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Tight binding models have proven an effective means of revealing Dirac (massless) dispersion, flat
bands (infinite mass), and intermediate cases such as the semi-Dirac (sD) dispersion. This approach
is extended to a three band model that yields, with chosen parameters in a two-band limit, a closed
line with maximally asymmetric particle-hole dispersion: infinite mass holes, zero mass particles.
The model retains the sD points for a general set of parameters. Adjacent to this limiting case, hole
Fermi surfaces are tiny and needle-like. A pair of large electron Fermi surfaces at low doping merge
and collapse at half filling to a flat (zero energy) closed contour with infinite mass along the contour
and enclosing no carriers on either side, while the hole Fermi surface has shrunk to a point at zero
energy, also containing no carriers. The tight binding model is used to study several characteristics
of the dispersion and density of states. The model inspired generalization of sD dispersion to a
general £4/k2" + k2™ form, for which analysis reveals that both n and m must be odd to provide
a diabolical point with topological character. Evolution of the Hofstadter spectrum of this three
band system with interband coupling strength is presented and discussed.

PACS numbers: 71.20.-b,73.43.Lp

I. BACKGROUND

Peculiarities in crystalline electronic spectra connected
to anomalies in materials behavior, from topologically
protected edge states of topological insulators'™3 to
quantum critical behavior in intermetallic compounds,?*
have brought discussion of unconventional crystalline
band structures to the forefront of materials research.
The massless Dirac band structure at the Fermi point
of graphene and related physical systems have been
well studied.®® Graphene has Fermi points at the in-
trinsic chemical potential as do conventional zero-gap
semiconductors,” but has linear dispersion correspond-
ing to massless fermions appearing in Dirac theory and
in two-component Weyl theory. Quadratic band touch-
ing has raised stimulating issues, as have flat bands whose
eigenstates are strictly localized orbitals.®

Recently increased attention to the characterization of
the spectra, and of degeneracies and their topological
consequences, of Hamiltonians Hy({a}) has increased in
activity in a number of respects since the early work of
von Neumann and Wigner.® The crystal momentum k
is a continuous wavevector in the Brillouin zone (BZ)
— here it is two dimensional (2D) — and {a} represents
the parameters that appear in the Bloch Hamiltonian.
von Neumann and Wigner established that for general
Hermitian Hamiltonians, three parameters are necessary
and sufficient to produce degeneracy, while only two are
required for real Hamiltonians. Especially since the pro-
duction and intense study of graphene with its pair of
Dirac points at the chemical potential, interest in these
issues and the various phases that arise, viz. Dirac and
Weyl points,'%!! and nodal line semimetals,'?"15 has in-
tensified.

A crystalline eigenvalue spectrum Ej, ,,({a}) may be
classified in various ways, while the topological char-
acter of hy({a}) can be determined from the eigensys-

tem: FEx,({a}) and the corresponding eigenfunctions
ukn({a}). Particular interest centers on degeneracies of
E.n({a}) and topological aspects of the electronic sys-
tem, and their origins and functionalities. Topological
character is directly related to non-analyticities arising
from degeneracies,'S as understood to some degree in the
earlier days of gapless semiconductors.” Berry dubbed
such points of degeneracy and non-analyticity diabolical
points.'® In many studies of the topological character of
the system, the parameters of the Hamiltonian are sim-
ply the two components (three components) of the two
dimensional [2D] (respectively, three dimensional [3D])
wavevector, thereby keeping the any other parameters in
the Hamiltonian fixed.

In the class of touching bands, a unique intermediate
case between conventional zero-gap semiconductors with
quadratic touching and the linear Weyl (Dirac) spectrum,
in two dimensions is provided by semi-Dirac (sD) disper-
sion; sD fermions are massless along one axis but massive
in the perpendicular direction. sD dispersion in crys-
talline systems was first obtained by Hasegawa et al.'” in
a tuned anisotropic honeycomb model, with its proper-
ties elaborated by Montambaux and collaborators.!® 20
A sD spectrum was discovered in VOs nanolayers where
tuning of the system was unnecessary: various parame-
ters of the system could be varied while only the position
of the sD point along a diagonal in the Brillouin zone
would change,?'"?* being protected by space group sym-
metries. The dispersion was modeled with the low energy
Hamiltonian and resulting dispersion Fj by
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m and v are the mass and velocity, and 7 is the vector
of Pauli matrices in orbital space. sD behavior is excep-



tional; not only does it display extreme anisotropy, it also
presents a case in which the kinetic energy operator in
the effective Hamiltonian is non-relativistic p?/2m in one
direction but has the relativistic vp form in the perpen-
dicular direction. Generalizing this semi-Dirac behavior
and obtaining additional anomalous behavior in the spec-
trum is a primary aspect of this paper.

At the other end of the spectrum of peculiar bands is
the flat band case,2>2® where at appropriate filling the
“Fermi surface” corresponds to the entire Brillouin zone
(or nearly so), which forms the extreme opposite limit
from the Fermi points in the cases mentioned above. A
completely flat band introduces a J-function density of
states (DOS), enabling instabilities of many kinds, of
which ferromagnetism has attracted much study.?® Ar-
eas or lines of flatness have less effect on the DOS but
still important. Even points of flatness (van Hove singu-
larities) can impact properties strongly.

How the unusual dispersion interplays magnetic fields,
for example the Landau level structure, has been studied
for the sD system.!®22:24 The broader picture includes
the effect on the Hofstadter spectrum?® at arbitrary field
strengths. For the sD case, Delplace and Montambaux
presented results aimed primarily at experimental verifi-
cation in cold atom systems.?° The question how strong
particle-hole asymmetry affects the Hofstadter spectrum
has not, to our knowledge, been discussed in the sD con-
text, and that is partial motivation for the present paper.
Such studies have been extended to other model systems,
including sD and related systems as well.20:22:2431 The
Hofstadter spectrum for the strongly particle-hole asym-
metric model of semi-Dirac system is addressed in this
paper.

The manuscript is organized as follows. In Sec. II we
present a straightforward generalization of the sD Hamil-
tonian to a class of Hamiltonians retaining sD points but
having unusual spectra in certain regimes and limiting
cases. We give special attention to a regime in which the
sD mass diverges, at which point the model interpolates
between zero to infinite mass with angle. For infinite
mass, the sD points degenerate into a closed loop with
flat energy at the band bottom. As a result, doping with
small carrier density n away from half-filling produces
two large Fermi surfaces enclosing the small density n of
holes for electron doping, but opens conventional with
highly anisotropic small Fermi surfaces for hole doping.

Degeneracies at crossing bands are known to be a
source of topological character, viz. Berry phases. The
non-topological character of the sD point was pointed
out already by Dietl et al.'® The topological versus triv-
ial character of sD models was further studied and gen-
eralized by Huang et al.,?° a topic to which we return
in Sec. III.B. This inquiry into topological character at
degeneracies arising from crossing bands is the topic of
Sec. III.A, where results are given for general low energy
dispersion of the form

Ey, = £,/ak? + Bk, (2)

where «, 8 are constants.

Sec. IV provides an extension of the study of Dietl et
al. and later Delplace and Montambaux of the Hofstadter
spectrum of the sD model.'®2% Specifically, we illustrate
the evolution of the Hofstadter butterfly spectrum of this
asymmetric sD model as the strength of coupling of the
two active bands to high lying band is increased. Chern
numbers. A summary is provided in Sec. V.

II. 3-BAND MODEL; FOLDING TO 2-BANDS

The tight binding Hamiltonian used previously??2* to

produce the sD electronic structure, corresponding to the
t’=0 limit of the density of states shown in Fig. 1, was
based on a three band model consisting of two uncoupled
orbitals on a square lattice, with each coupled anisotrop-
ically to a distant (in energy) third band, with Hamilto-
nian (lattice constant a=1)
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FIG. 1: The density of states (DOS, in arbitrary units) for
the three cases of coupling A = -0.002, -0.05 and -0.2 (black,
dashed red, dashed black respectively), corresponding to the
respective values of ¢ in the legend. The other parameters
are A=0,% =1, § = 0. The inset illustrates the fine structure
near zero energy (the band centers); blue corresponds to A =
—0.002. The breaking of particle-hope symmetry around zero
energy is apparent.

Here we generalize the original sD tight binding model,
so that orbitals 1 and 2 (also referred to as s and s’) sep-
arately, with hopping amplitudes t; and to respectively,
give rise to a band that has studied extensively in the con-
text of the high temperature superconducting cuprates,
notably displaying a van Hove singularity at the zone cor-
ner. These two bands have bands have centers of gravity



differing by A and hopping amplitudes differing in mag-
nitude by § = t3 — t; from the mean value of ¢, with
associated differences in bandwidths:

eix = —A/2+ 2t (cos kg + cosky)
gar = +A/2 — 2ty(cos kg + cos ky) (4)
Vie = 2t/(cosky — cosky).

Thus we have t; = t— %, to =1+ g. These two uncoupled
bands each couple with amplitude ¢’ to a high-lying band
3 at energy e3 and negligible dispersion. The anisotropic
coupling with orbital 3 expressed in Vj, can be realized
for orbitals 1 and 2 with full site symmetry (viz. s or d,2)
and orbital 3 of d,2_,» symmetry. The pertinent point
is that this hybridization vanishes along the diagonals
ky = £k,

A. TUncoupled bands

For coupling #'=0, band 1 (respectively 2) has band-
width 8¢; (8t2) with a divergent van Hove singularity
(vHs) at - A/2 (+ A/2), which will however not be our
main concern. These bands cross (or in common usage,
‘touch’) at

cosky +cosk, = —

where W is the mean bandwidth of bands 1 and 2. This
relation describes a curve Cy in the Brillouin zone (BZ)
given parametrically by

ky, = £ cos ' (2y — cos k), (6)

whenever a real solution exists. The bands are both de-
generate and constant (flat) over this Fermi curve C,,
with energy

A
By = ~200 = ~207, (7)

which differs from zero only if both § and A are non-zero,
i.e. both the band centers and the band widths differ.

This closed line of degeneracies is an example of a nodal
loop semimetallic electronic structure.'? ' With generic
coupling such degeneracies are normally lifted to anti-
crossings, but Herring demonstrated that such nodal loop
degeneracies can occur purely accidentally (independent
of symmetry restrictions) and several examples have re-
cently been reported, see for example the list of references
given by Xu et al.3?>. We will return to this point.

In the limit A — 0 (v — 0) of equal band centers this
uncoupled system has two coinciding diamond shaped
Fermi surfaces (the shape familiar from 2D square lattice
models) at half filling of both bands, and a coalescing of
the van Hove singularities at A = 0. Without coupling,
the density of states (DOS) remains the sum of that from
the two square lattice DOSs with well known shapes. At
=1 the DOS curves just touch, giving a gapless semi-
conductor. For larger v a gap opens between the bands.
v > 1 does not interest us here.

B. Adding the coupling

We consider €3 large compared to W and A so that
band 3 lies at high energy and can be neglected once the
coupling is taken into account. Figure 1 illustrates the
very strong particle-hole asymmetry around the energy
zero induced by the coupling. The vHs splits roughly
symmetrically for very small coupling (blue curve). How-
ever, for still small coupling A = —0.05, the asymmetry
is substantial: the lower vHs is shifted downward where
the upper one remains very close to zero. The asymmetry
becomes ever clearer for increasing A\. Regardless of the
size of A however, band touching at zero energy remains.
The strongly differing slopes of the DOS at positive and
negative energy reflects the different masses.

When #' is of the same order as, or smaller than, ¢, the
three-band model can be downfolded into a two band
model by treating band 3 perturbatively, giving

| e+ X Ak
e = ( Ae €2t Ak ) ®

The downfolded bands (still called band 1 and 2) con-
tinue to touch at one point along the diagonals, which
provides the sD point discovered in the thin heterostruc-
ture system VOq/TiO2(001).21:2% Along the contour C,
the coupling A\, separates the bands everywhere except
along the diagonals where it vanishes. The relation for
>\k is

t/2

A= —4—. (9)

A = Acos k, — cosk,)?
€3

The sD points of touching bands Ay = 0 occur at
(£k.,£k.) with k.=cos™!y. Note that the difference
in bandwidths given by § # 0 does not enter this con-
dition; only the ratio of band center difference A and
mean bandwidth W enters, so this condition is not un-
usually sensitive to details of the bands. The two band
Hamiltonian becomes

Hy, = he(k)mo+ h(k)-7
— EpTo + AeT1 + ArT3 (10)

in terms of Pauli matrices 7; in orbital space, the mean
band energy & and half-separation Ay are

€ = —0(cosky + cosky) + A, (11)
Ay

A _
~3 + 2t(cos kg + cosky). (12)

The separation of two bands is given quite generically by
twice the magnitude of hy:

Ers = ho(k) £ |h(k)]

5 Ep A2+ A2, (13)

Since Hj, is real the Berry connection (hence Berry
curvature, vanishes, so topological character is absent,



FIG. 2: (Color online) Top row: particle-hole symmetric dis-
persions plotted across the square Brillouin zone. Top left:
schematic representation of particle-hole symmetric semi-
Dirac dispersion. Top right: dispersion of uncoupled two
band model. Bottom row: particle-hole asymmetric two band
model driven by s (s’) and d interaction. Bottom left: = 1,
§=0,A=0,t =1, ¢g = 30. Bottom right: £ =1, § = 0,
A = 0,1t =2, ¢4 = 30. Note the strong shift of the lower
band downward.

as observed earlier.'® Our interest is the eigenvalue spec-
trum and energy surface topology of the coupled bands.
We study specifically the lowest two bands, which we re-
fer to as the particle-hole asymmetric two band model
(a2BM). Figure 1 illustrates the DOS when the uncou-
pled bands are degenerate A = 0 = §, versus coupling
strength ¢'. The initially coinciding vHs separate, with
one remaining very nearly at zero energy (the bottom
of band 2), thereby assuming the single-sided divergence
characteristic of one dimensional systems. We return to
the corresponding diverging effective mass below.

C. Band dispersion

This band topology, shown in Fig. 2 for a select set of
parameters, differs in striking ways from other unusual
cases, and from the closely related sD form discussed
previously.2? The bands always touch at the critical point
(+ke, £k.) along the diagonal given by

cos ke = 7. (14)

Only for band center separation A=0, the critical point
lies at (5, 5 ), otherwise its position is determined by the
value of A. Expanding the dispersion near the semi-Dirac

point and rotating by 7 from k., k, to q1,q2 yields

Be = By + V21— + 167+ 20142 &}

£\ 81— 07 + (1202 - 12+ 2]

Along the ¢; = 0 axis (the original diagonal) the disper-
sion reduces to linear in go

Ey = E,y + vqo
)
= E, + 2\/5(5 + 1) (sin k) ga (15)
The dispersion in the perpendicular direction is quadratic
in qp
2

q1
16
ST (16)
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with effective masses given by

1
Qmi

1
= 557 + 201 —92) £/4X2(72 — 1)2 4+ 242 (17)

Aspects of this spectrum are discussed in the following
subsections.

FIG. 3: (Color online) Iso-energy lines for small doping levels
e = £0.2 (blue/red respectively). Electron doping leads to
large Fermi contours around both I and corner M with carriers
in the white areas, while hole doping leads to tiny, strongly
distorted but non-elliptical contours (purple) enclosing the
holes.

D. The case of A=0

For equal band centers A = 0 for which also cos k.=0
(ke = %, v=0), the mass m_ of the upper band 2 di-
verges, presumably leaving a much weaker dispersion,
say gi. The actual situation is more subtle than that.



For A = 0, Cauchy’s interlacing theorem33 provides a
general result. Given the coupled bands E;; and un-
coupled bands ¢;, the interlacing theorem states that
coupled bands interlace the uncoupled bands, giving

By < ey < By, < g9y, < Bsy. (18)

Since €1 = €25 are degenerate along C,, and further-
more are flat in energy at & = F,, along the entire con-
tour C, given by Eq. 6, the bottom of the band (Eq)
is pinned at the band crossing energy E, along C,. Ejs
includes a flat contour which (numerical solutions verify)
lies at the bottom of band 2, touching band 1 at the sD
point. The resulting non-analyticity (a flat contour along
a closed loop) is a more general one than that for Berry’s
isolated diabolical point.'® C, comprises a closed line of
points with massless dispersion in one direction and in-
finite mass in the other direction. This case is the one
pictured in the lower panels of Figure 2.

This result just presented guarantees then that there
is a constant energy contour that is the Fermi contour
of band 2 at half filling, which at A=0 is the diamond-
shaped Fermi contour of the single band tight-binding
square lattice (TBSL) model at half filling. The sim-
ilarity ends there, but it is instructive to contrast the
evolution of the a2BM with the TBSL model as they are
doped away from half filling. In the TBSL model, there is
a symmetry, with identical electron and hole Fermi sur-
faces except the large hole surface is centered at I' while
the large electron surface is centered at M.

On the other hand, the a2BM is extremely particle-
hole asymmetric. For slight electron-doping there are
two large, closed, Fermi contours that are essentially the
same as both electron and hole surfaces of the TBSL
model. The electron carriers reside between these two
large surfaces, as pictured in Fig. 3. At half filling
the Fermi contours coalesce into a single Fermi contour
with diamond shape connecting X points, before van-
ishing. Proceeding on to hole doping, tiny and highly
anisotropic hole-like Fermi contours appear, centered on
the (+k.,tk.) sD points on the diagonals, with major
axis oriented perpendicular to the diagonal, as illustrated
in Fig. 3 and evident from Fig. 2. Thermal excitation
at half filling will produce electron and hole carriers with
vastly different behaviors, i.e. strong particle-hole asym-
metry.

E. Effective mass and velocity at the semi-Dirac
point

The on-site energy separation A, hopping integrals
t+ g, or other parameters can be tuned by applying
pressure or stress, providing a broad parameter space to
design materials with distinctive behaviors. Here the de-
pendence of effective masses and effective velocities of
the tunable parameters will be discussed briefly. Recall

that the average hopping parameter ¢ = 1 sets the energy

FIG. 4: Inverse of effective masses m;l versus on-site energy
difference A. The band coupling A is varied in increments of
0.05 from -0.4 to 0. When A = 0, the inverse effective mass of
upper and lower band become zero (effective mass diverges).
As ) increases in magnitude, the upper band retains the infi-
nite mass at A = 0, while the effective mass of the lower band
lowers rapidly to conventional values.

scale. The effective velocities are given by

) AZ?
2V~ (19)
A difference in bandwidths ¢ makes the velocities differ,
while a difference in band centers A affects the magni-
tudes. Applying pressure would broaden the band width
and lift the limit of effective velocities to higher values.
In Fig. 4 the inverse effective mass is plotted against
on-site energy difference for a sequence of coupling
strengths (A = —0.4, —0.35, ..., 0) with § = 0. The
on-site energy difference is varied from -8 to 8 (i.e. ~
ranges from -1 to 1). In the absence of coupling where
particle-hole symmetry is preserved, the effective mass
varies linearly with the inverse of on-site energy differ-
ence A but diverges when the two orbitals near the Fermi
level have identical on-site energy. As the magnitude of
the coupling A increases, the effective mass of the upper
band remains infinite when A = 0 (a flat contour), while
the lower band has finite and decreasing effective mass.
Interestingly, when the coupling reaches the special val-
uer A = —0.25, m~! for the lower band is independent of
on-site energy separation of the s and s’ orbitals.

vy =2v2(1+

IIT. TOPOLOGICAL ASPECTS FOR
GENERALIZED DISPERSION

Topological character of electronic systems arises from
the non-analyticity of the eigensystem occurring at de-
generacies at points designated by Berry as diabolical
points.’® The occurrence or type of topological charac-
ter is connected to the dispersion around the diabolical



point, viz. Dirac versus semi-Dirac versus conventional
zero-gap, quadratic dispersion. The interest in sD sys-
tems arises from the qualitatively different electronic dis-
persion and resulting interpretation, viz. massive versus
massless, which exhausts possibilities up to quadratic.
Some results about the topological character of more gen-
eral asymmetric Hamiltonians can however be derived.

A. Low energy region

A class of effective 2D Hamiltonians expanded around
a band touching point can be written in terms of scaled
dimensionless wavevectors as

0 k™ — ik . .
hz(k;"ﬂk;; 0 y):k”ﬁ’fﬂy (20)

m and n are integers. semi-Dirac dispersion is simply
a special case with m = 1 and n = 2. The above ef-

fective Hamiltonian has two eigenvalues +,/k2™ + k2.

The corresponding eigenvectors can be written

1 +1 1 ([ +1
ur = —= | _katiky, ) =— < 0, > (21)
where 0, = tan™'(k}'/k}"). The Berry connection under

this gauge is

1 k,m 1k,n 1

A=i(us| V|ug) = £ 2—¥ —(mk,

2RE Tk ,—nky)  (22)

Integrating the Berry connection along an adiabatic loop
around the origin C: k™ + k2" = C?, where C' is a non-
zero constant, gives

B [Aydk, + Aydky) (23)

[
B

B is non-zero (equal to -7) only when both m and n are
odd.

Thus a semi-Dirac point m = 1,n = 2 represented by
this Hamiltonian is, as pointed out earlier,'??? topologi-
cally trivial, unlike the conical Dirac point with m =1 =
n in graphene.

B. Effect of symmetry lowering
The original picture of a semi-Dirac spectrum?!:?? is
that it can be represented by a family of effective Hamil-
tonians h = dj, - o with the restriction that at small |k|

the eigenvalues are +|di| = +/k2 + ki. Huang et al.*

have noted that direct numerical evaluation of the density
functional Berry curvature and its integral in the origi-
nal semi-Dirac material (a thin film of VO2212?) leads to
a Chern insulating designation, rather than the expected
trivial phase, when spin-orbit coupling opens a gap. They
resolved this apparent contradiction as follows. Suppose
that “semi-Dirac” dispersion is defined in a less restricted
manner, that e, = :I:kg for k=0 and ¢, = £k, for k,=0,

\/ k2 + kj, and thereby allow-

ing for lower symmetry terms away from the diagonals.
Then their non-intuitive choice (in our scaled variables)

rather than specifically as

do = ko — ki dy =Tkyky, (24)

/K2 — 2k, k2 + K+ D222

€k

reproduces qualitatively the topological nature of this
spectrum. Note that the rectangular symmetry has been
broken: k, < —Fk; is no longer a symmetry; there are
other choices for lowering the symmetry. In the VO
thin film, a slice of the rutile structure, I" is quite small
but non-zero. This example illustrates the feature that
topological nature is a property of the eigensystem, and
not of the spectrum alone.

C. Generalized Hamiltonian

We extend the above discussion to a general effective
Hamiltonian
hka, ky) = [ (ke ky)ow + g(ka, ky)oy (25)
with the restriction that f(k,, k) and g(ks, k,) have well
defined parity with respect to mirroring each of k, and
ky, given that the degeneracy (diabolical) point is at
(0,0). In essence this requires rectangular mm symmetry.
To simplify the discussion, we use the notation (+£+; ++)
to identify the parity of f and g with respect to k,, then
with respect to k,. For example, (-+;-+) means that
f(_k:ca ky) = _f(k:ra ky) and f(ka:a _ky) = f(kz> ky) and
similarly for g(k,, k,) for the last two eigenvalues. The
Berry connection for the effective Hamiltonian is

A _ _l_g(kwaky)fw(kxak ) (kkay)gz(kwak )
’ 2 f2 (ke ky) + 92 (e, ky)

A = _}_g(k/’x,k )fu(kmk )+ (kwaku)gy(kx,ky)
Y2 [ (ks ky) + 92 (K, ky)

where f, = 0f/0k,, etc. To have topological charac-
ter, the integration of the Berry connection along a loop
around the point (0,0) must be non-zero.

The following integration path will be used
0 0 0 1.0 0 1.0 0 0
(kwv_ky) - (kw7ky) - ( km7ky) - (_km7_ky) -

(k2,—kJ).  Denote the integration along the four
segments as I;, i=1,2,3,4. Here, we write Iy + I3
explicitly,



_g(_kga ky)fy(_kgv ky) + f(_kga ky)gy(_kga ky)

I 4 [a — 1/k2 —g(kg, ky) fy (K2, ky) + f (k3 ky)gy (k2. Ky)
1+ 3T 75

F2(k2, ky) + g2 (K2, ky)

The integral I 4+ I, has a similar form. Parity analy-
sis of the above integration for the sixteen possible cases
(£4;£+) leaves only four cases with possible non-zero
Berry phase, viz. (+—;—+), (++;——), (=+;+—), and
(——;++). The sD case of the Huang et al.?° representa-
tion is a more general one that corresponds to the lower
symmetry imposed by a non-rectangular-symmetry im-
posed by the structure of the VO5 thin film, thus does
not fit into this classification.

IV. HOFSTADTER SPECTRUM OF THE
GENERALIZED SEMI-DIRAC SYSTEM

The Hofstadter butterfly spectrum,?® which illustrates
the intricate and fractal structure of the energy spectrum
versus (the fractional part of) the magnetic flux inside a
unit cell for a 2D square lattice under magnetic field, has
been attracting renewed attention. This interest and the
rich behavior of the extended sD model has motivated us
to study its spectrum under magnetic field. Delplace and
Montambaux studied a tight binding model?® with stag-
gered on-site potential in which semi-Dirac points can be
created, at one-half flux quanta per unit cell, through
merging of two Dirac points by varying the on-site po-
tential. We return to this work below to contrast it with
our study. The Hofstadter spectrum of a honeycomb lat-
tice in which variation of the second neighbor hopping
amplitude makes the two Dirac points merge into a sD
point was studied by Dietl et al.'®

In this section, we first provide Harper’s equations for
the three-band model, and then discuss the impact of
s —d and s’ — d coupling on the spectrum of three-band
semi-Dirac model under magnetic field.

A. Harper’s equation for semi-Dirac system

For a 2D lattice under external magnetic field B with
Landau gauge A = (0, Bx), the semi-Dirac tight-binding
Hamiltonian after Peierls substitution can be written as

3

B>

a=1m,n,+

[Eanmn,a

+ ta (Clnncm:tlna + Cjnncmn:l:laeq:ﬂﬂ—m(b)]

/ T T i2Tm
+1 E : (cmn,lcmih’h?’ - C'rrm,lcﬂ’mil,36$ e + hC)

mn,+

/ 12
1Y (Chn2Cmtins = Chn sCmnar 36727+ hoc).

mn,+

— dk
PR Fy) T g2 (R0, Ry Jky

Here (m,n) are the site indices along the z,y directions,
respectively, and « sums over orbitals s, s’ and d. ¢
is the flux threading the unit cell in units of the flux
quantum ¢,. The generalized Bloch function umm,a(/g)
at site (m, n) should satisfy

EUms €slUms + ts [u(m+1)s + u(mfl)s (26)
2 cos(ky — mo)] 4+ t' [Uimi1),a

U(m—1),d — 2um,d COS(k’y — mqi))]

- -

€s'Ums + ts’ [u(erl)s’ + u(mfl)s’ (27)
2 cO8(ky —m@)] 4+t [U(my1)d
U(m—1)d — 2Umd c08(k, — mo)]

EUms’

- -

€Umd = €EqUmd + t/ [u(m+1)s + u(m—l)s (28)

— Uy, cos(ky — me)] +t' [U(mt1)s

+ UGm—1)s' — 2Ums €OS(ky — M)

Equations (26)-(28) are the Harper’s equations for the
three-band semi-Dirac model. In the uncoupled limit
t" = 0, the matrix form of Egs. (26)-(28) is block di-
agonal, with three non-zero blocks corresponding to s, s’
and d respectively. The spectrum is simply the regular
Hofstadter spectrum with well defined Chern number at
each gap satisfying the Diophantine equation.

In the strong hybridization regime t'/t — oo, us and
ug depend solely on ug. Then Egs. (26)-(28) can be
reduced to

€Ums = t' [U(m1),d + Um—1),d — 2Um,d cos(k, —m)[29)

EUmd = Qt/ [u(m+1)s + u(mfl)s - 2u7n8 Cos(ky - m¢)](30)

A solution to the equations above is to have u,,g =
+v/2us, which leads to the 1D Harper’s equation:

Uma = V2L [U(ns1)a + Un—1)d — 2Uma cos(ky — ma)],

+ corresponds u,,q = +v/ 2 respectively.

In Fig. 5 the numerical solutions for different values of
coupling ' are plotted. In the top three panels of Fig.
5 the spectra for the two bands near zero are plotted,
while the spectrum of three-bands are plotted in lower
three panels. This choice allows the revealing parts of
the spectrum to be surveyed.

t" = 0. In this limit the decoupled s and s’ orbitals
provide conventional particle-hole symmetric Hofstadter
spectra, shown in the upper left panel of Fig. 5.
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From top left to bottom right:

t' =0, 2, 4, 10, 100, 100000. In the top three panels only the two lower bands are shown, while in the lower three panels all
three bands are displayed. Note the change in absolute scale from panel to panel.

t' = 2. This coupling strength is already large in ab-
solute terms, but the energy separation ¢ = 30 makes
the effective coupling A = 8/15. As t’' increases, the
corresponding spectrum in Fig. 5 (upper middle panel)
below zero (band 1) deforms smoothly but severely. The
positive energy spectrum undergoes less severe change
of compression downward, again reflecting the strong
particle-hole asymmetry. Coupling to the third band
opens a gap at zero energy except at a = 0 (and prob-
ably a = 1/2), where gapless character remains due to
the vanishing of coupling along the diagonals of the zone.
The bottom of the band 2 spectrum is flat and lies at zero.
The spectrum of band 1 extends to nearer the bottom of
the band, which is still at F = —4, for all values of the
flux.

t' = 4. For this case (A = 2) the spectrum has changed
substantially. Band touching at o = 1/2 and 1/4 re-
mains, as well as at no field. We note here that the
spectrum has not been obtained very near several ratio-
nal values of « because the denominator ¢ in p/q = ¢/¢o
leads to progressively more substantial numerical work.
Thus gapless versus small gapfull character is not clear
from the figure. The positive energy band 2 has been
compressed further downward, especially near aw = 1/2.
Band 1 has been extended down to £ = —12; gapless
points remain at o = 0,1/4, and 1/2.

t' = 10. The corresponding panel (lower left) for this
case A = 13 now includes band 3 and extends from —50 <
E < 75. Band 2 is visible only as a strip of states in the
0 < E < 4 range. The other interesting feature that

emerges is that the spectrum of band 3 and band 1 are
becoming symmetric around the midpoint of the large
gap separating them.

t' = 100. On the scale of the spectrum now, —500 <
FE < 500, the band 2 spectrum is flat essentially at zero.
The spectra of bands 1 and 3 dominate the figure and
are nearly symmetric around F = 0.

’ = 10°. This case is included to indicate that the
spectrum essentially returns to the ¢ = 0 except for the
very large change in energy scale. Band 2 remains com-
pressed to very near zero energy. In this limit the band
compressed to (effectively) zero is the antibonding com-
bination of the original bands 1 and 2. The bonding
combination of bands 1 and 2 form bonding and anti-
bonding bands with the original band 3; these are the
bands that form the butterfly in this limit.

An analogous progression of Hofstadter spectrum with
variation of model parameter on a square lattice was re-
ported by Delplace and Montambaux.?° Their underly-
ing square lattice was converted to a two-band system by
applying an alternating on-site potential +w along the &
direction. The parameter that they varied was the mag-
nitude of w, due to their observation that at the critical
value of w = 2t two Dirac points coalesce into a sD point.
Their starting Hofstadter spectrum is the same as ours.
Their model however retains particle-hole symmetry so
the progression with strength of w cannot be compared
with the progression of our spectrum with ¢'.



B. Chern number for semi-Dirac Hofstadter
spectrum

Here we briefly note that Chern numbers can be ob-
tained straightforwardly for the butterfly gaps. In a sem-
inal paper by Thouless and coworkers (TKNN)34 the to-
tal Hall conductance o, for a 2D electronic system in
a periodic potential and an external magnetic field was
shown to be proportional to the integral of the Berry
curvature of the occupied bands. For a strong periodic
potential, the spectrum at ¢/¢, = p/q = « (p and q are
relatively prime integers) splits into ¢ sub-bands with
each band carrying an integer value of Hall conductance
which can be found by solving a Diophantine equation.
Goldman discussed the sequence of Chern numbers that
characterize the square lattice Hofstadter butterfly® and
compared with the honeycomb lattice spectrum. Rules
to determine the Chern number at all scales of the Hofs-
tadter spectrum were presented by Naumis and Satija.3%

The Diophantine equation cannot be applied to the
three-band model due to band crossings, but the Chern
numbers for the three-band model under an external
magnetic field perpendicular to the lattice can be cal-
culated numerically. The Chern number for an isolated
band or a band complex can be obtained either by inte-
grating the Berry curvature over the entire Brillouin zone
or by summing up the link variables on a discretized Bril-
louin zone,?” the latter of which is efficient and converges
on a relatively modest k-mesh.

As an example we set the coupling strength ¢’ to unity
and on-site energy of the d orbital fixed at 30. When
A is so large that two s and s’ bands are well separated
from each other (i.e. two copies of Hofstadter spectrum
without overlap), the spectrum at o = 2 splits into 2¢
subbands. The Chern number of each subband can be
found via the Diophantine equation. For example, at
a= %, there are 6 subbands and the Chern numbers for
the lowest to the highest bands are 1, -2, 1, 1, -2, 1. The
net Chern number depends on band filling, viz. it can
change from zero to nonzero with band filling. When the
on-site energy difference vanishes, the spectrum at o = %
again splits into six bands but the corresponding Chern
numbers become 4, -2, -2, -2, -2, and 4.

V. SUMMARY

In this paper the electronic, magnetic, and topological
properties of particle-hole symmetry-broken semi-Dirac

dispersion have been studied with the coupling strength
t’ between s (s) and d orbital as a generator of particle-
hole asymmetry. When t' is zero, s and s’ bands have the
well known cosine dispersion on a square lattice and its
spectrum contains a van Hove singularity at zero energy.
As t’ increases the density of states peak splits, separated
by a dip as the lower band approaches zero energy. The
upper band retains a divergent peak as a result of the flat
region near the X point and the flat contour C, while the
lower peak has its origin from the saddle point somewhere
along I' — X. The touching points of upper and lower
bands are the semi-Dirac points and lie on C. The very
different Fermi surfaces for electronic and hole doping
have been presented and discussed. More general low
energy dispersion than those for conventional zero gap
semiconductors, Dirac points, and semi-Dirac points has
been studied, and the criterion for a topological diabolical
point for different types of low energy dispersion has been
obtained.

The magnetic behavior of semi-Dirac fermions has
been discussed via their Hofstadter spectrum, viz. the
fractal energy level structure versus the fraction of flux
quantum threading the unit cell. When ¢’ is zero, the
Hofstadter spectrum consists of two identical copies of
the original Hofstadter spectrum. As the interaction
strength is switched on, particle-hole symmetry is bro-
ken and new gaps emerge and grow near zero energy
as well as in other regions. The opening of new gaps
provides opportunities for tuning materials with engi-
neered quantum Hall conductivity o,,. In light of re-
cent studies of the Hofstadter spectrum of graphene
(Dirac dispersion)3® and the experimental observation of
the Hofstadter spectrum on a Moiré lattice3® and van
der Waals heterostructure,? the Hofstadter spectrum of
semi-Dirac systems could become of interest for experi-
mental study.
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