li2VOGeO4 leads
to a virtually identical picture on the energy scale shown in
Fig. 3. The ionic picture Li2

11V41O22Si41(Ge41)O4
22 pro-

vides an excellent overall picture of the electronic structure.
The two bands crossing the Fermi level, due to the two

V41 ions per cell, are well separated by a gap of about 3 eV
from the rest of the valence-band complex. These relatively
narrow bands ~see Fig. 4, left panel! are half filled. There-
fore, strong correlation effects can be expected, which ex-
plain the experimentally observed insulating ground state.
The half-filled bands show mainly V 3dxy ~see Fig. 4, right

FIG. 2. Perspective view ~lower panel! of the crystal structure of
Li2VOSiO4, and projection along @001# ~upper panel!. The VO5
pyramids ~large diamonds! share the corners of the basal planes
with SiO4 tetrahedra ~small diamonds!. The V41 and Si41 ions are
represented by black and gray spheres with bonds to the oxygens
located at the corners of the pyramids and tetrahedra, respectively.
The Li1 ions are indicated by medium sized gray spheres. In the
isostructural Li2VOGeO4, Si is replaced by Ge.

FIG. 3. Total and partial density of states of Li2VOSiO4. The
Fermi level is at zero energy. O~2! stands for the O atom in the
basal plane of the VO5 pyramids, O~1! sits at the top of the pyra-
mids. Note that the Si and Li states are scaled by a factor of 10.

FIG. 4. Band structure ~left panel!, and orbital-resolved DOS of
Li2VOSiO4 for the V 3d related bands. The Fermi level is at zero
energy. The notation of the symmetry points is as follows: X
5(100), M5(110), Z5(001).
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panel! and minor O~2! 2px ,y character ~oxygens of the basal
plane of the VO5 pyramid! in the analysis of the correspond-
ing orbital-resolved partial densities of states ~not shown for
O!. The band complex of four bands about 0.4 eV above the
Fermi level is due to V 3dxz and 3dyz states ~see Fig. 4, right
panel! and shows negligible mixing with the half-filled
bands. Thus, the LDA picture is that, relative to the singly
occupied dxy orbital, there is a crystal-field splitting of the
dxz ,dyz to 0.4 eV higher energy, with the remaining two
orbitals ;1.5 eV higher than the dxy state and broadened by
interlayer dispersion. ~Of course, correlation effects will shift
the positions of the half-filled state.! The differences between
Li2VOSiO4 and Li2VOGeO4 are rather small, the main dif-
ference is a slightly larger splitting of the V 3dxy derived
bands along the G-X line for the latter compound, resulting
in an increased NN transfer integral.

Because the low-lying magnetic excitations involve only
those orbitals with unpaired spins ~corresponding to the two
half-filled bands! and because of the negligible mixing of
these states with other bands close to the Fermi level, we
restrict ourselves to a two-band TB analysis and the discus-
sion of these half-filled bands.

D. Tight binding representation

The dispersion of these bands can be represented in 2
32 form ~see Fig. 4! in terms of NN transfer t1 and NNN
transfer t2 within the @001# plane ~see Fig. 2, upper panel!
and NN hopping t' between neighboring planes as

E~kW !5«012t2@cos~kxa !1cos~kyb !#

64t1cos~kxa/2!cos~kyb/2!12t'cos~kzc !. ~7!

Parameters have been obtained by two different numerical
procedures: by straightforward least-square fitting of the
complete pair of bands, and separately by using the energy
eigenvalues at selected high-symmetry points. The resulting
hopping amplitudes for both compounds are shown in Table
II. The uncertainties can be estimated from the differences in
the two procedures at about 5% for the in-plane transfers and
15% for the interplane term from the differences of the
above-mentioned fitting procedures. These small differences
can be ascribed to the influence of longer-range interactions,
which we neglect. The agreement of the TB fit with the LDA
bands justifies a posteriori the restriction to NN and NNN
couplings only. Comparing the transfer integrals ~given in

Table II! for Li2VOSiO4 and Li2VOGeO4, the main differ-
ence consists of about 50% larger NN term in Li2VOGeO4,
whereas the NNN hopping and the interplane hopping t' are
only slightly smaller than in Li2VOSiO4.

E. Calculated exchange coupling

The resulting transfer integrals enable us to estimate the
relevant exchange couplings, crucial for the derivation and
examination of magnetic model Hamiltonians of the spin-1/2
Heisenberg type like Eq. ~1!. In general, the total exchange J
can be divided into an antiferromagnetic and a ferromagnetic
contribution J5JAFM

1JFM . In the strongly correlated limit,
valid for typical vanadates, the former can be calculated in
terms of the one-band extended Hubbard model J i

AFM

54t i
2/(U2V i). The index i corresponds to NN and NNN, U

is the on-site Coulomb repulsion and V i is the intersite Cou-
lomb interaction. Considering the fact that the VO5 pyramids
are not directly connected, but only indirectly via SiO4 tet-
rahedra, ferromagnetic contributions JFM are expected to be
small and we neglect them. For the same reason, the intersite
Coulomb interactions V i should be negligible compared with
the on-site repulsion U. From LDA-DMFT~QMC! studies23

and by fitting spectroscopic data to model calculations,24 U
;4 –5 eV is estimated for typical vanadates. Therefore, we
adopt U54 eV and U55 eV as representative values to es-
timate the exchange constants and their sensitivity to U. The
resulting values for the exchange integrals for both com-
pounds are given in Table II.

Our calculated exchange couplings can be compared with
the experimental findings.10 For Li2VOSiO4, we find excel-
lent agreement for the sum25 J11J259.561.5 K of the in-
plane couplings, reported from susceptibility data10,9 to be
J11J258.261 K. For Li2VOGeO4, we find the same result
for the sum J11J2, with changes for both J1 and J2 being of
the same size with opposite sign ~see Table II!. Experimen-
tally, the Curie-Weiss temperature in Li2VOGeO4 was found
to be about 30% smaller than in Li2VOSiO4.9 In sharp con-
trast to the results of Ref. 10, where they estimate J2 /J1
;1.160.1, we find a ratio J2 /J1;12, exceeding the experi-
mentally derived ratio by an order of magnitude. Analyzing
the uniform susceptibility and the specific heat in Sec. IV, we
will show that our result is much more consistent with the
experimental data than the estimate J2 /J1;1.1.10 Because
of more than twice as large NN exchange, J1 in Li2VOGeO4
compared to Li2VOSiO4, a ratio J2 /J1;5 is considerably
smaller, but still deep in part of the phase diagram for the
columnar ordered phase.

IV. COMPARISONS WITH EXPERIMENTAL DATA:
UNIFORM SUSCEPTIBILITY AND SPECIFIC HEAT

The experimental data for susceptibility and specific heat
of these materials go from room temperature down to a few
Kelvin ~below the Néel temperature!. Below the 3D, long-
range order, one does not expect the 2D models to remain
valid. But also at high temperatures these systems do not
show a Curie-Weiss regime. Rather, a plot of the inverse
susceptibility versus temperature shows a continuously

TABLE II. Transfer integrals of the two-band TB model for
Li2VOSiO4 and the corresponding exchange couplings for different
values of the Hubbard U. The corresponding values for Li2VOGeO4
are given in parentheses.

t1 ~meV! t2 ~meV! t' ~meV! U ~eV! J1 ~K! J2 ~K! J' ~K!

8.5 29.1 24.8 4 0.83 9.81 0.27
~12.8! ~28.0! (24.1) ~1.88! ~9.07! ~0.20!

5 0.67 7.85 0.22
~1.52! ~7.26! ~0.16!
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changing slope, which cannot be accounted for by a Heisen-
berg model. Our primary focus is on data below 20 K, which
still go about twice above the Curie-Weiss temperature.

In our data fitting, we use the same approach as described
in detail in Ref. 26. Here, there are three fitting parameters:
J1 /J2 , J2, and g. The basic procedure is to find a proper
parameter set (J1 /J2 ,J2 ,g), which gives the minimum value
of

P5(
T i

uxexp~T i!2x theo~T i!u, ~8!

for susceptibility, or

P5(
T i

uC
v

exp~T i!2C
v

theo~T i!u, ~9!

for specific heat, where superscripts exp and theo mean the
experimental and theoretical results, respectively, and the
summation is over the experimental points T i .

We first consider the data for the material Li2VOSiO4. We
find that fitting of the susceptibility and specific-heat data is
not very sensitive to the J2 /J1 ratio. If we fit the suscepti-
bility data, allowing the parameters (J1 /J2 , J2 , g) to vary
freely, the best fit is obtained for the parameters ~0.45, 5.9 K,
1.97!. Note that the best fit for the susceptibility data alone
gives a g value very close to 2 in agreement with the value
quoted from the electron-spin-resonance measurements by
Melzi et al.10 Accepting a g value of 2 will lead to a J1 /J2
ratio close to one half. If we fit the specific-heat data, the best
fit arises for (J1 /J2 , J2) values of ~0.025, 5.9 K!. In both
cases, the fits of J1 /J2 are strongly correlated with the fits
for J2. Combining the trends for both specific-heat and sus-
ceptibility data, the best fit for the materials gives (J1 /J2 ,
J2 , g) of ~0.3, 5.9 K, 1.93!.

In looking for consistency between the LDA calculations
and the experimental data, we can adopt the following strat-
egy. In LDA, the ratio of exchange constants should be best
determined as the parameter U cancels out. Hence, we fix
J2 /J1510 consistent with LDA. We then vary g and J2 to
obtain the best fit to the susceptibility data. This is obtained
for J256.1 K, 20% smaller than the lower estimate from the
LDA calculation of Sec. III E. The agreement is still remark-
able for an ab initio calculation.

The data are represented excellently by the susceptibility
fit as shown in the upper panel of Fig. 5. The specific-heat
data are now compared with theory with no adjustable pa-
rameters. This is shown in the inset of the figure. The agree-
ment is remarkable. In the middle panel of Fig. 5, we also
show the corresponding best fit for J1 /J250.3, which shows
an even better fit. We also applied the same fitting procedure
for J2 /J151, the value proposed in Ref. 10. The agreement
is poor as shown in the lower panel of Fig. 5. Thus, although
the susceptibility and specific-heat data do not allow us to fix
the exchange integrals unambiguously, they are quite consis-
tent with small J1 /J2 ratio as found in LDA, and inconsis-
tent with J2'J1.

We now turn to the material Li2VOGeO4. For this mate-
rial, when we fit the susceptibility data, allowing the param-

eters (J1 /J2 , J2 , g) to vary freely, the best fit is obtained for
the parameters ~0.55, 3.8 K, 1.83!. If we fit the specific-heat
data, the best fit arises for (J1 /J2 , J2) values of ~0.75, 4.1
K!. In this case also, the fits of J1 /J2 are strongly correlated

FIG. 5. Susceptibility and specific heat ~inset! for Li2VOSiO4
compared with the Heisenberg model results for J1 /J25 ~a! 0.1, ~b!

0.3 and ~c! 1.0. The full lines are the calculated curves, the open
circles are the data points according to Refs. 9 and 10. The different
curves for the specific heat correspond to different Pade approxima-
tions.
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with the fit for J2. Combining the trends for both specific-
heat and susceptibility data, the best fit for the materials
gives (J1 /J2 , J2 , g) of ~0.5, 3.9 K, 1.83!.

Once again, to check the consistency of the experimental
data with the LDA calculations, we show the best fits for the
susceptibility data and the corresponding fit for the specific-
heat data for J1 /J250.2 ~upper panel of Fig. 6! and J1 /J2
50.5 ~lower panel of Fig. 6!. Although the latter ratio gives
a better fit, both fits look reasonable and show that the LDA
derived exchange constants give a good description of the
material.

Summarizing this section, HTE and LDA derived ex-
change parameters that agree qualitatively quite nicely, char-
acterizing both compounds as large J2 /J1 systems with the
ratio J2 /J1 about twice as large in Li2VOSiO4 as in
Li2VOGeO4. Due to the insensitivity of the HTE fits to the
thermodynamical data and the remaining uncertainty in the

LDA derived constants ~uncertain value of U, possible ferro-
magnetic contributions!, a more accurate determination of all
the exchange constants requires more sensitive methods such
as the measurement of the spin-wave dispersion by neutron
scattering ~see Sec. VII!.

V. THREE-DIMENSIONAL ORDER

We now turn to the interplane couplings and the measure-
ments of the Néel temperature, TN , where three-dimensional
order sets in. Applying the expression15 TN'0.36J'j2(TN)
(j is the in-plane correlation length, and for small J1 we
ignore correlations between sublattices and treat the planes
via a nearest-neighbor model!, to our LDA calculated ex-
change constants, leads to the estimate TN'3.660.4 K for
Li2VOSiO4, which is remarkably close to the experimental
value of 2.8 K. For Li2VOGeO4, we would predict a slightly
smaller transition temperature of TN'3.260.4 K derived
from the LDA coupling constants. Considering our J2 results
from the best HTE fits ~combining susceptibility and
specific-heat! and the interplane exchanges J' from Table II,
we find TN'2.560.4 K and TN'1.760.4 K for
Li2VOSiO4 and Li2VOGeO4, respectively, again close to the
experimental value for Li2VOSiO4. Although, no phase tran-
sition down to 1.9 K for Li2VOGeO4 was reported in Ref. 9,
the specific-heat data27 show a rather sharp peak with an
onset at about 2.3 K ~see inset in Fig. 6!. Further experimen-
tal study to investigate the nature of this peak—proving or
disproving our prediction of a phase transition to a columnar
ordered phase at about this temperature—would be very in-
teresting.

Furthermore, the saturation field for our calculated ex-
change constants in Li2VOSiO4 is about 30 T, which is much
bigger than the 9 T field applied by Melzi et al.28 The Néel
temperature should go to zero at the saturation field. How-
ever, we note that due to suppression of spin fluctuation, the
Néel temperature can increase slightly with field, as happens
in the purely 2D model. Thus, the experimental result of very
weak-field dependence of the Néel temperature up to 9 T is
consistent with our expectations. The appreciable but still
small 3D couplings should also give rise to 3D critical be-
havior at the finite-temperature transition with strong cross-
over effects. These results on the field dependence of the
Néel temperature and the critical behavior at the transition in
weakly coupled Heisenberg systems deserve further theoret-
ical attention.

One of the really puzzling aspects of the experimental
results10 for Li2VOSiO4 is the small moment of 0.24 mB
~extrapolated to T50) obtained from the nuclear magnetic
resonance split patterns, compared to the moment of the
square-lattice Heisenberg model which is well known to be
'0.6mB .14 One possible explanation, a partial cancellation
of the hyperfine fields from antiferromagnetically ordered
NN and NNN V sites, was given in Ref. 11. The arguments
given there would be valid as well for the Li2VOGeO4 com-
pound with a slightly smaller compensation. A more direct
measurement of the ordered moments, for instance by neu-
tron scattering, would be highly desirable to settle this point.

FIG. 6. Susceptibility and specific-heat ~inset! for Li2VOGeO4
compared with the Heisenberg model results for J1 /J25(a) 0.2 and
~b! 0.5. The full lines are the calculated curves, the open circles are
the data points according to Refs. 9 and 27. The different curves for
the specific-heat correspond to different Pade approximations.
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VI. SPIN-WAVE DISPERSION: SENSITIVE TESTS OF J1 ÕJ2
RATIO

We have seen in this paper that the materials Li2VOSiO4
and Li2VOGeO4 are good realizations of the quasi-2D frus-
trated antiferromagnets, where J2 exceeds J1. The LDA cal-
culations lead to J2 much larger than J1. The ratio J1 /J2
cannot be accurately determined from the available data pri-
marily because the thermodynamic measurements are not
very sensitive to its value. For this, we need to turn to the
spin-wave dispersion.

The spin-wave dispersion for the J1-J2 model has been
calculated by several authors. Let h5J1/2J2 , cx5cosqxa,

and cy5cosqya then in the collinear phase at low tempera-
ture, the spin-wave dispersion, to leading order in 1/S , is
given by4,29

vh~qW !2
5~2SJ2!2$@11hcx#

2
2@cxcy1hcy#2%. ~10!

In this phase, the excitations are gapless at four points qW

5(0,0), qW 5(p ,0), qW 5(0,p), and qW 5(p ,p). This remains
true throughout the phase 0,h,1. However, the nature of
the dispersion in the zone changes qualitatively as one goes
from small h to h close to one. Two of the most notable
features are illustrated in Fig. 7: ~i! For small h , the disper-
sion is nearly symmetric in qx and qy , but as h approaches
unity, the dispersion becomes highly asymmetric. This asym-
metry reflects the antiferromagnetic order in one direction
and ferromagnetic in the other. ~ii! For small h , the spin-
wave velocities are set by J2 and the dispersion rises steeply
and nearly isotropically around the gapless points, however,
as one approaches h51, the spin-wave velocity becomes
very different along qx and qy and one sees an approach to
lines of gapless states. The asymmetry in the spin-wave dis-
persion can be used as a measure of h .

Further, experimental work through neutron scattering
would help determine the spin-wave spectra and the ratio
J1 /J2.

VII. CONCLUSIONS

In conclusion, this paper had two primary goals: ~i! Pre-
sentation of high-temperature expansion results for the uni-
form susceptibility and specific heat of the J1-J2 square-
lattice Heisenberg model. These results were augmented by
perturbative mean-field theory valid for small J1 /J2. With a
growing number of experimental systems, which may be de-
scribed well by the J1-J2 model, these expansions should
prove useful in analyzing their experimental properties. ~ii!
We have presented first-principles calculations for the ex-
change constants of the materials Li2VOSiO4 and
Li2VOGeO4 and by comparing with their experimental prop-
erties, have shown that these materials are in the large J2
regime. We have also noted that an accurate determination of
the J1 /J2 ratio for such materials could come from the mea-
surement of spin-wave dispersion.
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