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The electronic spectra of topological insulators and semimetals are intimately connected with
crystal symmetry, suggesting the question: what is the minimum symmetry required for topological
character, and can one find an example? Triclinic CaAs3, in space group P 1̄ with only a center of
inversion, has been found to display, without need for tuning, a nodal loop of accidental degeneracies
with topological character, centered on one face of the Brillouin zone throughout which is otherwise
fully gapped. The small loop of degeneracies is very flat in energy, yet is cut four times by the Fermi
energy, a condition that results in an intricate repeated touching of inversion related pairs of Fermi
surfaces. Spin-orbit coupling lifts the accidental degeneracies, leaving a topological insulator phase.
CaAs3 is shown to be the lowest symmetry topological material possible, and is a unique case of a
nodal loop semimetal converted to topological insulator by spin-orbit coupling.

PACS numbers:

Dirac, Weyl, and nodal loop semimetals with topolog-
ical character1 are complementing the great interest in
topological insulators, both because of their novelty and
that they display Fermi arcs or points at boundaries that
provide new surface properties. The crystal symmetries
that enable, or in common parlance protect, the neces-
sary degeneracies is a crucial aspect of their occurrence
and their theoretical description.

When the little group at wavevector ~k contains only
the identity, the Hamiltonian H has matrix elements be-
tween states with neighboring eigenvalues and anticross-
ings occur as some parameter of H is varied. von Neu-
mann and Wigner first investigated the conditions under
which degeneracies nevertheless occur, so-called acciden-
tal degeneracies,2 where matrix elements vanish for no
reason. Herring generalized their arguments to accidental
degeneracies in three dimensional (3D) crystals.3,4 with
some extension by Blount.5 Herring pointed out, for ex-
ample, that a mirror plane provides a natural platform
for a ring of degeneracies. If a band with even mirror
symmetry is higher in energy than a band of odd symme-
try at ~k1 but lower at ~k2 (both on the mirror plane), then
due to the continuity of eigenvalues and differing symme-
try, on any path connecting them there must be a point
of degeneracy. The locus of such degeneracies maps out
either a loop encircling one of the points, or an extended
line from zone to zone separating the two points (which,
considering periodicity, also becomes a closed loop topo-
logically).

The topologically singular nature of such nodal loops
was established by Berry,6 and Allen demonstrated7 how
these loops of degeneracies are destroyed by spin-orbit
coupling (SOC). Burkov et al. illustrated that a band
touching point would connect generic Fermi surfaces.8
Such nodal loops should be common, and indeed have
been found even in high symmetry elemental metals.9
Nodal loop semimetals based on crystal symmetries, es-

pecially mirror symmetries, have appeared in several
models8,10–14 and crystal structures.15–25

An early report before the modern rediscovery8 of
nodal loops was of a pair of coinciding Fermi rings – a
nodal ring essentially coinciding with the Fermi energy
– discovered in calculations for compensated semimetal
SrVO3 quantum confined within insulating SrTiO3,15
where mirror symmetry was a central feature. What is
unlikely but not statistically improbable is: (1) having
the loop cut by the Fermi energy while (2) the remainder
of the Brillouin zone is gapped. Such loops will have real
impact, and possible applications, when they are the sole
bands around the Fermi energy (EF ), because they gen-
erate topological character with corresponding boundary
Fermi arcs or points.

FIG. 1: Crystal structure of CaAs3, viewed in the b-c plane.
Arsenic atoms (yellow) form two-dimensional chains similar
to black phosphorus. The center of inversion lies midway
between neighboring Ca ions (shown in red).

Among his several results relating crystal symmetries
to accidental degeneracies Herring,3,4 elaborated some-
what by Blount,5 considering time reversal (T ) invariant
systems, found that inversion symmetry P alone is suf-
ficient to allow nodal loops of degeneracies, a result ex-
tended recently.8,11,12 Simply stated, P symmetry leads
to a real Bloch Hamiltonian H(~k) if the center of inver-
sion is taken as the origin. The minimal 2×2 Hamilto-
nian then has the form H(~k) = fkσx + gkσz (neglecting
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spin for the moment) with real functions fk, gk; ~σ rep-
resents the Pauli matrices in band space. Degeneracy of
the eigenvalues εk = ±(f2

k + g2
k)1/2 requires fk = 0 = gk,

two conditions on the 3D k-vector, giving implicitly (say)
ky = K(kx, kz) for some functionK. This condition either
has no solution, or else corresponds to a loop L of degen-
eracies. Allen has given a constructive prescription7 for
following the nodal loop once a degeneracy is detected.

Any such loop will not lie at a single energy, and
as mentioned only acquires impact when it crosses EF .
This intersection results in a pair (or an even number)
of points where, in the absence of spin-orbit coupling
(SOC), the valence and conduction band Fermi surfaces
touch. The dispersion at the Fermi contact points will,
barring accidents of zero probability, be massless in all
three directions.4 At this level the nodal loop semimetal
is actually a 3D Weyl semimetal. Also before the re-
discovery of nodal loops, Allen described7 for this same
P, T - invariant case the unusual effect of spin-orbit cou-
pling on the nodal loop and its topological nature, which
we return to later.

Topics that have not been addressed are: how little
symmetry is necessary for topological character to be re-
tained, what are the consequences, and can an example
with minimum symmetry be found? The line of reason-
ing above applied to the case of no inversion center (i.e.
no crystal symmetry at all) dictates that all of the co-
efficients of σx, σy, σz in H(k) vanish. Accidental point
degeneracies are thus possible but probably rare, while a
line of degeneracies occurs with zero probability.

Discovery and study of topological nodal line semimet-
als protected by crystal symmetry is developing
rapidly.9,17,22,23,25 The class TPn (T=Nb, Ta; Pn=P,
As) lacks an inversion center but contains several crys-
talline symmetries enabling nodal loops.18–25 The cubic
antiperovskite Cu3PdN contains nodal loops in a back-
ground of metallic bands,11,17 the BaTaSe4 family has
nodal loops in its band structure enabled by symmetry,
and as mentioned cubic elemental metals contain loops
within their metallic bands.9 Here we show that triclinic
CaAs3 is an example of a minimal symmetry nodal loop
crystal that moreover becomes gapped by SOC to become
a topological insulator.

CaAs3 and three isovalent tri-arsenides (Ca→Sr, Ba,
Eu) were synthesized more than thirty years ago, with
their structure, transport, and optical properties studied
only by Bauhofer and collaborators.29,30 CaAs3 is the
sole triclinic member of this family, with space group P 1̄
(#2) containing only an inversion center, lying midway
between Ca sites.29 This compound is insulating in trans-
port measurements29 but curiously displays30 in far in-
frared reflectivity a Drude weight corresponding to 1017-
1018 carriers per cm3.

The sole symmetry condition in P 1̄ symmetry on the
energy bands is ε−k = εk (by inversion and by time rever-
sal). This “simplicity” indicates that “symmetry lines”
are simply convenient lines with no symmetry. P 1̄ sym-
metry does however provide eight inversion symmetry
invariant momenta (ISIM) ma∗
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FIG. 2: Band structure of CaAs3 along a few special direction,
from a GGA+mBJ+SOC calculation, and (right panel) the

density of states.The region of interest lies near the Y=~b∗/2
zone boundary (ISIM) point. Band inversion at Y can be eas-
ily imagined by ignoring the mixing that causes anticrossing
along the X −Y direction. Even without SOC, a gap of ∼ 10
meV separates occupied and unoccupied states along the Y -Γ
direction (see inset).

0, 1, in terms of the primitive reciprocal lattice vec-
tors a∗, b∗, c∗. At these ISIMs, which are the analog of
(and equivalent to) the time reversal invariant momenta
(TRIMs) important in topological insulator theory,31
eigenstates have even or odd parity. Isolated nodal loops
must be centered at an ISIM, otherwise they occur in in-
version related pairs. Due to the low symmetry, finding
unusual characteristics (viz. the occurrence of and cen-
ter of a nodal loop) necessitates meticulously searching
in band inversion regions.

The linearized augmented plane wave method as im-
plemented in WIEN2k32 was applied with the general-
ized gradient approximation (GGA) exchange-correlation
potential.33 RmKmax=7 is a sufficient cutoff for the ba-
sis function expansion in this sp electron material. Stud-
ies have shown that GGA underestimates relative po-
sitioning of valence and conduction bands in semicon-
ductors and semimetals, and that the modified Becke-
Johnson (mBJ) potential provides a reasonably accurate
correction.36 Thus we rely on the GGA+mBJ combina-
tion throughout. Spin-orbit coupling (SOC) is added as
indicated and plays a substantial role.

The CaAs3 band structure in a few special directions,
and density of states (DOS) in the energy range from -2
eV to 2 eV, shown in Fig. 2, suggests small-gap insu-
lating character. CaAs3 is a Zintl compound, in which
the cation is ionized to Ca2+ and both valence and con-
duction bands around the gap are As 4p derived. Va-
lence and conduction bands are separate except for an
evident band inversion (before consideration of SOC) at
the Y ≡ ~b∗/2 zone boundary ISIM point. Note that with
non-ISIM points having a trivial little group, bands do
not cross except at accidental degeneracies, and these
will occur on a special line with zero probability. The
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combination of P symmetry and periodicity is enough to
ensure that band energies at ~b∗/2± (0, δky, 0) are equal,
thus (relative) band extrema occur at the ISIMs, and can
be observed at X, Y, Z, and Γ in Fig. 2.

FIG. 3: Left panel: Brillouin zone of CaAs3, showing that
the nodal loop is centered at Y on the top (and bottom) face
of this view of the zone. Right panels: two perspective views
of the nodal line enclosed within the Fermi surfaces, with
electron and hole surfaces denoted by different colors.

Searching the band inversion region, a loop L of ac-
cidental degeneracies centered at Y was discovered. Its
position in the BZ is shown in Fig. 3 together with two
perspective views of the Fermi surfaces (FSs). The loop,
resembling a nearly planar lariat, is cut by EF at not two
but four points, each point being a touching point for a
hole and electron FS (guaranteed by the nodal degenera-
cies). At this level (no SOC) the spectrum is that of a
semimetal with FSs touching at sharp points. The loop
energy lies in the -20 meV to +20 meV range, making
it a very flat nodal loop in the energy domain as well as
in momentum space. Projected onto a surface, L will be
roughly elliptical (or possibly slender figure-eight like).

The surface Fermi arcs of some 3D Weyl semimetals
are now well studied. The analogous states in nodal loop
semimetals have been discussed by Burkov et al.8 Pro-
jected onto a surface, L will enclose an area within which
topologically-required surface states reside. We refer to
this partial band covering only a (small) part of the sur-
face zone as a “patch,” the states within the patch have
sometimes been referred to as drumhead states. A plot
along a k-line crossing the patch will reveal a surface
band starting at the edge of this patch and ending when
the k-line leaves the patch. Considering the constant en-
ergy contours (potential Fermi lines) in the patch, they
may be closed lines or isolated lines that encounter the
boundary of the patch. Thus the topological Fermi lines
consist of some combination of closed Fermi lines and
open Fermi arcs.

These surface band plots along the special directions,
viz. Ȳ −Γ̄−X̄, are shown for all three primary surfaces in
the left hand panels of Fig. 4. The “nearly flat bands”8

are evident in each case. As mentioned, the Fermi en-
ergy cuts the nodal loop, hence it intersects the surface
patch band resulting in one or more Fermi lines on each
surface. Non-topological surface bands such as from dan-
gling bonds may appear as well.

Effect of spin-orbit coupling. The SOC splitting of the
atomic As 4p level is ξ4p=270 meV. Since each of the
bands that are inverted at Y are primarily As 4p charac-
ter, the SOC-driven band shifts will be some appreciable
fraction of this value, so given the 40 meV span in energy
of the nodal loop, SOC can be expected to have serious
consequences, possibly opening a gap. The background
band projections, visible in Fig. 4, are indeed substan-
tially altered by SOC. Within the accuracy of the Wan-
nier interpolation and surface projection, the result is
consistent with a bulk gap, as indicated by its observed
insulating character.29

Fig. 4 reveals that the surface band has evolved under
SOC, each surface in its own way. The (010) projection
leads to a simple crossing of two bands at Γ, while the
other projections have bands extending out of the band
inversion region. Allen has described7 the effect of SOC
on the topological character of the nodal loop (where
special symmetries are not involved, as in CaAs3). Be-
fore SOC, the loop has a Berry phase of ±π, that is, an
integral of the Berry connection around a circuit enclos-
ing the line of degeneracies will give this phase. Since
the interband matrix element of the spin-orbit operator
vanishes at most at points in the zone, there is zero prob-
ability that such a point will lie on a line, thus SOC com-
pletely lifts the orbital degeneracy, leaving only Kramers
degeneracy as in a conventional semimetal.

Seemingly the Berry phase would therefore change
from its quantized value. However, consideration of ap-
plied magnetic fields led Allen to discover that a quan-
tized Berry phase remains.7 Now, if SOC is large enough
and L is flat enough, as it is in CaAs3, the system is
gapped. The above-mentioned phase shows up as a Z2

topological insulator phase, which we find to have topo-
logical indices ν0(ν1ν2ν3)=1(010).

Topological behavior from an effective Hamiltonian.
The simple band structure near EF of CaAs3, with the
highest valence band overlapping the lowest conduction
band at Y, was fit to a tight-binding model. Away from
Y CaAs3 is gapped, making CaAs3 ideal for observing
a topological nodal line. For simplicity one can imagine
the crystal deformed by an affine transformation to have
orthogonal axes. We consider the following two orbital
Hamiltonian which reproduces the essential features of
the electronic structure of CaAs3. It includes nearest
neighbor hopping between like orbitals {tα, α = 1 − 3},
and between unlike orbitals {tα, α = 4 − 6} having dif-
fering parity:

H̃(~k) = f(ka, kb, kc)σx + g(ka, kb, kc)σz

f(ka, kb, kc) = t4 sin ka + t5 sin kb + t6 sin kc

g(ka, kb, kc) = m− t1 cos ka − t2 cos kb − t3 cos kc.

This Hamiltonian describes two particle-hole symmetric
bands ±|gk| with centers separated by 2m and coupled
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FIG. 4: Edge states (peaks in the spectral density) calculated
using the MLWF tight binding representation truncated at
the surface. The panels compare spectra before (left) and
after (right) inclusion of SOC, for each of the three surface
projections. All projections display substantial SOC-induced
elaboration of the surface spectrum and near-opening of the
bulk gap by SOC. The notation “X(40)” for example, indi-
cates the end point is 40% of the distance toward X.

by fk, with eigenenergies εk,± = ±
√

f2
~k

+ g2
~k
. To mimic

CaAs3 we consider the site energy m and hopping pa-
rameters (in eV) m = 1.64, t1 = 0.37, t2 = −0.95,
t3 = 0.37, t4 = −0.18, t5 = 0.12, t6 = 0.38. Degeneracy
fk = 0 = gk is realized around the nodal loop centered
at Y , shown in the left panel of Fig. 5, resembling the
nodal loop of CaAs3 pictured in Fig. 3.

The evolution of the loop topology can be followed by
varying the band separation 2m. Two types of lines of ac-
cidental degeneracies may emerge from the Hamiltonian:

a closed nodal loop as in CaAs3, or a line extending from
zone to zone, which by zone periodicity become closed

FIG. 5: Nodal lines of accidental degeneracies for the model
Hamiltonian. For m=1.44 on the left, a single loop is centered

on the ISIM point
~b∗

2
. The m=0 case is shown on the right,

with two pairs of inversion symmetry related lines threading
from zone to zone. Due to periodic boundary conditions, the
lines in the second case are also topologically closed. As m
decreases from 1.44 to 0, the line of degeneracies undergoes
a topological transition from an odd number (one) of nodal
lines per Brillouin zone finally to an even number (four).

lines on the 3D-torus, the difference from the former be-
ing that they must occur in pairs. In Fig. 5, the two
types of loops are plotted in the first Brillouin zone. On
the left, where m=1.44, a single loop is centered at Y .
Varying m tunes the size of the loop. The right panel in
Fig. 5 (m=0) has two pairs of inversion symmetry related
nodal loops threading through extended Brillouin zones.

In this work we have studied the electronic and topo-
logical properties of CaAs3, which is distinguished by the
lowest possible symmetry consisting of only a center of
inversion. In the absence of spin-orbit coupling, CaAs3
is a nodal loop semimetal with its loop centered at an
inversion symmetry invariant momentum, with its loop
of degeneracies crossing the Fermi level four times. Spin-
orbit coupling leads not only to destruction of the nodal
loop degeneracies but also to a so far unique topological
insulating phase. An effective Hamiltonian demonstrates
that distinct types of nodal lines will emerge as on-site
energies are varied, which provides guidance for engineer-
ing topological transitions in CaAs3 by applying external
tensile or compressive strains, or by alloying with isova-
lent atoms on either site.
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