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The LixNbO2 system, synthesized and found to be superconducting (around 5 K) soon after the
high Tc cuprates were discovered, is another example of a quasi-two-dimensional, effective single-
band transition metal oxide insulator that superconducts when doped, and has the additional interest
of its hexagonal lattice. Earlier dynamical mean field study by Lee et al.1 showed that x = 0 NbO2 is
near if not at a Mott insulating condition, so superconducting LixNbO2 can be considered a heavily
electron-doped Mott insulator or a moderately hole-doped band (ionic) insulator). Though the
Fermi surface and Fermi level density of states N(EF ) change considerably, the superconducting
critical temperature Tc ≈ 5 K remains nearly doping independent in the range 0.45 < x < 0.8,
and vanished for x > 0.8. To study possible mechanisms of pairing, we extend the random phase
approximation to include long range (intersite) interactions (V ) in addition to the on-site repulsion
(U), and evaluate both the spin (χS) and charge (χC) susceptibilities. For the chosen values of U and
V , the variation with q of the macroscopic (volume averged) susceptibility with doping correlates
with changes in the Fermi surface over the experimentally accessible doping range. Peaks in χC

always occur at the zone corner point K, consistent with tendencies (but weak ones) to charge order
on neighboring sites. The q dependence of χS shows more variation with doping level.

I. INTRODUCTION

The high Tc cuprate superconductors (HTS), with
their quasi-two dimensional crystal and electronic struc-
ture and proximity to a magnetically ordered insulating
phase, redirected the attention to mechanisms of super-
conducting pairing from phonon-coupled to magnetically
mediated. The role of the two dimensionality itself is
unclear, and the recent discovery of high temperature
superconductivity in the iron pnictide superconductors
adds more examples into the discussion. Additionally,
other layered transition metal oxides that become super-
conducting when doped (LixNbO2, NaxCoO2) have been
discovered and studied to varying degrees. These sys-
tems are of course different from cuprates and the iron
pnictides: the transition metal lattice is hexagonal, not
square, and Tc is around 5 K rather than 50-100 K.

Not long after the 1986 discovery of high tempera-
ture superconductivity in the layered cuprates, super-
conductivity with Tc ≈ 5 K was discovered2 in the lay-
ered niobate LixNbO2, at x = 0.45 and 0.50. Since
then the superconductivity has been confirmed within
0.45 < x < 0.79 without any significant variation of
Tc.2–5 No superconductivity has been found in the weakly
doped regime of 1 > x > 0.84.4 Hall effect measure-
ments have confirmed charge carriers are hole-like,6 con-
sistent with LixNbO2 being a hole-doped band insulator.
LixNbO2 might be superconducting for x < 0.45, how-
ever there may be difficulty in the synthesis at such a
low Li concentration due to the considerable covalency
of Li along c-direction, as evidenced our previously cal-
culated Born effective charges of LiNbO2.7,8 Addition-
ally, the x = 0 NbO2 system is structurally distinct from
the hexagonal LixNbO2 system, which may present ad-
ditional difficulties in synthesizing hexagonal LixNbO2

with low x.
There are two interesting related materials, the

isostructural NaxNbO2 and the relatively unstud-
ied HxLiNbO2. The superconducting transition for
NaxNbO2 has been observed to be slightly lower than
for LixNbO2, with Tc ≈ 4 K.9,10 If the replacement of Li
with Na is interpreted as an isotope substitution, then
the isotope shift α = −∆(lnTc)/∆(lnM) = 0.27, consis-
tent with phonon-mediated pairing with strong involve-
ment of the alkali ion. Since this replacement involves
some (ion size related) structural change, the isotope ef-
fect interpretation is not certain. Even so, one would
not expect there to be strong electron-phonon coupling
with the alkali ion, based on analogous superconductors
such as intercalated graphite. Systematic isotope stud-
ies on the substitution of Nb or O have not been done.
HxLiNbO2 shows11 superconductivity with Tc = 5 K at
x = 0.3 and 0.5. If the intercalation of H has the same
effect as the de-intercalation of Li, then this would sug-
gest H enters the lattice as H−. However due to lack
of structural or systematic doping studies of HxLiNbO2,
the role H plays is not understood.

The superconducting mechanism of LixNbO2 has
received little attention so far. Experimental
measurements5 of the specific heat for x = 0.68 suggest
that it is an s-wave superconductor. Additionally, the lin-
ear specific heat coefficient γexp = 3.59 mJ/mol K2 and
the Debye temperature 462 K were obtained. The vir-
tual crystal approximation (Li nuclear charge Z = 2+x),
leads to the band structure value γb = 2.43 mJ/mol K2

at x = 0.68, corresponding to weak electron-phonon cou-
pling strength λ = γexp

γb
− 1 ≈ 0.48, which might how-

ever be enough to account for Tc ≈ 5 K. The electron-
phonon mechanism is consistent with stated theoretical
viewpoints,7,12 however unanswered questions remain.
Within the superconducting range (0.45 < x < 0.8)
the transition temperature remains nearly constant at
5 K, however in a rigid band model the density of states
(shown in Fig. 1) varies by a factor of 2 over that same
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range. Our previous theoretical work7,8 found evidence
of strong electron-phonon coupling to the Raman active
vibrational motion of the O atoms. The strong electron-
phonon coupling to a few phonons could explain the su-
perconductivity of LixNbO2, similarly to MgB2, but a
more thorough investigation to see if this is the case has
yet to be done.

On the other hand, as a transition metal oxide with
rather small bandwidth, one can envision LixNbO2 in a
localized sense as a (1 − x)|d1〉 + x|d2〉 system, in which
charge and spin fluctuations may assume a dominant
role. This view is consistent with the observation that
LixNbO2 is not conducting for x > 0.84, and is also in line
with a dynamical mean field theory study showing that
the x=0 end compound is near, if not at, a Mott insu-
lating condition, making it further resemble the cuprate
high temperature superconductors. In one popular sce-
nario for the cuprates, a strong peak in the spin suscep-
tibility near (π, π) provides the mechanism for d-wave
pairing. In this work we examine the spin and charge
susceptibilities of LixNbO2 in a large range of x within
the random phase approximation (RPA), to identify pos-
sible signatures of interest in this superconductor.

II. RPA FORMALISM

The RPA begins by applying perturbation theory to
a non-interacting electron gas with a Hubbard Hamilto-
nian as a perturbation. Here we will consider the non-
interacting Hamiltonian as

H0 =
∑
k,ab

Hk
ab c†k,ack,b (1)

where k is a (pseudo-)momentum value, a and b are
composite spin/orbital indices for some localized tight-
binding basis. Hereafter, we assume that Hk

ab indepen-
dent of the spins of a and b, excepting that it is diago-
nal in spin (ie. it’s a paramagnetic Hamiltonian with no
spin-orbit coupling). We start with a general interacting
Hamiltonian of

H1 =
1
2

∑
abcd

n

Uabcd c†nacnbc
†
nccnd

+
∑
abcd
〈n,m〉

Vabcd c†nacnbc
†
mccmd (2)

where the sum over n runs over sites in the lattice, and
the sum over 〈n,m〉 runs over bonds to near neighbors,
although the generalization to further neighbors will be
readily apparent. We assume U and V to be symmetric
and real, that is U∗

abcd = Uabcd = Ucdab. The Fourier
transform of the interaction is

H1 =
1

2N

∑
abcd
kpq

F
(q)
abcd c†k,ack+q,bc

†
p+q,ccp,d (3)

where F
(q)
abcd = Uabcd + γ(q)Vabcd and γ(q) =

∑
l e

iq·Rl is
the structure factor, with l running over m − n.

A. Susceptibility

The spin and charge susceptibilities are defined as

χS,C
abcd(τ,q) =

〈(
pab↑(τ,q) ± pab↓(τ,q)

)
×

(
p†cd↑(0,q) ± p†cd↓(0,q)

)〉
(4)

using the orbital excitation creation operator is

p†abσ(τ,q) =
∑
k

c†k+q,aσ(τ)ck,bσ(τ).

with the charge(spin) susceptibility taking the
plus(minus) sign. Note that in Eq. 4 that a, b, c, d
represent just orbital indices.

B. Parametrizing the interaction

So far, we have defined a general susceptibility for a
rather arbitrary interaction. To make this useful, we
consider a specific form of the interaction with a few pa-
rameters. Following previous works13 we will use four
parameters to define the on-site interaction. In addition
to this, we use two parameters to define the intersite in-
teraction. The interacting Hamiltonian in real space are
then given by the sum of two contributions,

Hon−site
1 =

∑
n

[ ∑
a

Ua c†na↑cna↑c
†
na↓cna↓

+
∑

aσ 6=bσ′

1
2U ′

a,b c†naσcnaσc†nbσ′cnbσ′

]
.

H intersite
1 =

∑
n,m

∑
aσ,bσ′

1
2Van,bm c†naσcnaσc†mbσ′cmbσ′ (5)

The parameters U and U ′ are the standard intraorbital
and interorbital Coulomb repulsion that is used in appli-
cations of the Hubbard model elsewhere. For long range
interactions, we include a density-density Coulomb re-
pulsion V . The factor of 1

2 in the intersite interaction
accounts for the double counting of pairs in the summa-
tion over n and m.

We can write the spin and charge susceptibilities as

χS(ω,q) = [1 − S(q)χ0(ω,q)]−1χ0(ω,q) (6a)
χC(ω,q) = [1 + C(q)χ0(ω,q)]−1χ0(ω,q) (6b)

with the matrix multiplication carried out by contract-
ing the first and last pair of orbital indices as separate
matrix indices. The bare susceptibility is obtained from
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the standard expressions

χ0
abcd(ω) =

∑
k

Gad(k, ω)Gcb(k + q, ω), (7a)

Gab(k, ω) =
∑

n

〈a|kn〉〈kn|b〉
ω + µ − εkn

. (7b)

The spin and charge matrices are defined as

S
(q)
abcd =

{
Ua, a = b = c = d

U ′
ab, a = c 6= b = d

, (8)

C
(q)
abcd =


Ua + Vac(q), a = b = c = d

−U ′
ab, a = c 6= b = d

2U ′
ac + Vac(q), a = b 6= c = d

.

where Vac(q) ≡ Vac Re γ(q).
The susceptilities described so far contain orbital in-

dices. The experimentally observable susceptibility, here-
after refered to as the macroscopic susceptibility, can be
derived similarly via perturbation theory14 and related
to Eqs. 6 via

χS,C(q) =
∑
a,b

χS,C
aa,bb(q). (9)

III. CALCULATED SUSCEPTIBILITIES
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FIG. 1. Band structure (left panel) and density of states (right
panel) for LixNbO2. Dashed horizontal lines indicate rigid
band doping from the bottom up for x = 0, x = 0.5, x = 0.6,
x = 0.75 and x = 0.8. For x > 0.8 there are no Fermi surfaces
around the K point, and the bands are completely filled for
x = 1, giving a band insulator.

LixNbO2 is a rare example of a single band system
in a real materials, and has the additional interest of a
hexagonal lattice (which is frustrated for antiferromag-
netic interactions). We begin, as conventional, with the
local density approximation (LDA) band structure and
Bloch wavefunctions, and consider the effects of residual
interactions as discussed in the previous section.

We construct symmetry projected Wannier functions
using density functional theory with the FPLO code,15
with symmetry projections as described in Ref. 7. The

(a)

(b)

(c)

FIG. 2. Fermi surfaces for (a) EF = −0.88, (b) EF = −1.07,
and (c) EF = −1.14 measured relative to the top of the band.
These correspond to approximately (a) x = 0.8, (b) x = 0.6
and (c) x = 0.5. For clarity, only the larger of the two Fermi
surfaces is shown (both are very similar). The surfaces are
colored by the velocities vk = |∇kεk|.

non-interacting Hamiltonian that we have used is con-
structed via a tight-binding representation with these
Wannier functions as basis functions, which reproduces
the LDA bands excellently. Computation of the suscepti-
bilities was carried out using a fine k-mesh of 120x120x10.
A finite temperature Fermi-Dirac distribution is used
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to smear occupations and achieve converged results for
the summation over k. An inverse temperature of β =
100eV −1 was used.

The triangular prismatic coordination of Nb on the tri-
angular lattice separates the dz2 orbital from the other
higher lying ones, making the corresponding band the
only one of interest. Thus this is a single band sys-
tem (complicated slightly by having two formula units
in the crystallographic primitive cell as a result of the
stacking of NbO2 layers). Lithium doping changes the
carrier concentration in the Nb 4dz2 band, according
to (Li+)xNb+QO−2 the Nb 4d formal charge state is
Q = +4 − x, corresponding to d1+x occupation.

A. Change of electronic structure with doping

Within the rigid band picture, the density of states
(DOS) in states/eV-unit cell (two formula units) at the
Fermi level varies from N(EF ) = 1.4 at x = 0.8 down to
3.6 at x = 0.5, while the observed Tc does not change
appreciably in this range. Above x = 0.8 there is a sharp
drop in the DOS. From examination of the band struc-
ture in Fig. 1 this is seen to be due a Lifshitz transition
where the Fermi surfaces around the K point disappear
at higher x. It seems likely then that these K-point Fermi
surfaces have an important connecton to the supercon-
ductivity, however it is puzzling (for any mechanism) that
Tc is insensitive to N(EF ) and the size of these Fermi sur-
faces. For doping levels of interest the progression of the
Fermi surfaces is shown in Fig. 2.

Below x = 0.5 there is a sharp increase in the DOS
from the van Hove singularity occuring at the flat region
of the bands near M. The Fermi surfaces around the two
K points begin to merge into a single large Fermi surface
at this point. The increase in N(EF ) below this doping
may promote a structural instability, which could explain
the transition away from the trigonal prismatic structure
and identify the lowest experimentally realizable doping
for LixNbO2. At x = 0, NbO2 is a rutile structure with
a rather three dimensional electronic structure,16 unlike
the quasi-2D bands of hexagonal LixNbO2.

B. RPA Spin and Charge Susceptibilities

The interaction parameters we chose are U = 0.3 eV
for the on-site repulsion, and V = 0.15 eV for nearest
neighbor repulsion. Since RPA tends to overestimate the
effect of correlations due to the lack of a self-energy cor-
rection to the band structure,13 these values are chosen to
be somewhat smaller than would otherwise be used. The
ratio U/V = 2 may seem somewhat small, but we be-
lieve this is justified due to the significant delocalization
of the Wannier function which describes these bands.7
These values are chosen so that at x = 0 where the bare
susceptibility is the largest, the charge susceptibility is
nearly divergent at inverse temperature β = 100.
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FIG. 3. Maximum value with respect to q of the macroscopic
spin and charge susceptibilities χS,C(q) of LixNbO2 plotted
against the doping level x. As x goes to 1, the system becomes
a band insulator and the susceptiblities go to zero. The kink
at x = 0.75 is due to the Lifshitz transition described in the
text. Blue diamonds are scaled experimental magnetic sus-
ceptibilities from Ref. 17.
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FIG. 4. RPA spin susceptiblity in the kz = 0 plane of the
triangular Brillouin zone for (a) x = 0.80, (b) x = 0.75, (c)
x = 0.60, (d) x = 0.50. Color bars are in units of (1/eV). The
hexagonal Brillouin zone is shown in (a), with the Γ point at
the center of each figure, the K point at the corner, the M
point in the center of each line. An area of one full Brillouin
zone is shown, although not in the conventional hexagonal
shape.

The maximum values of the spin and charge susceptib-
lities are shown as a function of doping in Fig. 3. There
is very little experimental data on the susceptibliity of
LixNbO2, with only three data points coming from Ref.
17. Of particular note is the sudden change in the slope of
the calculated susceptibilities vs. x near x = 0.75, which
correlates with the Lifshitz transition that occurs near
that doping and lies near the upper range of observed
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FIG. 5. RPA charge susceptiblity in the kz = 0 plane of
LixNbO2 for (a) x = 0.80, (b) x = 0.75, (c) x = 0.60, (d)
x = 0.50. The peaks in the corners occur at the two K points
in the Brillouin zone.

superconductivity.

1. Spin susceptibility

RPA spin susceptibilities as a function of q in the Bril-
louin zone for selected values of x in the range 0.5-0.8 are
shown in Figs. 4. At x = 0.8 (Fig. 4a) there is a broad
incoherent feature around each of the two K points in the
Brillouin zone. These broad features are due to scatter-
ing from states just below the Fermi level around K to
states near the Fermi surface surrounding Γ. A ring of
local maximum of intensity circles Γ at a radius of 2kF ,
reflecting scattering across the circular Fermi surface (or
raadius kF ).

Decreasing x to 0.75 (Fig. 4b) results in several
changes. The maxima at the K points intensifies and nar-
rows, and a ring of maximum encircles these K points.
Such a circular ring is expected to arise at a non-zero
momentum Q when there are circular Fermi surfaces sep-
arated by Q, which is the case here: Q happens to be this
same momentum K. The circular features surrounding Γ
from scattering within within a circular Fermi surfaces
are not so evident, apparently due to overlap of features
resulting from scattering within the Fermi surfaces cen-
tered at K and those centered at Γ. A narrow local max-
imum has appeared at Γ.

As x is decreased further to x = 0.6 (Fig. 4c), new in-
commensurate peaks appear, as the Fermi surface topol-
ogy is close to a significant change where cylinders around
K distort and begin to touch at the M point (in the
kz = 0 plane). These incommensurate peaks surely have
contributions that come from scattering near Γ to near
M. At x = 0.5 the incommensurate peaks in χS be-
come broader, and appear organized into into overlap-

ping structures centered at the K points.

2. Charge susceptibility

The charge susceptibilities, shown in Fig. 5 are al-
ways peaked around the K points, which corresponds
to the tendency for charge alternation on neighboring
Nb ions. This incipient charge order corresponds to the
charge density wave that is observed in 2H-TaSe2, which
is isostructural and isoelectronic with LixNbO2 at x = 0.
The use of a near neighbor interaction introduces a struc-
ture factor into the RPA calculation which will always fa-
vor this ordering vector. However, as seen in Figs. 5, this
peak is broad for several values of x, though it narrows
very significantly for x=0.75. For the value of V/U that
we have used, the peak at K is not particularly strong.

IV. CONCLUDING REMARKS

In this paper we have used a density functional derived
single particle Hamiltonian, with on-site and intersite re-
pulsive interactions, to calculate the bare and RPA spin
and charge susceptibilities for LixNbO2 in the range of
doping where superconductivity is observed. This ap-
proach provides a beginning on the question of how spin
and charge fluctuations interfere with, and compete with,
electron-phonon coupling in providing the pairing mech-
anism for the observed superconductivity. The strongly
two dimensional, doped transition metal oxide character
of this system puts it into the class that contains the high
temperature superconducting cuprates.

We find that the q=0 spin and charge susceptiblities
are nearly the same magnitude over the range 0.2 < x <
0.75. Incoherent (i.e. rather broad) peaks in the suscep-
tibility suggest that the charge and spin fluctuations do
not cause a strong tendency to order in this system. The
growth in the susceptibility as x is decreased correlates
with the growth in the density of states, so if these fluctu-
ations suppress the phonon-mediated superconductivity
such as was indicated by Rietschel18,19 in some detail,
this may help to explain why the superconducting tran-
sition temperature does not deviate significantly from 5
K in all reported measurements.

There are several systems where order (charge den-
sity waves [CDW] or spin density waves [SDW]) inhibit
superconductivity (hence the characterization as compet-
ing) yet when this order disappears but the fluctuations
remain, superconductivity immediately appears. Several
transition metal dichalcogenides fit into this category,
with CuxTaS2 [20] with its CDW behavior providing a
recent example. With its structural and compositional
similarity to LixNbO2, there is reason to look for com-
mon underlying mechanisms. As for the effects of spin
fluctuations, Scalapino has provided an overview of the-
oretical developments in the understanding of such com-
petition through the end of the last century.21 Heavy
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fermion superconductivity brought additional focus on
magnetic pairing mechanisms22 and the high tempera-
ture superconducting cuprates intensified that viewpoint,
but LixNbO2 seems nowhere near either of those two
regimes.

It is worth recounting a few more aspects of our results.
The q-dependence of the spin susceptibility shows strong
variation in the range 0.5 < x < 0.8. The change in the
charge susceptibility is somewhat less, with the main dif-
ference being the width of the peak at the K points. The
maxima in both susceptibilities increases in strength as
half-filling (x = 0) is approached. In contrast to this vari-
ation, the observed critical temperature is almost inde-
pendent of doping level. It is reasonable to conclude that,
if superconductivity in LixNbO2 is due to spin or charge
fluctuations, the lack of strong variation in the momen-
tum distribution of these fluctuations puts LixNbO2 in

a class distinct from those where competition between
superconductivity and CDWs, or SDWs, are observed to
occur. The calculated sensitivity of doped LixNbO2 to
the oxygen positions7 leads to topological changes in the
Fermi surface as the oxygen z postion is varied. This
sensitivity to lattice displacement can be interpreted as
indicating the superconductivity is phonon-mediated and
furthermore, is related to the Lifshitz transition that oc-
curs near x = 0.8 when cylindrical Fermi surfaces (remi-
nescent of MgB2) begin to appear.
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