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The quasi-linear bands in the topologically trivial skutterudite insulator CoSb3 are studied under
adiabatic, symmetry-conserving displacement of the Sb sublattice. In this cubic, time-reversal and
inversion symmetric system, a transition from trivial insulator to topological point Fermi surface
system occurs through a critical point in which massless (Dirac) bands are degenerate with massive
bands. Spin-orbit coupling does not alter the character of the transition. The mineral skutterudite
(CoSb3) is very near the critical point in its natural state.

PACS numbers:

The topological properties of crystalline matter
have become a central feature in characterizing the
electronic structure of small gap, primarily binary,
semiconductors.1–4 Skutterudite compounds, many
of which have small gaps, have received a great deal
of interest in the past two decades. Most recently
emphasis has been on the “filled” version in which
atoms are incorporated in the large holes in the orig-
inal skutterudite (CoSb3) structure, which can be-
come unusual heavy fermion correlated metals and
even superconductors.5 The earlier interest was in
their transport properties.6 As small gap semicon-
ductors, many of them were of potential interest in
solid state devices, and application as thermoelectric
materials7,8 was a strong interest.

A study of the electronic structure9 uncovered
a very peculiar feature of some of them: there
are linear valence and conduction bands that ex-
tended from well out in the Brillouin zone, chang-
ing to quadratic only very near the zone center k=0.
This quasi-linear dispersion produces peculiar conse-
quences: the density of states behaves as ε2 near the
band edge rather than the usual three dimensional
(3D) form

√
ε; the carrier density scales differently

with Fermi energy εF ; the inverse mass tensor ∇∇εk

is entirely off-diagonal corresponding to an “infinite”
transport mass; the cyclotron mass is different from
usual 3D behavior, etc. All of this was unique and
was potentially very useful in applications, but the-
oretical excitement was tempered because the quasi-
linear dispersion, which was clearest in IrSb3, finally
became quadratic very near k=0, just as textbooks
claim must be the case.

Since then, graphene has been isolated and
its “Dirac point” with linear dispersion has been
studied comprehensively.10,11 The Dirac point of
graphene however occurs at a zone corner point
where symmetry is much lower than at the zone cen-
ter, and its occurrence does not violate textbook
conventional wisdom. Here we show that in the
skutterudite system small adjustments in the struc-

ture produce a critical point at which strictly linear

bands extrude from |~k|=0. This does not violate any
real principle, however it does violate the commonly
used expansions. The linear behavior reflects non-

analytic behavior in the ~k → 0 limit, resulting from
an accidental (but tunable) degeneracy. In this pa-
per we illustrate how to tune to this critical point,
provide a simple model that reproduces the behav-
ior, and demonstrate that the transition corresponds
to a topological transition as well.

FIG. 1: (Color online) Crystal structure of skutterudite
CoSb3, space group Im3̄ (#204). The experimental lat-
tice constant is a=9.0385 Å and the internal position co-
ordinates are u=0.335, v= 0.1575. The Co site (small
pink sphere) is octahedrally coordinated to Sb atoms
(small yellow spheres), each of which connects two oc-
tahedra. The large (blue) sphere denotes a large open
site which is unoccupied in CoSb3; the surrounding solid
(center of figure) gives an idea of the volume and shape
of the empty region.

The skutterudite structure, pictured in Fig. 1, in
the space group Im3̄ (#204), has a simple cubic
Bravais lattice, and is comprised a bcc repetition of
four formula units (f.u.) when expressed at TPn4.



The pnictide (Pn) atoms form bonded units (nearly
square but commonly designated as rings) which are
not required by local environment or overall sym-
metry to be truly square; therefore they are not al-
though very nearly so. The three Pn4 squares in the
primitive cell as oriented perpendicular to the coor-
dinates axes. Four transition metal (T ) atoms (Co,
Ir, ...) lie in four of the subcubes of the large cube
of lattice constant a3; the other four subcubes (oc-
tants) are empty. The structure is symmorphic, with
24 point group operations; the one that is missing is
reflection in (110) planes. This space group leads to
some interesting band behavior but is not relevant
to the behavior we discuss in this paper. The re-
lated filled skutterudites XT4Pn12 have an atom X
incorporated into the large 2a site of 3m̄ symmetry.

A relevant structural feature is that skutterudite
is related to the perovskite structure �TPn3 (� de-
notes an empty A site). Beginning from perovskite,
a rotation of the octahedra keeping the Pn atoms
along the cube faces results in the formation of the
(nearly square) Pn4 rings, and the Pn octahedra be-
come distorted and less identifiable as a structural
feature. The transformation is, in terms of the in-
ternal coordinates u and v,

u′ =
1

2
+ s(u − 1

2
); v′ =

1

2
+ s(v − 1

2
). (1)

The transformation path, from perovskite for s=0
to the observed structure for s=1, is pictured in Fig.
1 of Ref. 12. Below we make use of this transforma-
tion to understand the opening of the (pseudo)gap
between occupied and unoccupied states.

Evolution through a critical point. The electronic
structure of skutterudites has been of keen interest
since the quasi-linear bands (QLB) near the zone
center were uncovered by Singh and Pickett.9 The
skutterudites that are isovalent with CoSb3 are very
narrow gap semiconductors (or possibly very small
negative gap semimetals, or point Fermi surface
zero-gap materials, viz. IrSb3 [9]). In following the
band structure along the perovskite-to-skutterudite
structural path given above, it is found that the gap
only opens up near the end of the transformation
(s ∼ 0.90−0.95), where the Sb4 rings approach their
equilibrium size and the empty 2a site is fully devel-
oped into a large interstice. Only near s ∼ 1 does the
quasilinear band emerge from the dense spaghetti of
occupied valence Sb 4p and Co 3d bands. Analy-
sis of the band character and projected density of
states (DOS) indicates no Co 3d character and very
little Sb 4p character in the quasilinear bands, which
therefore arise from Bloch states (one on either side
of the gap) associated with electrons in the large
empty 2a site. Analogous bands have been observed
in other open lattices, for example in the Cs crown
ether molecular solid.13
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FIG. 2: Bands near k=0 in slightly distorted skutteru-
dite CoSb3, showing the band crossing (as the valence
band rises due to the shift of the As position) through
the critical point of quadruple degeneracy of a Dirac pair
and a conventional band pair. Top: before transition.
Middle: at the critical point. Bottom: just after the
transition.

To illustrate the progression of the band structure
through a critical point at which a Dirac point (with
Dirac hypercone) appears, we provide in Fig. 2 the
behavior of the bands for s = 1.020, 1.023, 1.025,
corresponding to just before, precisely at, and just
beyond gap closing. At zero gap, the QLBs become
precisely linear (Dirac) bands. Because one of them
is degenerate (by crystal symmetry) with two other
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bands in the 3-fold set, this Dirac point is degenerate
with two conventional (massive) conduction bands.
Beyond the critical point scr = 1.023, the singlet
lies above the triplet, and the Fermi level lies at a
symmetry-determined, point FS energy comprised of
one hole and two electron bands. While beyond the
critical point these bands are all “massive” in the
rigorous sense, immediately beyond the transition
the masses of both quasilinear (valence and conduc-
tion) bands arise continuously from zero mass to the
linear behavior that extends as far as the bands can
be followed before they helplessly mix with and dis-
appear into the background spaghetti.

At first sight, the basic underlying feature seems
to be provided by two states at ±ε◦ on some scale,
which will become degenerate (ε◦ = 0) at the criti-
cal point. Although the two-band14 Kane model has
been used to represent the bands of CoSb3, it fails
to give the linear dispersion at arbitrarily small k
as the gap vanishes, so some other picture must be
constructed. While the bands are required to have
only cubic – not spherical –symmetry, the bands for
CoSb3 are in fact isotropic, that is, the velocity is
indistinguishable in all three high symmetry direc-
tions. The simplest viewpoint is that two bands

are linearly coupled (hij ∝ v|~k| for i 6= j) at small

|~k| ≡ k, in which case the eigenvalues are

εk = ±
√

ε2
◦

+ (v|~k|)2 → ±v|~k|, (2)

giving the desired two linear bands upon degeneracy
(ε◦ → 0).

So how does one obtain the desired coupling?
The easiest way to get linear coupling at small
k, in a tight-binding picture, is from a coupling
such as t(sinkxa + sinkya + sinkza) on the off-
diagonal. However, expanding this coupling for
small k (kx + ky + kz) does not give isotropic cou-
pling. What could give isotropic coupling?

The skutterudite structure, which has bcc trans-
lational symmetry with coupled Sb4 ring 5p orbitals
and large empty holes in the lattice that may harbor
an s-like orbital in its well, can be modeled with a
p triplet coupled to s-symmetry states in the open
holes. Working in a picture where the p triplet is
diagonalized at k=0, the coupling of the px func-
tion with the bcc-situated s orbitals gives a nearest-
neighbor coupling of

Tx ≡ T (kx, ky, kz) = 8it sin
kxa

2
cos

kya

2
cos

kza

2
(3)

and symmetrically for coupling of py and pz part-
ners. Then using on-site energies εs and εp, the

��� � ���
��	
�

��	��

�	��

�	��

�	
�

�

�
��
�
�
� 
��
��
��
�
�

��� � ���
��	
�

��	��

�	��

�	��

�	
�

�

�
��
�
�
� 
��
��
��
�
�

��� � ���
��	
�

��	��

�	��

�	��

�	
�
�

�
��
�
�
� 
��
��
��
�
�

FIG. 3: Bands as in Fig. 2, with s=1.010, 1.019, 1.020
and with spin-orbit coupling included. Although the
threefold “p” band degeneracy is split by SOC, the Dirac
bands and hypercone survive, though the lower (hole)
band mixes with one of the massive bands very close to
k=0.

tight-binding Hamiltonian is

H =







εs Tx Ty Tz

T ∗

x εp 0 0
T ∗

y 0 εp 0
T ∗

z 0 0 εp






(4)

with eigenvalues

εj = εp; εp;
εs + εp

2
±

√

(
εs − εp

2
)2 + |T |2, (5)
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where |T |2 ≡ |Tx|2 + |Ty|2 + |Ty|2. To first order
in k and and at the critical point εs → εp, this re-
sult gives (1) 4-fold degenerate bands ε = εp at k=0
(where T vanishes), (2) two bands have isotropic lin-
ear dispersion εp±vk with v = 4ta, (3) the other two
bands are flat in Eq. 4, but will acquire finite mass
by the smaller p−p hopping that has been neglected
for simplicity. For |εp ∼ εs|, three-fold degeneracy is
preserved at k=0. This model faithfully reproduces
the behavior in CoSb3 in Fig. 2 as the Sb rings are
varied in size adiabatically.

A number of workers15–17 have pointed out that
insulators in 3D, as well as in 2D, can be character-
ized by topological invariants, and Fu and Kane fol-
lowed by demonstrating18 that when inversion sym-
metry is present (as in space group Im3̄), the Z2

invariant can be obtained from the parities of the
occupied states at the invariant momenta, which in
the bcc structure consist of Γ, three H points [viz.
(2,0,0) π

a
], and the four P points [viz. (1,1,1)π

a
].

Here only the Γ point requires consideration, since
reoccupation occurs only there. The lower band in
Fig. 2 has odd parity at Γ while the triplet is even.
As the critical point is crossed, the product of the
parities of the occupied bands at Γ, and hence the
Z2 invariant, changes sign, the signal of a trivial to
topological transition. This change also reveals that
the transition is associated with the entanglement
of the odd symmetry valence band with the even
conduction band that has the same symmetry away
from Γ, and hence mixes with. The final state is ac-
tually gapless; it is a (point Fermi surface) zero-gap
semiconductor, with the mass of the lowest band ris-
ing from zero and giving rise to extremely light mass
carriers in the limit of low hole doping. The sys-
tem could be rendered a true topological insulator
by strain (lifting of the band degeneracy).

Effect of Spin-Orbit Coupling. For topological
states in crystals, spin-orbit coupling (SOC) has
been a central issue. In Fig. 3 the effect of intrin-

sic (relativistic) SOC is shown. The triplet is split
(by 40 meV) into a lower energy doublet and higher
energy singlet, as long as the gap exists. At the crit-
ical point ssoc

cr = 1.019 (it is slightly shifted by SOC)
the (formerly) valence band singlet has crossed the
two-fold level and become degenerate with the con-
duction singlet, giving rise to a Dirac point involv-
ing the two upper bands which are now separated
from the doublet. While the details have changed
somewhat, the initial gapped state, the Dirac point
at critical distortion, and the zero-gap final state re-
main. SOC therefore produces no qualitative change
in the transition.

We have established that the trivial insulator to
topological zero-gap semiconductor occurs simulta-
neously with the appearance of a Dirac point at
k=0, which is degenerate with conventional (mas-
sive) bands at the critical point. The appearance
of the Dirac point at k=0 is clarified, being due to
the tuning of a degeneracy of site energies of the
orbitals that are involved. A uniaxial strain, ex-
ternally applied or resulting from epitaxial growth
on a substrate with some lattice match, will lift the
remaining degeneracy and produce the topological
insulating state that has so far attracted the main
interest in this area.

It is worthwhile to note that this “robust” topo-
logical state is actually delicate with respect to the
As sublattice position: the transition occurs discon-
tinuously at s = scr upon continuous, symmetry-
preserving change of the As coordinate. Such a sit-
uation will allow probing into just which (bulk or
surface) properties are associated with the topolog-
ical nature of the bulk electronic state. Of course,
there are many properties that change discontinu-
ously at an insulator-to-metal transition, so effects
of topologicality will require more detailed study.

We acknowledge comprehensive discussion with R.
R. P. Singh. This work was supported by DOE
Grant DE-FG02-04ER46111.
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