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The Bogoliubov–de Gennes equations for singlet superconductivity in an exchange field are analyzed with
real materials having complex Fermi surfaces in mind. The resulting gap equation is reformulated in terms of
a velocity spectrum on the Fermi surface in which the surface geometry is built in. The resulting analysis can
readily be used for arbitrary dispersion relations. Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� phases are studied
in the temperature-field plane, with results providing a physically clear interpretation of why certain directions
of pair momentum q� are energetically favored. We present clarifying results for models �the two-dimensional
square Fermi surface, one-, two-, and three-dimensional isotropic surfaces� and provide an application to the
weak ferromagnetic ZrZn2 showing it is not a favorable case for an FFLO phase.

DOI: XXXX PACS number�s�: 74.10.�v, 74.20.Rp, 71.18.�y

I. INTRODUCTION

Almost half a century ago Ginzburg addressed the ques-
tion of possible superconductivity in ferromagnetic material1

and studied the problems posed by orbital supercurrents
within a material with intrinsic magnetic flux. About a de-
cade later and armed with BCS theory,2 Fulde and Ferrell3

�FF� and separately Larkin and Ovchinnikov4 �LO� ad-
dressed the separate question as to how a BCS supercon-
ductor copes with an intrinsic spin splitting, which breaks the
degeneracy of spin-up and spin-down Fermi surfaces. Both
FF and LO concluded that �neglecting orbital current effects�
there is a superconducting phase �the “FFLO phase”� above
the usual upper critical field Hc2 where superconductivity
persists based on q� �0 �nonzero momentum� pairs and the
order parameter becomes inhomogeneous.

Since that time, there has been a considerable number of
papers exploring the competition between, and possible co-
existence of, the superconducting and magnetic long-range-
order parameters.5 Full treatment requires consideration of
both orbital and spin effects, and for the most part theories
have tended to suppose that one is dominant in a particular
system and concentrate on that one. Thus investigations have
focused either on the orbital effects such as spontaneous vor-
tex phases or on the exposition of the FFLO phase without
complications from vortex behavior. Much has been accom-
plished with this approach, although little in a material-
specific way that would allow theories to be carefully tested.
With regard to the FFLO phase, the move has been in the
opposite direction: make the system fit the idealizations of
the theorists.

Two-dimensional �2D� layered organic crystals provide
the primary playground. With negligible carrier hopping be-
tween layers, the magnetic field can be oriented nearly in-
plane and the competition between spin and orbital pair
breaking first studied theoretically by Bulaevskii6 can be
probed. If the field lies precisely within the layer, orbital pair
breaking vanishes, leaving only a small exchange splitting
�±�BB� to inhibit superconductivity. This setup has led to

strong evidence that a distinct high-field, low-temperature
phase in �-�BEDT-TTF�2Cu�NCS�2 is an excellent candidate
for an FFLO phase.7 The observed new phase seems consis-
tent with theoretical expectations9 and is suggested to arise
due to a favorable Fermi surface shape.7,8

A less prosaic candidate, still within the quasi-two-
dimensional realm, is �-�BETS�2FeCl4, which contains the
conducting layers of BETS molecules and layers of Fe3+

magnetic ions. At ambient pressure it undergoes a transition
to an antiferromagnetic insulating phase below 10 K. Upon
application of a field, it undergoes an insulator-to-metal tran-
sition at 11 T and then becomes superconducting above
16–17 T, with Tc increasing with field.10,11 The field-induced
superconductivity is thought to be due to the Jaccarino-Peter
mechanism in which the applied field counteracts the internal
exchange field due to the magnetic ions, enabling singlet
pairing. At the edges of this field-induced superconducting
phase, FFLO phases are expected to arise.12 Experimental
determination of the Fermi surface13 has become a central
part of the understanding of this system.

An FFLO phase has been suggested to account for a sec-
ond superconducting phase deep within �H�Hc2� the main
superconducting phase in CeCoIn5.14 This compound is a
favorable case for an FFLO phase because it is extremely
pure and due to its large Maki parameter �which indicates
that orbital pair breaking is a minor effect�. The transition
between the suggested FFLO phase and the normal state is
first order. It has also been found that the phase boundaries
depend strongly on the direction of the applied field.15 Ob-
servation of a possible FFLO phase has also been argued for
UBe13,

16 based on a strong upturn in the upper critical field
at low temperature.

Underlying the criteria for a specific superconducting
phase is not only the coupling strength and character �aniso-
tropy, for example�, but also the characteristics of the Fermi
surface where superconductivity “lives.” It is vaguely ex-
pected, of course, that FFLO pairing is favored by “nesting”
in some sense of the exchange-split Fermi surfaces. Specifi-
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cally, however, little has been established quantitatively
about the importance of the shape of the FS and the value
and anisotropy of the Fermi velocity of the quasiparticles.
These aspects can be very important for superconducting
properties—for example, the symmetry of the vortex lattice
can change depending on the degree of anisotropy of the
Fermi velocity around the FS,17 and the quasiparticle spec-
trum within a vortex is sensitive to the Fermi surface
topology.18

FFLO phases are traditionally studied in the context of
exchange splitting due to applied fields, but the same situa-
tions arise for superconductivity in weak ferromagnets
�which was what FF and LO had in mind�. The recent iden-
tification of several examples of superconductivity coexist-
ing with weak ferromagnetism �RuSr2GdCu2O8,UGe2,
URhGe,ZrZn2�and in close proximity to the magnetic quan-
tum critical point �QCP� broadens the interest in the effects
of exchange splitting on pairing and superconducting phe-
nomenology. Certainly near the QCP where the exchange
splitting goes to zero, the action depends strongly on the
fermiology, and Sandeman et al. have modeled the metamag-
netic behavior of UGe2 in terms of changing Fermi surface
topology.19 The spectrum of critical fluctuations near the
QCP is also sensitive to the Fermiology, specifically the
magnitude and anisotropy of the Fermi velocity.20 In ZrZn2
additional phases �differing at least in magnetic properties�
have recently been observed21 that alter the picture from
what was presented originally.22,23

In this paper we aim to extend our understanding of ma-
terials characteristics that make an FFLO phase favorable
and, at the same time, develop numerical techniques that
allow the formalism to be applied to real materials with com-
plicated Fermi surfaces, which in certain cases may favor
formation of FFLO phase. At this stage we neglect effects of
orbital currents, as has typically been done previously.

II. FORMALISM

A. Hamiltonian in an exchange field

The BCS �Bardeen-Cooper-Schrieffer� reduced Hamil-
tonian with exchange splitting ±�BB, in units in which �B
=1, is

H = �
k�

�k��nk�↑ + n−k�↓� − B�
k�

�nk�↑ − n−k�↓�

− g�
k�k��

ck��↑
† c−k��↓

† c−k�↓ck�↑. �1�

Here ck��
† �ck��� is the creation �destruction� operator for single-

electron states, nk���ck��
† ck��, and the single-particle disper-

sion is referenced to the Fermi energy �F=0. The attractive
pairing strength g is positive for single-particle energies ��k��
within a cutoff energy �c and zero otherwise. Use is made of
the symmetry �−k� =�k� to write the first two terms in an un-
conventional manner �involving n−k�↓ rather than nk�↓�.

To accommodate the formalism to pairing of pairs with
momentum of q� , the interaction term of the Hamiltonian is
rewritten for pairing of states �k� +q� /2�↑ with �−k� +q� /2�↓,

H = �
k�

�k��nk�↑ + n−k�↓� − B�
k�

�nk�↑ − n−k�↓�

− g�
k�k��

ck��+q�/2,↑
† c−k��+q�/2,↓

† c−k�+q�/2,↓ck�+q�/2,↑. �2�

The k� +q� /2 ,↑ and −k� +q� /2 ,↓ indices appearing in the pair-
ing potential can be simplified in preparation for the
Bogoliubov–de Gennes �BdG� transformation

c̃k��
† � ck�+q�/2,�

† , c̃−k��
† � c−k�+q�/2,�

† , �3�

ñk�� � c̃k�,�
† c̃k�,�. �4�

A further simplification is made by making a small-q� ap-
proximation:

�k�+q�/2 � �k� +
q�

2
· v�k�, v�k� � �� �k� . �5�

The Fermi surface that defines v�k� at k� =k�F is the non-spin-
polarized normal-state Fermi surface. With the linear ap-
proximation, the normal-state Fermi surface marks the super-
conducting state’s chemical potential.

After collecting operators with common k�, the Hamil-
tonian for nonzero momentum becomes

H = �
k�

�k��ñk�↑ + ñ−k�↓� + �
k�
�q�

2
· v�k�F

− B��ñk�↑ − ñ−k�↓�

− g�
k�k��

c̃k��↑
† c̃−k��↓

† c̃−k�↓c̃k�↑ = �
k��

�k�ñk�� − g�
k�k��

c̃k��↑
† c̃−k��↓

† c̃−k�↓c̃k�↑,

�6�

where the spin-dependent dispersion is given by

�s�k�� = �k� + s�wk�, wk �
q�

2
· v�k�F

− B, s↑ � 1, s↓ � − 1.

�7�

In this form several new features can be understood. First,
because of the convention of associating k� with up spin and
−k� with down spin and assuming inversion symmetry of the
Fermi surface, the pair momentum q� �0 acts so as to add
another effective Zeeman splitting term to the Hamiltonian.
Second, the new Zeeman splitting term is a peculiar one that
varies over the Fermi surface. A central feature in the physics
and understanding of the resulting phenomena is that for
one-half of the Fermi surface these splittings �from B and
from q�� tend to cancel, which enables FFLO superconducting
states to arise.

B. Bogoliubov-Valatin transformation

The mean-field approximation for the superconducting
state consists of presuming the appearance of an order pa-
rameter

bk = 	c̃−k↓c̃k↑
 , �8�

introducing the tautology
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c̃−k↓c̃k↑ = bk + �c̃−k↓c̃k↑ − bk� , �9�

and neglecting the product of the fluctuations �terms in pa-
rentheses� in the interaction term. In the case we consider bk
gives the amplitude for finding a pair with momentum q� and
zero spin in the superconducting state. The “energy gap” �see
below for clarification� is given by

	 = g�
k

bk, �10�

from which it is seen that the assumption of an isotropic
coupling matrix elements g leads to an isotropic gap. The
Hamiltonian becomes

H = �
k��

�k�ñk�� − �
k�

�	c̃k��↑
† c̃−k��↓

† + H . c.� . �11�

The resulting mean-field Hamiltonian is diagonalized by a
Bogoliubov–Valatin �BV� transformation, leading to the
Bogoliubov-de Gennes equations. In general, the BV trans-
formation leads to quasiparticles that are superpositions of
electrons and holes with both up and down spin. The Hamil-
tonian matrix which defines the quasiparticle eigenampli-
tudes and eigenenergies is


�k� + wk 0 0 	

0 �k� − wk − 	 0

0 − 	* − �−k� − wk 0

	* 0 0 − �k� + wk

� 

C�,k�↑

C�,−k�↓

D�,k�↑

D�,−k�↓
�

= E�,k�
C�,k�↑

C�,−k�↓

D�,k�↑

D�,−k�↓
� , �12�

where � is an index for the four possible quasiparticle states
and C and D are the coefficients for the single-particle cre-
ation and destruction operators, respectively.

The expression of Powell, Annett, and Gyorffy24 for more
general types of pairing �albeit only q� =0� reduces to this
form for singlet pairing. Diagonalizing the matrix, which re-
duces to a pair of 2
2 matrices, produces four branches of
quasiparticles states with definite spin and eigenenergies

Es�k��
± = s�wk� ± ��k�

2 + 	2 �13�

and which obey the Fermion anticommutator relations.
In the superconducting ground state with wk� =0, all of the

negative-energy states will be occupied. The positive-energy
states can then be considered quasiparticle excitations. The
rest of the analysis will be in terms of these excitations. The
quasiparticle operators are

�k�↑
† = uk�c̃k�↑

† + 0 + 0 − vk�c̃−k�↓,

�−k�↓
† = 0 + uk�c̃−k↓

† + vk�c̃k↑ + 0,

�k�↑ = 0 − vk�c̃−k↓
† + uk�c̃k↑ + 0,

�−k�↓ = vk�c̃k�↑
† + 0 + 0 + uk�c̃−k�↓, �14�

where uk� and vk� are given by

�2uk� =�1 +
�k�

��k�
2 + 	2

,

�2vk� =�1 −
�k�

��k�
2 + 	2

. �15�

The BCS results are recovered when wk=0 and q� =0. It is
interesting that the quasiparticle amplitudes uk� and vk� are
independent of the Zeeman splitting. This can be understood
by noting that wk in each 2
2 submatrix enters proportional
to the identity matrix.

C. Gap equation

The quantity 2	 becomes the gap between the quasipar-
ticle eigenenergies with common spin label. The actual
opposite-spin gap 2	−2�wk�� does not enter the gap equation
directly, and the quasiparticle energies enter only through the
Fermi occupation functions. The quasiparticle bands are pic-
tured in Fig. 1. The gap equation is given by

	 = g�
k�

uk�vk��1 − f�Ek�↑
+ � − f�E−k�↓

+ �� . �16�

Since the index k� now enters through the energy term
s��q� /2� ·v�k� as well as through �k�, it is no longer possible to
simply change the k� summation to a one-dimensional energy
integral scaled by the density of states at the Fermi surface,
which is the technique typically applied when the Zeeman
term is not k� dependent.

FIG. 1. �Color online� Sketch of the four branches of the quasi-
particle dispersion in a magnetic superconductor. An energy gap of
2	 opens at the Fermi surface between quasiparticles with common
spin direction. The exchange splitting will reduce the opposite-spin
gap, but does not directly effect the superconducting parameter 	.
The thickness of the line represents the electron character of the
quasiparticles.
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Introducing the integral over the  function 1=��q̂ ·v�k�F
−V�dV in addition to the usual one 1=���−�k�d� leads to
the form of the gap equation that we focus on:

	 = N0g� dVN�V, q̂��
−�c

�c

d�
	

2��2 + 	2
�1 − f�E↑

+� − f�E↓
+��

= �� dVN�V, q̂�K�	,T,
1

2
qV − B� . �17�

N0 is the density of states evaluated at EF and we introduce
the usual coupling strength �=N0g ,E�

�+� is given by Eq. �13�
with �k�→�, and the variation in N�E� within �c of the Fermi
level has been neglected. This expression reduces to the BCS
equation when �q� �=0. The dependence on exchange splitting
enters only through the quasiparticle eigenenergies. In the
second expression the kernel K already includes the energy
integral.

The new function that has been introduced is the Fermi
surface projected-velocity distribution that depends on the
direction of q� ,

N�V, q̂� =
1

N0
�

k�
��F − �k���q̂ · v�k�F

− V�

=
1

N0

�c

�2��3�
fs

�q̂ · v�k�F
− V�

�v�k�F
�

ds , �18�

which is normalized as

� N�V, q̂�dV = 1. �19�

N�V , q̂� will be called the nesting density for reasons related
to FFLO phase formation. The Fermi surface geometry and
the variation of the velocity get folded into N�V , q̂�, which
incorporates the local density of states factor 1 / �v�k�F

�. The
energy integral K�	 ,T , 1

2qV−B� remains independent of the
details of the Fermi surface.

We will explore the solutions to the gap equation while
varying the parameters T ,B ,	, and q for a given dispersion
relation �k� and coupling strength �. It will also be of interest
to consider variations in the direction of the pair momentum;
however, we will restrict ourselves to directions of high sym-
metry since these directions will provide extrema of the
functions by symmetry considerations.

III. COEXISTENCE OF MAGNETIZATION AND
SUPERCONDUCTIVITY

A. BCS phase

We first mention the BCS phase diagram in the T-B plane.
Band-crossing-induced magnetization and q� =0 �BCS� pair-
ing coexist near the first-order phase boundary between T
�T0 /2 and T=Tc. In this region where �B��	�0, the gap
between opposite-spin quasiparticles closes, giving rise to
field-induced pair breaking at the Fermi surface, while pair-
ing occurs away from the Fermi surface. When �B��	, an
opposite-spin gap exists over the entire Fermi surface, and

spin splitting can only occur for thermally broken pairs. The
general phase diagram is illustrated in Fig. 2.

B. FFLO phase

The FFLO phase takes advantage of the Zeeman energy
due to magnetization that arises when B�	, but then uses a
finite pair momentum to enhance pairing. A graphical way of
understanding this enhanced pairing through the quasiparti-
cle Fermi surface is shown in Fig. 3. The closing of the
opposite-spin gap shrinks the minority-spin Fermi surface
while expanding the majority spin. The coupling of the pair
momentum to the quasiparticle eigenenergy is then used to
reopen an opposite-spin gap on part of the Fermi surface.
Due to inversion symmetry of the dispersion relationship �k�,
spin splitting on the opposite side of the Fermi surface is

FIG. 2. The phase diagram in the T-B plane. The solid line
marks the BCS to normal phase transition. The region between the
“B�	” and “BCS” lines has no opposite-spin excitation gap but
superconducting pairing still exists. Solutions to the gap equation
exist for B under the “Gap limit,” but the free energy of the normal
phase is lower than the BCS phase. The “B�	” and “Gap limit” do
not meet “BCS” at the same point.

FIG. 3. �Color online� The top graph represents occupied BdG
quasiparticle states in k� and −k� space for spin up and spin down,
respectively, for 2D square Fermi surfaces. This nonstandard repre-
sentation highlights how the pairing momentum nests the Fermi
surfaces by canceling the magnetic induced splitting—greatly exag-
gerated here—to enable pairing �shown as the thick line�. The bot-
tom graph shows the electron Fermi surfaces which remain un-
shifted by the pair momentum.
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increased. This trade-off can be energetically favorable be-
cause pairing is strongest near the Fermi surface. Nesting can
be said to occur on the portions of the Fermi surface where
an opposite-spin gap is closed by a given q� �see Fig. 4�.

FFLO phases are favored when �1� enough of the Fermi
surface can be paired �nesting is strong enough� to allow for
a superconducting �	�0� solution to the gap equation and
�2� the FFLO free energy is less than the BCS free energy
and normal paramagnetic free energy. Using the form of the
gap equation that includes the nesting density, we want to
understand what features of the Fermi surface favor the
FFLO state. For a given splitting and direction of q̂, the
lowest FFLO free energy occurs when pairing is maximized.
Pairing is enhanced when 1

2qV= �q� /2� ·v�k�F
is chosen to can-

cel the magnetic splitting on some part of the Fermi surface.
The value of q selects the range of V where � 1

2qV−B��	
�e.g., where nesting occurs�.

The effective width of nesting in V space can be found by
noting when the quasiparticle eigenenergies are greater than
zero at the Fermi surface. Rewriting the inequality as
� 1
2q�V0+V�−B��	, we find

V �
2	

q
� �V0	

B
� , �20�

where V0 solves the equation � 1
2qV0−B�=0. In general, V0

will be optimal near a peak in the nesting density and as
large as possible to maximize V.

Figure 5 illustrates the behavior of K�	 ,T , 1
2qV−B� for

two possible choices of q which solve the equation � 1
2qV0

−B�=0 at different values of V0 and fixed 	�B.

IV. APPLICATIONS OF NESTING DENSITY TO FFLO
CALCULATIONS

For the calculations, we normalize 	�B=0,T=0�=	0=1
to specify the energy scale for the problem. The energy cut-
off for the gap equation is a parameter that is set to �c

=50	0. In a real materials the energy cutoff would be deter-
mined by the pairing boson �phonon, spin fluctuation, etc.�.
With the above parameter set, the coupling strength � now
becomes a function of �c and 	0, given by

1

�
= sinh−1� �c

	0
� . �21�

In the weak-coupling regime ���Nog�1� this reduces to
the well-known BCS relation 	0=2�ce

−1/�.
This coupling strength is ��0.2 which is well within the

weak-coupling regime for which the equations were derived.
The free-energy competition between BCS and FFLO is

an important factor in determining whether an FFLO state
will exist. Even in the best case, at T=0 the free-energy-
driven transition from BCS to FFLO occurs very near the
BCS critical field which is proportional to the density of
states at the Fermi surface. The FFLO critical field calcula-
tion is more complex. A higher proportion of FFLO pairs
occur in electron states away from the Fermi surface and on
average pay a higher kinetic energy cost. However, to first
order the FFLO critical field is determined by the fraction of
nesting density where pairing occurs at the Fermi surface. If
the FFLO critical field is less than the BCS critical field for
a material, no FFLO states will exist.

FIG. 6. The phase diagram of a 1D system. The presence of a 
function in the nesting density guarantees that half the density of
states at the Fermi surface can always be paired.

FIG. 4. �Color online� BdG quasiparticle excitations occur when
the combination of the magnetic exchange splitting and pair-
momentum-induced splitting are greater than 	. The closing of the
opposite-spin gap corresponds to the separation of the quasiparticle
Fermi surfaces in Fig. 3 and results in the breaking of pairs on the
Fermi surface.

FIG. 5. Graph of the energy integral kernel �K�	 ,T , 1
2qV−B��

from the gap equation �17� as a function of V for two values of q,
fixed 	, and T=0. The plateau occurs where the magnitude of the
exchange splitting energy is less than 	 since this is where both
quasiparticle eigenenergies are positive at the Fermi surface. The
sharp drop at the edge of the plateau reflects the breaking of pairs
away from the optimal nesting region.
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A. 1D Fermi surface

The simplest case is the 1D Fermi surface. The nesting
density consists of  functions at ±vF. The resulting phase
diagram is given in Fig. 6. At T=0, solutions to the gap
equation extend to arbitrarily large B with a correspondingly
large q=2B /vF. Free-energy constraints, however, limit the
FFLO phase to finite B.

B. 2D Fermi surface

The nesting density of states for 2D Fermi surfaces will
tend to have van Hove–like singularities that produce strong
peaks in N�V ,q� that go as 1/��Vpeak−V�. These peaks arise
whenever V= q̂ ·v�F is at a local extremum. A simple example
is the circular Fermi surface. The projected velocity is V
= �vF�cos��� where � is the angle between v�F and q̂. Figure 7
is the nesting density for positive V and shows the peak
caused by the extrema that occurs when q̂ is normal to the
Fermi surface. Figure 8 shows the phase diagram for the
circular Fermi surface. From Eq. �20�, we know that as B is
raised, the width of pairing �V� will go down. This happens
directly through the increase of q necessary to maintain V0
near the peak and indirectly through the reduction in 	
caused by the decrease in pairing. This reduction in pairing
as B is raised causes the FFLO phase to be quenched much
earlier than the 1D case.

C. 3D Fermi surface

While the nesting density for 3D material may have
peaks, in most cases these peaks will not be caused by van

Hove singularities. This can be understood by noting that any
extrema in the projected velocity will usually occur at iso-
lated points on the Fermi surface. For example, on the
spherical Fermi surface, the extrema of V occur at the two
points where q̂ is normal to the Fermi surface. The nesting
density for a spherical Fermi surface is constant between
±�vF�, and consequently our calculations have shown a very
small FFLO region in the phase diagram.

A 3D example with a strong peak in the nesting density at
Vmax is simple cubic nearest-neighbor tight-binding model at
half filling. With q taken in the 100 direction, the projected
velocity as a function of the position on the Fermi surface is
given by

V = Vmax sin�kx� . �22�

V has extrema at kx= ±� /2 which occurs along a curve de-
fined by cos�ky�+cos�kz�=0. Since extrema occur along a
curve rather than a point, N�V , q̂� will have integrable diver-
gences that go as ��Vpeak−V��−1/2. Figure 9 is the tight-
binding Fermi surface with the enhanced pairing region
highlighted. The nesting density is similar to that shown in
Fig. 7 with slightly more weight in the peak. Because of the
increased weight, the resulting phase diagram seen in Fig. 10
shows an increased FFLO region relative to the circular

FIG. 7. The nesting density of a 2D circular Fermi surface for
positive V showing peak at V= �vF�. The optimal FFLO solution will
choose a value for q such that this peak has enhanced pairing. The
nesting density is symmetric around V=0 due to inversion symme-
try of the Fermi surface.

FIG. 8. The phase diagram of a 2D circular Fermi surface.

FIG. 9. �Color online� Tight-binding Fermi surface at half fill-
ing. The highlighted region corresponds to the part of the Fermi
surface where enhanced pairing occurs for T=0, B�0.9, and q̂
=100.

FIG. 10. Tight-binding phase diagram shows a larger FFLO re-
gion than the circular phase diagram 8. This reflects the fact that the
nesting density for the tight-binding case has more weight near
Vmax.
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Fermi surface case. Any deviation from the 100 direction
will cause the extrema in V to occur at a few isolated points.

V. ZrZn2

We chose to apply our methods to ZrZn2 since it has a
relatively simple cubic structure, and as a weak ferromagnet
with superconductivity reported at 290 mK,23 it is a possible
candidate to show an FFLO phase. A non-spin-polarized
electronic structure calculation was performed using the
FPLO �Ref. 25� electronic structure code. The resulting four
conduction bands and Fermi surfaces have been presented by
Singh and Mazin.26 The nesting density for the four bands
that cross the Fermi surface were combined into a single
N�V , q̂� function. This represents the case of equal pairing on
all bands, consistent with our constant 	 model. The most
favorable direction of q̂ was found to be in the 111 direction
after considering nesting properties for the three high-
symmetry directions. The nesting density is shown in Fig.
11. Most of the contribution to the density of states comes
from the “cubic”-shaped Fermi surface shown in Fig. 12 that
Singh and Mazin call band 3. The large peak in the nesting
density does not come from the nesting of the faces of the
cube as one might expect but instead comes from the nesting
of the grooves along the edges of the cube. The Fermi ve-
locity on the faces is at least twice as large as the Fermi
velocity along the grooves. The high value of the Fermi ve-
locity on the faces reduces the contribution to the density of
states, and variations of the Fermi velocity spread out the
contribution to the nesting density over a range of V values.

The position of the largest peak gives the optimum value
V0 which in conjunction with B can be used to calculate the
pair momentum q=2B /V0. While this is a substantial peak, it
occurs at a low value of �V� which will require a high pair
momentum. As was illustrated in Fig. 5, high pair momen-
tum reduces the amount of total density available for pairing.
While FFLO solutions exist for the gap equation, at no point
was the free energy of these solutions below both the free
energy for the BCS phase and the normal phase.

By allowing a nonuniform 	, it may be possible for FFLO
solutions to exist in a small region above the BCS phase;
however, other considerations make this unlikely. In the
Hamiltonian we have assumed, the Zeeman splitting term B

for ferromagnets includes the applied field as well as the
ferromagnetic exchange energy. The average exchange split-
ting B for ZrZn2 can be calculated as

B =
M

2N0
� 30 meV �23�

�where M �0.15�B and and we have used the Singh-Mazin
value N0=2.43 states/eV-spin-unit cell�. Since the Curie
temperature is greater than the observed superconducting
temperature, we are not able to determine 	0=	�T=0,
B=0� for ZrZn2. We can, however, place a lower bound on
	0 for singlet pairing by noting that, even allowing for FFLO
solutions, the maximum B will be on the order of 	0 /�2. The
resulting 	0 is three orders of magnitude too large as it
would correspond to a Tc�2	0 /3.52kB=280 K. From this
we conclude that singlet pairing of either BCS or FFLO
states is highly unlikely in bulk ZrZn2.

Recent evidence has been presented that the superconduc-
tivity observed in samples of ZrZn2 is a surface
phenomenon,21 consistent with the lack of any signal in the
heat capacity. The superconductivity may arise from some
non-ZrZn2 phase in the surface region. Alternatively, it may
be that the magnetic moment is strongly suppressed in the
surface region, which would decrease B and tend to favor an
FFLO phase. Our analysis, however, shows that the ZrZn2
Fermi surface does not present a favorable platform for
FFLO formation even for very weak ferromagnetism.

VI. CONCLUSION

We have presented the formalism for the specific case of
the quasiparticle states and eigenenergies for non-zero mo-
mentum BdG quasiparticles in an exchange field. These qua-
siparticles were then used to solve the superconducting gap
equation within the mean-field approximation. The spin-

FIG. 11. ZrZn2 nesting density. The units of V are 107 cm/sec.
A small nonzero density extends to higher values of V. The noise is
a function of both the finite sampling of the Fermi surface and the
complexity of the electronic structure.

FIG. 12. �Color online� Fermi surface for the cube shape that is
responsible for the peak in the nesting density 11. The highlighted
region corresponds to the part of the Fermi surface where enhanced
pairing occurs for T=0,B�0.6, and q̂=111. It is interesting that the
pairing is not favored on the relative flat faces of the cube.
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polarized BdG formalism was then applied to study FFLO
states which have a magnetically induced spin splitting lead-
ing to pair-momentum-enhanced superconducting pairing on
a subset of the Fermi surface. The nesting density, which is
derived from the Fermi surface of the material being studied,
was separated out and calculated to facilitate solving the gap
equation and calculating free energies and other observables.
In addition to providing an efficient means of performing
calculations, the nesting density also proved to be a useful
tool for understanding what features of a Fermi surface con-
tribute to the formation of FFLO states.

The features of a Fermi surface which promote FFLO
states are low dimensionality, specific nesting topographies
�different from those that drive charge- and spin-density
waves�, and relatively simple Fermi surfaces with a uniform
magnitude of the Fermi velocity. The benefits of low dimen-
sionality is demonstrated by circular versus spherical Fermi
surfaces. The tight-binding Fermi surface illustrates the ben-
efits of nesting topographies. We emphasize that the nesting
topography in this case is not a “flat sheet” which we intu-
itively associate with nesting. The fact that FFLO states are
enhanced by peaks in the nesting density at high values of V
is in conflict with the reduced density of states associated
with high Fermi velocities. Variations in the magnitude of the
Fermi velocity will tend to place larger weights at small V
which are less likely to participate in FFLO pairing.

To simplify the calculations and analysis, we chose to
consider only a uniform exchange splitting which could arise
from uniform ferromagnetic exchange field or from an ap-
plied field. The BdG formalism does not depend on these
assumptions and could be applied to more complex situa-
tions that do not make use of a constant exchange splitting
and linearized Fermi surface approximation.

We have shown that ZrZn2 �whose reported coexistence
of superconductivity with ferromagnetism is now being
questioned22� is not a favorable platform for FFLO phase
formation. Two other superconducting ferromagnets are
UGe2 and URhGe, neither of which can be FFLO materials
within our theory. Both have very strong spin-orbit
coupling,27,28 which means that each Fermi surface is a com-
bination of up- and down-spin characters �which varies over
the surfaces� and our theory deals only with the weak spin-
orbit limit. In addition, the magnetic moments are much too
large to make FFLO phase formation feasible. The possibil-
ity of FFLO phases in other weak ferromagnets, such as
Sc3In �Ref. 29� or doped TiBe2 �Ref. 30�, or the heavy-
fermion material CeCoIn5 �Refs. 14, 15, and 31� and the
strong candidate �Refs. 7 and 8� �-�BEDT-TTF�2Cu�NCS�2

for a field-induced FFLO phase, will be left for future study.
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APPENDIX A: FREE-ENERGY CALCULATIONS

In all cases, the total energy of the system was taken to be
relative to the ground state of the normal metal at T=B=0:

Eg = 2 �
k��k�F

�k� . �A1�

With �c=50 and �B ,T ,	��1 in units where 	0�1, excita-
tions outside the cutoff can be ignored. The free energy of
the superconducting state when measured relative to the
ground state becomes

Es − Eg = �
��k����c

���k� + wk���vk�
2f�Ek�↑

− � + uk�
2f�Ek�↑

+ �� + ��k� − wk��


�vk�
2f�Ek�↓

− � + uk�
2f�Ek�↓

+ �� + ��k� +
q

2
Vk������k�

+
q

2
Vk�� − 1� + ��k� −

q

2
Vk������k� −

q

2
Vk�� − 1��

− TS −
	2

g
. �A2�

The first two terms account for the kinetic energy of the
electron part of the quasiparticles. The next two terms re-
move the kinetic energy for the ground state Eg. The last two
terms are, respectively, the entropy and pairing potential en-
ergy. In doing the calculation this way, we have ignored the
affect of the pairing energy �q /2�Vk� on the energy cutoff
which bounds the sum. With �c=50 the impact is negligible,
but for smaller cutoff energies it becomes important.

APPENDIX B: NUMERICAL METHODS

The first step in performing these calculations is to pro-
duce the nesting density of states. This is accomplished by
extracting a triangulation of the Fermi surface with Fermi
velocities from a dispersion relationship expressed on a grid.
The nesting density of states integral is converted to a sum
and stored in a discrete histogram indexed by V= q̂ ·v�k�F

:

N�V, q̂� =
�c

�2��3�
i

Areai

v�Fi


 ��1

2
V − �V − q̂ · v�k�Fi�� ,

�B1�

where V is the projected velocity bin width and i goes over
all triangles. The preferred direction for q̂ can be found by
looking for largest peaks at high V in the nesting density
calculated for each of the high-symmetry directions.

To determine the preferred state at a given temperature
and applied field, it is necessary to calculate the free energy
for each possible state. Furthermore, the possible supercon-
ducting states have 	 and q degrees of freedom. Fortunately,
the constraint set by holding g constant means that we only
need to search 1D isocontours in 	−q space, which we
evaluate on a discrete grid. Finding this isocontour requires
that that we perform the integral in Eq. �17� many times.

Since we have already discretized N�V , q̂�, the integral
over V becomes a sum. This leaves the energy integral

�
−�c

�c 1

2��2 + 	2
�1 − f�E↑

+� − f�E↓
+��d� . �B2�
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This is a difficult integral to do numerically since it is
highly peaked around �=0 and the behavior of the Fermi
functions is highly temperature dependent. We chose to take
advantage of the fact that we know how to do part of the
integral analytically:

� 1

2��2 + 	2
d� =

1

2
sinh−1� �b

	
� . �B3�

This allows one to write formally

�
−�c

�c 1

2
�1 − f�E↑

+� − f�E↓
+��d�sinh−1� �

	
�� . �B4�

This integral was discretized in a manner that allowed
dealing with variations in the Fermi functions. The numeric
integral becomes

�
�i

�1 − f�E↑
+� − f�E↓

+�� �B5�

�sinh−1� �i + �step

	
� − sinh−1� �i

	
�� , �B6�

with the variable step size

�step � � �

��
�f�E↑

+� + f�E↓
+�� + �−1

. �B7�

The constant  is needed to maintain a minimum step size.
This variable-step integration is used in calculating contribu-
tions to the free energies and other observables of interest.
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