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That very strong coupling of the B-B bond-stretching E2g branch of phonons to the B 2pσ bonding hole states
is responsible for the remarkable superconductivity in MgB2 is well established. This entirely new manner of
driving the superconducting Tc to high levels requires additional analysis. Here recent findings, such as how
this strong coupling is related to possible structural instability, are discussed, and investigation into the practical
limits of such coupling is initiated.

1 Introduction

Although several aspects of the superconductivity near 40 K
in MgB2 discovered by Akmitsu’s group[1] are now under-
stood, there remain several puzzles, which include the fol-
lowing. (1) To what extent is the extremely strong coupling
between the B σ band holes and the B-B bond-stretching
modes really understood? This type of coupling is entirely
new, as regards its microscopic origin and its strength. (2)
Is the two-band character an intrinsic feature of this sort of
superconductor, or a value-added item to provide added ex-
citement in the field? (3) Is MgB2 simply one of a kind (so
far, it is), or can the operating principles be used to suggest
other superconductors in this class? All of these questions
have been attracting strong interest.

In this paper two specific questions will be addressed.
First, we review recent analysis of electron-phonon (EP)
coupling in MgB2-like materials that reveals how remark-
ably strongly the bond-stretching modes are coupled. This
brings up the questions of whether the theory remains valid,
and whether such coupling can be increased, and by how
much, and still retain crystal stability (a primary limiting
mechanism for EP coupling). We focus on the implications
for the validity of EP couping theory as it is presently being
applied in MgB2.

2 Consequences of Two Dimensional-
ity of the σ Bands

Since the earliest theoretical work[2, 3] it has been clear that
the covalent B-B bond that is driven to be metallic by the
chemistry of MgB2 is at the root of the remarkable super-
conductivity of MgB2. The very large deformation potential
D of the B pσ band for stretching of the B-B bond was iden-
tified early on,[2] and several calculations[4, 5, 6, 7, 8] of
the electron-phonon spectral function α2F (ω) have made

this coupliing quite evident: this spectral density is domi-
nated by a huge peak at the calculated frequency of the E2g

(bond stretching) mode.

Consideration of the Fermi surfaces (FSs) begins to
clarify the degree to which the strong coupling is spread
through, or rather focussed, in the phonon spectrum. The
FS consists of two types: slightly fluted cylinders surround-
ing the Γ-A line (two of them), arising from B 2px, py(σ)
states, and a more complicated, three dimensional sheet
arising from the B 2pz(π) orbitals. These Fermi surfaces,
with calculations presented in most detail by Mazin and
Kortus,[9] Rosner et al.[10], and Harima,[11] have been ver-
ified in detail by Carrington et al.[12] In fact, shifts of the
σ and π bands by no more than ∼100 meV would make the
correspondence exact.[10] The strong coupling involves the
bond-stretching phonons with Q < 2kF that can scatter a
hole from a cylinder, to a cylinder. Here and below, kF is
the average radius of the cylinders, and Q =

√

Q2
x + Q2

y is
the in-plane wavevector. Detailed analysis, which involves
in a central way the two dimensionality of the σ bands,
shows[13] that all the bond stretching modes with Q < 2kF

are renormalized by the same amount (a feature of the 2D
susceptibility χ(Q)[13]): the Kohn anomaly is not a down-
ward cusp as in 3D, but rather an inverted plateau.

This 2D Kohn anomaly can be seen clearly in Figure 1,
where the calculated phonon dispersion curves[14] for both
undoped and doped LiBC are shown. Doping holes into the
B-C σ bands, which are very much like those in MgB2, in-
troduces an extremely sharp and deep renormalization of the
E2g modes for Q < 2kF . Similar behavior can be seen in
the published phonon dispersion relations[3, 7, 5]. However,
neither the sharpness nor the “inverted plateau” shape has
been evident before, because the Q mesh in the phonon cal-
culations has been much too coarse in all of the studies. The
Q mesh in the Li1−xBC calculations[14] was much finer,
and the true behavior is evident in Fig. 1.
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Figure 1. Calculated phonon dispersion curves for (top) semi-
conducting LiBC and (bottom) hole doping corresponding to
Li0.75BC. The B bond-stretching modes are connected by heavy
lines, to emphasize the extremely strong downward renormaliza-
tion for Q < 2kF (ω2

Q decreases by ∼60%). The sharp and very
strong Kohn anomalies at 2kF along the various directions are ap-
parent. See Ref. 14.

A. Li1−xBC

It is appropriate to digress briefly. There has been much
interest in possible other members of a “MgB2 class” of su-
perconductors that would share similar characteristics of EP
coupling and also a high Tc. Hole-doped LiBC has been
suggested as a serious possibility.[15] Its semiconducting
electronic structure seems susceptible to hole-doping by Li
depletion, and the broad band nature of all the bands in LiBC
suggests that the doped-in holes, which would be partly σ in
character, would be itinerant. Moreover, Li1−xBC had al-
ready been reported by Wörle et al.[16] to be synthesizable,
with conductivity increasing with hole doping. A number
of groups have synthesized and begun to characterize LiBC.
[17, 18, 21, 19, 20, 22] There are two reports of deintercala-
tion of Li. Zhao, Klavins, and Liu reported evaporation of Li
upon vacuum annealing, with no sign of superconductivity
in the annealed samples.[22] Fogg et al. have reported[23]
synthesis of Li-deficient Li1−xBC by high temperature an-
nealing and also report no evidence of superconductivity in
the susceptibility. The full story on the LiBC system remains
uncertain.

B. Return to consequences of 2D character

The mode coupling strength λQ,ν , whose average over

the zone and over the Nν branches ν gives λ, is[24]

λ~Q,ν
=

2Nν

ω~Q,ν
N(0)

∑

k

|Mk,k+Q|2δ(εk)δ(εk+Q). (1)

The more usual picture for λ is the electron viewpoint,
where it is given by the Fermi surface average of λk, ex-
pressing it as the weighted average of its values over the
individual types of Fermi surface,

λ =< λk >FS=
Nσ(0)

N(0)
λσ +

Nπ(0)

N(0)
λπ. (2)

For MgB2 in particular, it is important to consider both de-
compositions, as we now demonstrate.

For the E2g branch that has very large EP matrix el-
ements M, the contribution from the σ bands (with their
cylindrical Fermi surfaces) is

λ
E2g

~Q
= 4

2NνN2D(0)

ωQν

42|M|2ξ̂(Q), |Q| < 2kF (3)

where 4 = 22 accounts for the two σ Fermi surfaces, the 2D
phase space for electron-hole excitations is

ξ̂(Q) =
∑

k

δ(εk)δ(εk+Q)/
[

∑

k

δ(εk)
]2

=
1

Q
2kF

√

1 − ( Q
2kF

)2
, (4)

and N2D(0) is the 2D DOS per spin for a single σ band.
These mode λ~Q,ν

values are related to the phonon linewidth
γ~Q,ν

by (for MgB2)

γQ/ωQ =
1

Nν

λQ

π

2
N(0)ωQ

≈ λQ × 1.6

9
× 0.35eV −1 × 0.07eV

≈ 0.004 λQ (5)

With usual values of λQ ≤ 1, this relation gives the stan-
dard small linewidth γQ << ωQ. Due to the 2D FS nesting,
both γQ and λQ are strongly Q dependent in MgB2 (which
may have experimental consequences), but because they are
very large only in a limited region of Q space (see below),
an average is not representative and is insufficient for an un-
derstanding and even for reasonable quantitative estimates.

To apply these relations in detail to MgB2, the analy-
sis goes as follows. On the σ surfaces, calculated and de-
rived values (dHvA data [12] compared with theory) cluster
around λσ = 1 – 1.2, here the conservative value λσ = 1
will be used. This total value arises from both the strongly
coupled E2g modes (λE2g

σ ), and all of the other modes
(λother

σ ). Comparing the calculated linewidths (equivalently,
mode lambda) for the strongly coupled modes to the oth-
ers (i.e. those with Q < 2kF compared to those with
Q > 2kF ), we conclude that this arises almost entirely
from the E2g modes. To be conservative again, the fol-
lowing estimate will assume that only 80% arises from the



Brazilian Journal of Physics, vol. 33, no. 4, December, 2003 697

E2g modes. The fraction of phonon modes from which this
arises is 2/9 of the branches, and – according to the latest
de Haas-van Alphen data[12], and averaging the areas of the
two σ cylinders – only 12.4% (≈ 1

8
) of the Brillouin zone

lies in the region Q < 2kF . These values imply that the
value of < λ

E2g

Q > ×(2/9) × (1/8) = λ
E2g

σ ≈ 0.8 im-

plies < λ
E2g

Q >∼ 38. Then Eq. (5) gives the full linewidth
2γE2g

∼ 0.3 − 0.4ωE2g
!

This number is remarkably large for a reasonably high
frequency phonon. The point is clear: the E2g modes with
Q < 2kF are extremely strongly coupled, more strongly
than anything that has been seen in other superconductors.
This fact is clear also for the similar material Li0.75BC in
the calculated phonon dispersion curves of Fig. 1, where it
can be seen that ω2

E2g
(which is what arises naturally in the

theory) is decreased by nearly 2/3 from its unrenormalized
value. There is information on the linewidths from Raman
scattering data, where γE2g

∼ 0.3 − 0.4ωE2g
is found,[25]

and from inelastic xray scattering where a similar result was
obtained.[26]
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Figure 2. Behavior of λQ‖
(Q‖ ≡

√

(Q2

x + Q2

y)). The dotted line
gives the behavior for two concentric 2D cylinder Fermi surfaces
such as in MgB2, with (integrable) divergences at Q‖ → 0 as well
as for Q‖ = 2kF for each of the two cylindrical Fermi surfaces.
The full line shows the effect of kz dispersion that is representative
of MgB2.

3 Validity of Migdal-Eliashberg The-
ory in MgB2

Occurrence of the prediction of overdamped modes from
the theory indicates that use of the theory is invalid: for
such strong coupling, the E2g modes are not well-defined
phonons. Even worse, since those modes are not phonons,
then one can’t be sure the others are, because harmonic
phonon theory is a solution to the lattice dynamics problem
only if every phonon is well defined. Although there is no
reason to suspect that the situation is so bad as to have no
well defined phonon at all, it should be kept in mind that, so

far, the experimental evidence for any well defined phonon
is not strong. The main evidence is from inelastic xray scat-
tering, where it can only be said that some linewidths are
less than the 8 meV energy resolution.[26]
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Figure 3. The upper panel shows the α2F (ω) spectral function
that was calculated by An et al.[14, 13] The lower panel shows
the effect of broadening the contributions of the strongly coupled
phonons (those within the peak near 85 meV) by a Lorentzian with
a width equal to about 40% of the peak frequency (γ=35 meV):
notice that the peak vanishes. A proper theory would probably not
give the simple Lorentzian broadening that arises in conventional
Migdal-Eliashberg theory.

Migdal theory for the coupled electron-phonon system
therefore is not valid for MgB2; the analysis we have been
using in fact is not consistent because of this fact. It fol-
lows that the standard Migdal-Eliashberg theory that is be-
ing used to calculate the superconducting behavior of MgB2

is unjustified. Eq. (5) has assumed very specifically that
γQ << ωQ, but leads to a conclusion that violates this con-
dition. The application of this theory to MgB2 has been
challenged on other grounds as well. Using careful frozen-
phonon studies, Boeri and collaborators[27] have shown that
the “anharmonicity” of the E2g (B-B bond stretching) poten-
tial, which had been noticed by several groups, arises from
the proximity of σ band edge to the Fermi level. As such,
it is a “non-adiabatic” effect, but not in the usual sense be-
cause ~ωE2g

is not really so close to the value of EF . It is,
rather, a combination of a relatively low Fermi energy, to-
gether with the extremely strong σ-band deformation poten-
tial for bond-stretching distortions. Thus it is an independent
and new aspect of MgB2, in which the extremely strong EP
coupling is destroying the validity of Midgal theory. An ad
hoc correction of this problem, treating this bond-stretching
displacement as independent (which it is not, because it is so
ill-defined), gives according to several groups an increase of
the “frequency” of roughly 10 meV (or about 15%). Very
recent calculations of the full third- and fourth order an-
harmonic corrections give the resulting increase of the E2g

mode frequency of only 5%.[28] So, interestingly, there is a
negative feedback from this strong-coupling enhanced an-
harmonicity that helps keep the lattice stable. All things
considered, it is clear that the coupling strength in MgB2,
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extremely strong as it is, has not approached the limits of
such coupling.

4 How Strong Can Mode Coupling
Become?

These developments raise questions about the limits of crys-
tal stability, and how much stronger the coupling could pos-
sibly be. The recent investigation of the EP coupling in
quasi-2D bands such as in these materials revealed that the
contribution from the 2D-like σ bands is independent of
doping level, except indirectly due to changes in effective
mass, or due to changes in the deformation potential aris-
ing from changes in screening. (Non-adiabatic effects of
course depend on doping level.) Finally, there is no reason
to exclude the possibility of “MgB2-like” system with even
higher Tc.

The dependence of EP coupling strength is given by

λσ ∝ m∗

ω2
D2 =

m∗|D|2
Ω2 − Bm∗|D|2 (6)

where m∗ is proportional to the 2D density of states, ω is
the frequency of the bond-stretching modes (subscript is
suppressed) with Q < 2kF , Ω is a reference, unrenormal-
ized frequency, and D is the deformation potential for the σ
bands at EF . The constant B includes material independent
quantities. Note especially the independence on 2D phase
space (i.e. the value of kF ).[14] The dependence on D is
leveraged by phonon softening in the denominator, but of
course is finally limited by phonon softening as the mode
is driven unstable. Then, of course, one must address the
problem of the optimal value of λ: if λ is very large due to
coupling to very low frequency modes, it does not lead to a
high superconducting transition temperature. It is not fruit-
ful to follow these relationships in more detail with these
equations, because as pointed out in the previous sections,
the theory has limited quantitative validity.

The numerator of Eq. (6) was at the root of the pre-
diction that Li1−xBC (x = 0.2-0.5, say) should be a better
superconductor than MgB2: DLiBC ≈

√
2DMgB2

.[15] For-
tunately, the value of Ω is larger for LiBC because the B-C
bond is stronger than the B-B bond, which is also the under-
lying reason that the square of the deformation potential is
almost a factor of two higher in Li1−xBC. As noted earlier
in this paper, the predictions for Li1−xBC have not yet been
confirmed.

5 Summary
Clearly EP theory needs to be extended for the case of
MgB2. There seems to be little doubt that the origin of the
coupling is understood, and the electronic structure is de-
scribed well, and that the EP coupling strength is quite dif-
ferent on the σ and π sheets of Fermi surface, making this

a beautiful example of a two-band (or two-gap) supercon-
ductor. Both quantitative determinations of the properties of
MgB2, and a real understanding of what is happening in this
bond-stretching-mode – σ-hole dynamical soup, remains to
be sorted out using some extension of the theory.
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Solid State Commun. 125, 17 (2003).

[21] A. V. Pronin, K. Pucher, P. Lunkenheimer, A. Krimmel, and
A. Loidl, Phys. Rev. B 67, 132502 (2003).

[22] L. Zhao, P. Klavins, and K. Liu, J. Appl. Phys. 93, 8653
(2003).



Brazilian Journal of Physics, vol. 33, no. 4, December, 2003 699

[23] A. M. Fogg, J. B. Claridge, G. R. Darling, and M. J. Rossein-
sky, Chem. Comm. (2003, in press).

[24] P. B. Allen, Phys. Rev. B 6, 2577 (1972); P. B. Allen and
M. L. Cohen, Phys. Rev. Lett. 29, 1593 (1972). A numerical
correction is given in Eq. (4.27) of P. B. Allen, in Dynamical
Properties of Solids, Ch. 2, edited by G. K. Horton and A. A.
Maradudin (North-Holland, Amsterdam, 1980).

[25] J. W. Quilty et al., Phys. Rev. Lett. 88, 087001 (2002); H.

Martinho et al., cond-mat/0105204.

[26] A. Skukla et al., Phys. Rev. Lett. 90, 095506 (2003).

[27] L. Boeri, G. B. Bachelet, E. Cappelluti, and L. Pietronero,
Phys. Rev. B 65, 214501 (2002); Supercond. Sci. Technol.
16, 143 (2003).

[28] M. Lazzeri, M. Calandra, and F. Mauri, cond-mat/0306650.


