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Magnetic correlations and pairing in the 1/5-depleted square lattice Hubbard model
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We study the single orbital Hubbard model on the 1/5-depleted square-lattice geometry, which
arises in CaV4QOg and ordered-vacancy iron selenides. We find a rich phase diagram that includes a
plaquette singlet phase, a dimer singlet phase, a Néel and a block-spin antiferromagnetic phase, and
stripe phases. Quantum Monte Carlo simulations show that the dominant pairing correlations at half
filling change character from d-wave in the plaquette phase to extended s-wave upon transition to the
Néel phase. These findings have intriguing connections to iron-based superconductors, and suggest
that tuning the doping in depleted geometries can capture physics related to multiple orbitals.

The interplay of magnetic order and pairing
correlations has been a central topic in strongly
correlated materials, and, in particular, in copper-
based [1] and more recently iron-based [J] high-
temperature superconductors. That pairing arises in
intimate proximity to magnetism is initially somewhat
surprising, since long-range magnetic order usually leads
to an insulating Mott or Slater gap, which precludes
superconductivity. Much study of these materials has
been devoted to understanding how doping, and the
resence of multiple bands, modify the magnetism
é] and allow pairing and short-range spin order to
complement each other [6-16].

One geometry which has been a recurring structure
in real materials, and which permits tuning of the
degree of magnetic order, is the periodically 1/5-depleted
square lattice, consisting of coupled plaquette unit-
cells. It was first discovered in the study of spin-
gap calcium vanadate material CaV4Oq ﬂﬁ] More
recently, the same structure arises in ordered vacancy
iron selenide family of materials HE, @] One of the
main reasons for the extensive interest in the calcium
vanadates was to understand the potential connection
between spin-gap behavior and superconductivity.
However, these are strongly insulating materials and
attempts to dope them and obtain a superconducting
state were not successful. In contrast, the iron
selenides clearly show magnetic, insulating, metallic and
superconducting phases ﬂ%] The multi-band character
of the latter allows much greater material flexibility.
One particularly interesting open issue in the iron-
based superconductors is the possibility of changing
superconducting pairing symmetry between various s-
wave and d-wave channels [14-16, [21, [22].

The Heisenberg model on the 1/5-depleted square
lattice has been extensively studied using a variety
of numerical and analytical techniques @] Its
ground state phase diagram consists of two spin-gap
phases adiabatically related to decoupled plaquettes and
decoupled dimers respectively, with an intervening Néel
phase. Both gapped phases are separated from the Néel
phase by a second order quantum critical point in the
universality class of the 3d classical Heisenberg model.

The dominant exchange constants in CaV4Og turned
out to be second-neighbor interactions ﬂﬁ], which can
be mapped back into an equivalent square lattice of
larger plaquettes, while the search for the simplest model
for the iron chalcogenide family of materials remains
ongoing [24).

Here, we study a single-orbital Hubbard Hamiltonian
on the 1/5-depleted square lattice. Using the
determinant quantum Monte Carlo (DQMC) method
[29, 30], which has no ‘minus-sign problem’ [31] at half-
filling on this lattice, we find that the dimerized phase of
the large Hubbard U limit (Heisenberg model) connects
smoothly to a band insulator as U goes to zero. However,
as U decreases, the Néel phase extends farther and
farther into the region where intra-plaquette hopping is
dominant. The plaquette phase, at large U, is always
separated from the metallic phase, obtained at U = 0,
by an intervening Néel phase.

In the limit where the inter-plaquette hopping #' is
much smaller than the intra-plaquette hopping t, our
model is a variant of the weakly coupled plaquette model
studied by Tsai and Kivelson @] This Hamiltonian
can be rigorously shown to have pair-binding and a
superconducting phase at infinitesimal doping away from
half-filling for U < 4.6t, a property which remains
true for our model as well. Our QMC simulations
extend the result away from small ¢ and demonstrate
that singlet pairing is predominantly in the d-wave
channel in the plaquette phase and becomes particularly
large as U exceeds one half of the noninteracting
bandwidth. We also find that, surprisingly, as soon
as one approaches the phase transition to the Néel
order, the dominant pairing changes from d-wave to
extended s-wave. To our knowledge, there has been
no previous unbiased demonstration of interchange of
superconducting pairing symmetry with change in the
magnetic properties, emphasizing the close interplay
of magnetic and superconducting correlations in these
systems.

Indeed, this observation has possible connections
to the iron selenide materials whose magnetic phases
include ubiquitous stripe phases and a 2 x 2 block-
spin antiferromagnet HE@, @, @] In the latter,
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spins within a plaquette align, and these block-spins
then order in an antiferromagnetic pattern. Using the
random phase approximation (RPA), we have explored
a number of different magnetic instabilities in the 1/5-
depleted geometry. At half-filling, the dominant order
in our nearest-neighbor (NN) model is the usual Néel
phase. However, away from half filling, both the stripe
phase as well as the 2 x 2 block-spin antiferromagnet are
found to be the leading instabilities over different doping
ranges, remarkably, showing that such phases can arise in
models without requiring any frustration or multi-orbital
character.
The Hubbard Hamiltonian considered here is,
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Here, ¢;, (c;,) annihilates (creates) a fermion with spin

o on site i, N, = c;facw is the number operator, U
is the onsite repulsive Coulomb interaction, and ¢;; is
the hopping matrix element between sites ¢ and 5. We
allow for NN hopping only and consider two different
values: t;; =t if ¢ and j are nearest neighbors within a
plaquette, t;; = ¢’ if ¢ and j are nearest neighbors on a
bond that connects two distinct plaquettes, and ¢;; = 0
otherwise. At U = 0, there are four bands with dispersion
(k) given by the roots of, (€2 (k) — t'%)? — 4t%(eo (k) +
t'cosky)(eq(k) +t'cosk,) = 0. As we vary the ratio ¢'/t,
the noninteracting bandwidth w = 4t + 2t is kept fixed
at 6, setting the unit of energy to w/6 throughout this
paper.

The richness of the band structure has prompted a
recent mean-field study of the model at quarter filling,
where there is on average one half particle per site ﬂﬁg]
When ¢ = t, the Fermi energy at this filling coincides
with a Dirac cone structure at the zone center and
a flat band in its proximity. Yasufumi et al. @]
identify three different phases: a paramagnetic insulator,
a paramagnetic metal, and an antiferromagnet, for which
phase transitions could be described by an effective SU(3)
theory. The Mott transition in the dimer region has also
been recently studied within a cluster dynamical mean-
field theory [36].

The phase diagram at half-filling in the plane of ¢/t
and U/(1 + U) is given in Fig. [l Tt establishes the
dominant magnetic instability as antiferromagnetism.
The range of t/t' for which the ground state is Néel
ordered is shown as thick horizontal lines for three
different values of U. At U < 1, the AF region extends
from an infinitesimal ¢’ all the way to ¢/t = 2, beyond
which the non-interacting system is a band insulator.
The Néel phase in this regime is favored by AF nesting
at the Fermi surface for ¢ < 2¢, and the fact that the
growing nested area compensates for the loss of isotropy
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FIG. 1. Ground state phase diagram at half filling. The
thick horizontal lines indicate the region with long-range
Néel order. At U = oo, the AF region is obtained from
Ref. (Heisenberg model study on the same geometry) by

considering t'/t = /J’/J. Here, J and J' are the intra-
and inter-plaquette spin exchange interactions. Blue circles
track the high symmetry point (HSP) inside the AF region
where the NN spin correlations are equal on all bonds (see
Fig. ). Similar results for the HSP are not available for the
Heisenberg limit. So instead, the empty blue circle indicates
the location of the maximum of the AF moment in that limit.
The dashed line shows the AF/band insulator (BI) phase
boundary as predicted by the RPA. The inset depicts the AF
ordering of up (filled circles) and down (empty circles) spins.

in the system as t’ — 0. We obtain this range from the
RPA, which is exact in that limit (the RPA estimate for
the AF phase boundary at nonzero U is also shown by a
dashed line in Fig. ).

As we turn on the interaction, we find that for ¢ and ¢’
sufficiently close to each other, there is always a non-zero
Néel order parameter in the thermodynamic limit. We
locate the phase boundary by finite-size scaling of the
DQMC AF structure factor, Sar @] One can see that
as U increases, the Néel ordered region shrinks, especially
on the plaquette side, and moves to the Heisenberg limit
(U — ) range ]

Also shown as filled circles in the phase diagram of
Fig.Mare the hopping ratios at which the intra- and inter-
plaquette NN spin correlations are equal in magnitude.
This line of ‘high symmetry points’ (HSPs) favors the
plaquette side of the phase diagram until it veers toward
the dimer side around U=3, tracking the magnetically
ordered region.

Figure|(a) shows the absolute value of the difference of
NN spin correlations on the two types of bonds at inverse
temperature S = 20 as a function of hopping ratios. At
the weakest coupling U = 1 the NN spin correlation on
the intra-plaquette t bonds exceeds the inter-plaquette
t’ bonds up to ¢/t ~ 0.5, at which point the relative
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FIG. 2. (a) The absolute value of the difference in the NN spin
correlations @] on ¢t and ¢’ bonds at 8 = 20 from DQMC vs
t'/t for several values of the interaction strength (‘a’ denotes
the lattice constant between NNs). The shaded region on
the horizontal axis is added to show the boundaries of the
Néel phase in the U — oo limit. The lattice is a 4 x 4
arrangement of 2 x 2 plaquettes (N = 64), except for U = 1
and 2 where the 8 x 8 arrangement (N = 256) is used. We
have also simulated a 576-site lattice for the latter interactions
and found no significant changes in the location of the HSP
(b) The AF structure factor vs t'/t at 8 = 20 from DQMC.
Except for U = 1, for which N = 256, the results are obtained
for the N = 64 lattice.

size is reversed Hﬁ] However, at the strongest coupling
studied, U = 12, the intra-plaquette spin correlation
remains larger all the way to t'/t ~ 1. The finite-size
dependence of these correlations is either negligible, or
has been taken into account @] (see caption of Fig.
for details). We note that all of the calculated NN spin
correlations are antiferromagnetic, regardless of the value
of '/t or U.

The results in Fig. 2(b), show the low-temperature Sap
as a function of the hopping ratios for the same range
of interaction strengths as in Fig. 2(a). Although these
results are for a single (relatively large) lattice size, the
evolution of the peak of Spr clearly conveys the trend
in the long-range order as U is increased towards the
Heisenberg limit. These maxima shift steadily from the
plaquette side at weak coupling to the dimer side at
strong coupling.

An intriguing feature seen in this model is the change
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FIG. 3. (a) Pairing structure factor [30] at 8 = 20 and '/t =
0.3 vs the interaction strength. For U = 1 and 2, two different
system sizes are shown. (b) Pairing structure factor at 8 = 20
and U = 4 vs the ratio ¢'/t. Full (Empty) symbols are for
the d-wave (extended s-wave) symmetry. The error bars are
smaller than the symbols. The arrow indicates the location
of the AF phase transition.

in symmetry of low-temperature pairing correlations
from d-wave in the plaquette phase to extended s-wave
upon entering the Néel phase. This is demonstrated
in Fig. Bl where we plot the uniform pairing structure
factor @] for the two symmetries vs the interaction
strength at ¢/t = 0.3, and vs the hopping ratio
at U = 4, for which we know the location of the
AF phase transitions. As shown in Fig. B finite-
size effects at small U are not responsible for this
difference. We have also verified that the values of the
structure factor do not change by further lowering the
temperature. At U = 4, the change in the pairing
symmetry takes place inside the AF region just before
the transition to the plaquette phase. For all the
other interaction strengths, the location of this crossover
appears to fall to the right (larger ¢’ side) of the AF
phase boundary. As the charge gap is nonzero in both
the AF and the plaquette phase, we do not expect
to find superconductivity at half filling. However, the
strength of the pairing at half-filling should be indicative
of the nature of superconductivity upon doping. The
d-wave pairing in the weakly-coupled plaquette phase
agrees with the general arguments of Scalapino and
Trugman [38 and of Tsai and Kivelson [32]. The
dominance of extended s-wave pairing near the phase
transition is a surprising result and points to the close
interplay between magnetism and superconductivity in
these systems.

We now turn to the case away from half filling,
where we use the RPA instead of the DQMC, as low-
temperature results are not available for the latter.
Figure M provides the full evolution of the critical
interaction strength U, for six different magnetic
orderings as a function of the electron density, p, in the
uniform ¢ = ¢’ case. Four of the magnetic phases are
shown atop the main panel in Fig. @ The other two are
the regular @ = (m,7) AF (shown in Fig. 1) and the
simple @ = (0,0) ferromagnetic (FM) phases. Here, @ is
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FIG. 4. (Top) Four of the magnetic orderings considered in
this study. The up (down) spins are denoted by filled (empty)
circles. @ indicates the phase between unit cells and the FM,
AF, and Stripe denote the ordering of spins within each unit
cell. (Bottom) The ground state RPA phase diagram of the
model at t' = ¢ away from half filling. The inset shows the
density of states (DOS).

the wave vector corresponding to the superlattice and the
following letters describe the order within a plaquette.
The @ = (m,7) AF dominates near half-filling and up
to p ~ 0.75. At that point, the @ = (0,0) AF has the
largest susceptibility and hence, the smallest U,, even
though for densities close to, but higher than p = 0.5
(quarter filling), it is degenerate with the @ = (0,0)
FM phase. Exactly at quarter filling, we find that the
@ = (0,0) Stripe, and not the @ = (0,0) AF, as
predicted by a previous mean-field calculation M], is
the dominant order. However, at a slightly smaller p,
this order is replaced by the @ = (w,0) Stripe order.
Interestingly, at p ~ 1/3, the block AF phase, observed
in ordered-vacancy iron selenide materials, has the lowest
U.. This order shows up at even lower energies in the
anisotropic case of t' < t. Thus, in many ways, the single-
orbital model at different dopings captures the richness
of the magnetic phases observed in the iron pnictide and
chalcogenide family of materials.

Quantum Monte Carlo methods allow for an exact
treatment of the combined effects of correlation and
band structure on lattices of finite spatial size, or
equivalently, with finite resolution in momentum space.
Previous DQMC studies of the effect of multiple bands
and different inter-site hoppings on magnetic order have
mostly been confined to layered geometries in which
two spatially extended regions each with a unique

hopping are coupled M] Here, in contrast, we
have presented results for a hopping pattern in which
two different t;; are mixed locally, and found that,
tuning their ratio leads to multiple quantum phase
transitions and rich phase diagrams. We have also
studied the superconducting properties of our model at
half filling within the DQMC. Remarkably, the dominant
pairing symmetry changes character from d-wave in the
plaquette phase to an extended s-wave in the Néel phase,
revealing an interesting interplay between magnetic and
superconducting correlations.  Although our system
is insulating at half filling, the dominant pairing at
half-filling should be an indicator of the nature of
superconductivity upon doping. Moreover, the behavior
of both the magnetic and superconducting correlations
in our single-orbital model offer surprising connections
to iron-based superconductors, which are multi-orbital
systems, implying that they can be mapped to effective
one-orbital models but with varying doping values.
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METHOD

In the determinantal quantum Monte Carlo (DQMC),
the exponential exp(—BfI ) in the partition function
is written as a product of incremental imaginary
time propagators exp(—ATfI ) where f = LAT is
the inverse temperature. The Trotter approximation
exp(—ATH) = exp(—ATK )exp(—A7V) is used to isolate
the exponential of the on-site interaction V from the
kinetic energy and chemical potential terms K.

A (discrete) Hubbard-Stratonovich (HS) variable s, is
introduced at each spatial site ¢ and imaginary time slice
7 to decouple the interaction term,

e*UAT(mT*%)(nu*%) —

%e—UAT/4 Z 8)\5111- (nsr—niy) (2)
Sirt :il

where cosh\ = eV27/2. The quartic term in fermion

creation and destruction operators is thereby replaced
by quadratic terms coupled to the HS field {s;;}. The
fermion degrees of freedom can be traced out analytically,
leaving a sum over {s;;} to be performed stochastically
(using Monte Carlo).

The result of tracing over the fermion degrees of
freedom is a product of two determinants, one for each
spin species. In general, this product can go negative,
precluding its use as a Monte Carlo weight. This is
known as ‘the sign problem’ ﬂ3_1|], and results in a limit
on the temperatures accessible to the simulation. In
special cases, such as at half filling (¢ = 0) and with
a bipartite lattice, the signs of the two determinants
are always equal and it is possible to make [ very
large. However, at generic fillings, the constraint is
typically St < 4 (although the precise value depends
on the average density p, the interaction strength U,
and the lattice size). For this reason, we focus on half
filling (which is, anyway, also the density for which the
mapping to the Heisenberg model is valid), and use the
analytic RPA treatment to discuss doped lattices. In
the work reported here, we use A7 = 1/2U, except for
U = 1 where At = 1/4, to keep the associated Trotter
errors smaller than statistical ones from the Monte Carlo
sampling of the HS field.

Magnetic properties of the model are determined by
the real space spin-spin correlation functions

m(r) = (S7(i+1)S7(0))

FIG. 5. The geometry of the 1/5-depleted lattice. 2 x 2
plaquettes have inter-site hopping ¢. Different plaquettes are
linked by hopping ¢'. The two primitive vectors are shown by
red arrows and the unit cell is shown by the tilted square.

m*(r) = (S5%(i+r)S5%()), 3)
where

+(;) — i

ST(i) = ¢;cip

— . o T

S7(i) = ¢y

Z( 1

S*(i) = §(ni1‘_ni¢)7 (4)
their average along an arbitrary direction

1 xrx zz
m(r) = 2 [2m™ (r) + m¥(r)], (5)

and its Fourier transform, the magnetic structure factor,
S(a) =Y e m(r). (6)
r

When long-range order with wavevector q is present in
m(r), the spatial sum in Eq. [ at the corresponding
q diverges in the thermodynamic limit, since the sum
over r grows linearly with N. Spin wave theory @]
predicts that the finite-size correction is linear in the
inverse lattice size L, so that S(q)/N = A+ B/L, where
A is proportional to the square of the magnetic order
parameter. In the disordered phase, the sum cuts off and
S(q)/N is proportional to 1/N = 1/L?. Note that here,
q denotes both the phase between sites of a unit cell,
and Q, the wavevector describing the phase between unit
cells.

We consider six possibilities for the spatial structure of
the magnetic order on the lattice of Fig.[Bl Four of them
are illustrated in Fig. 4 of the main text. The other two
are the regular antiferromagnetic (AF) order, illustrated
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FIG. 6. The AF structure factor Sar for U = 6 at 8 = 20 vs
t'/t for two different system sizes. The difference in the NN
spin correlations for the same parameters is also shown for
the two sizes. The blue (shaded) region indicates the range
of t'/t for which the infinite-U limit exhibits long-range AF
order.

in Fig. 1 of the main text, where the sign of the spin
alternates between nearest-neighbor (NN) sites and the
FM in which all spins are pointing to the same direction.
The magnetic susceptibility can also be evaluated in
DQMC by considering spin correlation functions in real
time and separated by imaginary time 7, e.g.,
m*(r,7) = (S (i +r,7)ST(i,0))

St(i,7) = eTchcITe_TH, (7)

and integrating over 7,

B
x(q) :/0 dTZeiq'rm(r,T). (8)

However, for the determination of the phase diagram, the
equal time structure factor is sufficient.

Similarly, one can define the equal-time pairing
structure factor as

SPair(q) = Zeiq-rc(r)7 (9)

r

where
C(r) = (AL +1)AL(i) + An(i + )AL (7)) (10)

is the pair-pair correlation function. Here, the pairing
operator for the symmetry « is defined as

Aa(i) = Z fald CiyCit), (11)

7 NN of i

)(cir CiL —

In case of the extended s-wave symmetry, f,(j) is +1 for
all of the three NN of i, and for the d-wave symmetry,
fa(j) is +1if j is a NN of 7 along the x axis and —1 is
along the y axis. We consider Sp,i;(q = 0) as the pairing
structure factor, which is shown in Fig. 3 of the main
text.
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FIG. 7. The AF structure factor Sar vs inverse temperature
for several values of t'/t and three system sizes. For most
cases, Sar plateaus at or below g = 20.
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FIG. 8. Normalized AF structure factor vs the linear size
of the system at U = 4 and for several ratios of t'/t. The
extrapolated values in the thermodynamic limit are used to
estimate the Néel phase boundary at this interaction strength.
Solid lines are linear fits and the dashed line in (b) is a
parabolic fit that passes through the origin.

ANTIFERROMAGNETIC PHASE TRANSITIONS

Figure [0 gives additional insight into the finite size
scaling of the AF structure factors shown in Fig. 2(b) of
the main text by exhibiting its behavior at U = 6 with
changing the hopping ratio for two lattice sizes. For a
range of values within the peak, Sar is not only large, but
also grows significantly with lattice size, giving rise to the
nonzero 1/L — 0 extrapolations discussed below. We are
also plotting in Fig. [6l the NN spin correlation difference
for the two different system sizes, which supports our
claim that the finite-size corrections for this quantity are
generally negligible.

In order to make sure that § = 20 is a low enough
temperature to describe the ground state properties of
the lattice sizes we have considered, we show in Fig. [ the
dependence of Sar at U = 4 on the inverse temperature
across the two transition points to the Néel phase. For
each of the ratios of ¢'/t, Sar saturates to a lattice size
dependent value. The mean values after saturation are
used to perform the extrapolations in Figs. [Bla) and



BIb). In almost all cases, the AF structure factor plateaus
at or below 3 = 20.

In the Néel phase, the normalized structure factor
approaches a finite value in the thermodynamic limit as
a function of the inverse linear size of the system. In
the disordered phases, one expects Sarp/N to vanish as
1/N. Consequently, after proper fitting of the data, the
two end points of the Néel region at U = 4 are estimated
from the extrapolations of Sap to the thermodynamic
limit for several values of the ¢'/¢ in their proximity as
shown in Figs. [B(a) and B(b).

RANDOM PHASE APPROXIMATION

In the RPA method, the non-interacting magnetic
susceptibility is evaluated via,

o 1 nk - l/k
x05<q>=—NZanﬁk§_fy<(ki$ )

k nv

Son(K)Sav (k +a)Spy (k)S, (k+a)  (12)

where S, (k) are the similarity transformations which
diagonalize the 4 x 4 matrix defining the band structure
for each momentum k. Since the full susceptibility,
within the RPA, is given by x = x0/(1—Uxo), a magnetic
phase transition to a state with ordering vector q occurs
when Uy reaches unity (Stoner criteron) at U = U..
The RPA is exact in the limit U — 0, and is expected to
be reasonably accurate at weak coupling. We carry out
the calculation of ¢ with lattice sizes up to 40,0002 and
at various low temperatures to be able to obtain results
in the thermodyanamic limit at T = 0.

For every parameter set, the dominant magnetic order
is the one with the smallest U.. However, there are
other, subleading, ordering modes with larger values of
U.. These modes do not, however, replace the leading
order when their respective Stoner criteria are met, i.e.,
the simplest version of the RPA is no longer valid after
the system enters a broken symmetry state.



