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The extended Hubbard Hamiltonian is a widely accepted model for uncovering the effects of strong corre-
lations on the phase diagram of low-dimensional systems, and a variety of theoretical techniques have been
applied to it. In this paper the world-line quantum Monte Carlo method is used to study spin, charge, and bond
order correlations of the one-dimensional extended Hubbard model in the presence of coupling to the lattice. A
static alternating lattice distortion �the ionic Hubbard model� leads to enhanced charge density wave correla-
tions at the expense of antiferromagnetic order. When the lattice degrees of freedom are dynamic �the Hubbard-
Holstein model�, we show that a similar effect occurs even though the charge asymmetry must arise sponta-
neously. Although the evolution of the total energy with lattice coupling is smooth, the individual components
exhibit sharp crossovers at the phase boundaries. Finally, we observe a tendency for bond order in the region
between the charge and spin density wave phases.
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I. INTRODUCTION

The study of strong interaction effects in low-dimensional
systems remains one of the most active fields of research in
condensed matter physics. The extended Hubbard Hamil-
tonian �EHH� has been widely explored as a model of corre-
lation effects in tight-binding systems and, more specifically,
for the competition between different types of ground state
order: charge density wave, antiferromagnetism, and, in the
case of attractive interactions, superconductivity. In one di-
mension, it has also been used to understand the behavior of
materials including conducting polymers1 and organic
superconductors.2

The ground state phase diagram of the one-dimensional
EHH was first obtained within a weak coupling renormaliza-
tion group �RG� calculation.3,4 For repulsive on-site interac-
tions U which are sufficiently large compared to the intersite
repulsion V, specifically, for U�2V, the ground state is a
spin density wave �SDW� phase, with power law decay of
spin correlations. For 2V�U, the ground state has charge
density wave �CDW� order. These charge correlations exhibit
true long range order, that is, they go asymptotically to a
nonzero value at large separations, since the associated bro-
ken symmetry is discrete. Finally, for attractive intersite in-
teractions, singlet and triplet superconducting phases exist at
T=0, again with power law decays of the associated corre-
lation functions.

Subsequent to the RG work, the question of the order of
the transitions between these different phases was studied,
with a prediction that for repulsive U and V second-order
SDW-CDW transitions at weak coupling were separated by a
tricritical point from first-order transitions at strong
coupling.5–8 Up to several years ago, estimates of the loca-
tion of the tricritical point varied from Ut=1.5t to Ut=5t
�with Vt�Ut /2.� More recently, this picture has been further
modified by the suggestion that a narrow region exhibiting
“bond ordered wave” �BOW� correlations separates the
SDW and CDW regions at weak coupling.9–15

The competition of CDW and SDW order in the one-
dimensional EHH is further modified if the electrons couple

to lattice degrees of freedom. In the case where these are
static, most investigations have addressed the case when
there is only on-site repulsion U, that is, V=0. In this “ionic
Hubbard model” the frozen distortions have an alternating
pattern down the chain,16 and an additional issue is the pos-
sibility that the band insulator at U=0 and half filling is first
driven metallic before becoming a SDW Mott insulator.17,18

If the coupling of the electrons to the lattice is in the form of
dynamically varying phonon degrees of freedom, one has the
Hubbard-Holstein or Su-Schrieffer-Heeger Hamiltonian.

The interplay between band-insulating behavior and
electron-electron interaction effects such as those studied in
this paper has recently been explored in a number of con-
texts. Dynamical mean field theory studies of binary alloy
band insulators described by a bimodal distribution of ran-
domly located one-body potentials have observed several
novel effects, including Mott insulating behavior away from
half filling19,20 and band-insulator to metal transitions driven
by increasing on-site repulsion.21 Analogous studies of inter-
acting bosons in “superlattice” potentials in which the site
energies are modulated have also been used22–26 to describe
experiments on ultracold optically trapped �bosonic�
atoms.27–30

There has been relatively little work, especially using
quantum Monte Carlo �QMC� simulations, which addresses
how such lattice coupling affects the SDW-CDW phase
boundary in the EHH in which both U and V are nonzero. In
this paper, we apply the world-line QMC �WLQMC� method
to the one-dimensional EHH with an additional, static one-
body potential, and with dynamically fluctuating �“Hol-
stein”� phonons. We quantitatively determine the amount of
lattice coupling required to stabilize a charge ordered phase
when the system begins at values of the electron-electron
interactions in the spin density wave regime. An interesting
feature of our results is that the quantum fluctuations induced
by the hopping t have the opposite effect on the strong cou-
pling �t=0� phase boundary in the two cases. We also present
detailed results for the evolution of the different components
of the energy through the phase transition region.
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The remainder of this paper is organized as follows. An
explicit description of our Hamiltonian and a brief review of
our numerical approach are presented in Sec. II. Results for
coupling to static and dynamic lattice deformations are given
in Secs. III and IV, respectively.

II. MODEL AND COMPUTATIONAL METHODS

The extended Hubbard Hamiltonian is

Ĥel = K̂ + P̂ ,

K̂ = − t�
i�

�ci+1,�
† ci,� + ci,�

† ci+1,�� ,

P̂ = U�
i

ni,↑ni,↓ + V�
i

nini+1. �1�

Here ci,�
† ,ci,�, and ni,� are the creation, destruction, and num-

ber operators, respectively, for electrons of spin � at site i of
a one-dimensional lattice, and ni=ni,↑+ni,↓. The hopping t
determines the kinetic energy �noninteracting band disper-
sion �k=−2t cos k�, and is set to t=1. U and V, taken to be
positive, are the on-site and intersite repulsions. We will be
exclusively interested in the properties of the model at half
filling where the number of fermions Nf =�ini=N, is equal to
the number of lattice sites.

We will consider additional couplings to an on-site lattice
degree of freedom,

Ĥ = Ĥel + Ĥlattice,

ĤIHM = ��
i

�− 1�ini,

ĤHolstein = ��
i

xini + �
i
�1

2
pi

2 +
1

2
�0

2xi
2� , �2�

where Ĥlattice can take one of two possible forms: either static
�ionic Hubbard model “IHM”� or dynamic �“Holstein”�.
Analytic and numeric studies on such Hamiltonians are quite
numerous.17,18,31–42

It is useful to review the strong coupling �t=0� phase
diagram, since when the hopping is nonzero the topology of
the phase diagram is rather similar qualitatively and even
quantitatively. In the absence of an interaction with the lat-
tice, the SDW phase, which consists of a collection of singly
occupied sites, has energy ESDW

t=0 =NV, while the CDW phase
has alternating empty and doubly occupied sites, and energy
ECDW

t=0 =NU /2. The boundary is given by V=U /2. A static
lattice distortion � breaks the twofold symmetry of the CDW
state and lowers the energy by N� on the preferred sublat-
tice. The resulting boundary is shifted to V=U /2−�.

In the case of coupling to a dynamical phonon, we can
construct the t=0 phase diagram by completing the square of
the electron-phonon term in the Hamiltonian. The result is an
oscillator with the same frequency �0 and an equilibrium
position shifted by � /�0

2. An attractive on-site interaction

−��2 /2�0
2�ni,↑ni,↓ is also generated. Other terms can be ab-

sorbed into a shifted chemical potential and energy. As with
the static term, the weakening of the on-site U shifts the
strong coupling phase diagram in favor of CDW order. If
−��2 /2�0

2� is sufficiently large, pairing correlations can come
to dominate, especially in the doped case. We will not work
in that parameter regime here.

In order to understand how the quantum fluctuations,
which develop as t increases, modify these simple consider-
ations, we employ the world-line quantum Monte Carlo

method.43 Consider first the approach for Ĥ= Ĥel+ ĤIHM. We
begin by discretizing the inverse temperature � into intervals
�=� /M in the partition function, and approximating the in-
cremental �imaginary� time evolution operator by the product
of the exponentials of the kinetic energy and potential energy
terms separately:

Z = Tr�e−�Ĥ� � Tr�e−�K̂e−��P̂+ĤIHM��M .

This Suzuki-Trotter approximation44,45 introduces errors in

measurements46,47 which are of order the commutator �K̂ , P̂�,
that is, tU�2, t��2, and tV�2. Except where otherwise noted,
we will choose �=0.25, which is sufficiently small that the
systematic Trotter errors in the location of the phase bound-
ary are comparable to those arising from statistical fluctua-
tions in the Monte Carlo sampling and uncertainties associ-
ated with finite size scaling.

The construction of a path integral for Z is completed by
introducing complete sets of fermion occupation number
states I=�	ni,�
	�ni,�		 both for the trace and at all imaginary

times, i.e., between each product, e−�K̂e−��P̂+ĤIHM�. The expo-

nentials of the terms in P̂+ ĤIHM immediately act on the
eigenstates, replacing all operators by numbers. Thus the
weight of a particular occupation number configuration gets
a contribution WPWIHM,

WP��ni,	,�� = exp���
i,	

�Uni,	,↑ni,	,↓

+ V�ni,	,↑ + ni,	,↓��ni+1,	,↑ + ni+1,	,↓��� ,

WIHM��ni,	,�� = exp���
i,	

��− 1�i�ni,	,↑ + ni,	,↓�� ,

where �ni,	,� denotes the space- and imaginary-time-
dependent occupation numbers in the collection of interme-
diate states.

To accomplish the same replacement of operators by

numbers for the kinetic energy exponentials, K̂ is further
subdivided �the checkerboard decomposition43,48� into

K̂ = K̂odd + K̂even,

K̂odd = − t �
i odd,�

�ci+1,�
† ci,� + ci,�

† ci+1,�� ,
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K̂even = − t �
i even,�

�ci+1,�
† ci,� + ci,�

† ci+1,��;

The expectation value of K̂odd and K̂even between the occupa-
tion number states 	ni,�
	 and �ni,�		+1 then reduces to a prod-
uct of independent two-site problems which can be solved
analytically. Since particle number is conserved in each hop-
ping process, the number of electrons on each pair of sites in
the two states to the left and to the right of the exponential is
identical. Thus the world lines generated by connecting all
occupied sites �ni,	,�=1� are continuous. The four nonzero
matrix elements are

�00	e�t�c1
†c2+c2

†c1�	00
 = 1,

�11	e�t�c1
†c2+c2

†c1�	11
 = 1,

�10	e�t�c1
†c2+c2

†c1�	10
 = cosh�t�� ,

�10	e�t�c1
†c2+c2

†c1�	01
 = sinh�t�� .

The product of all these factors over the space-time lattice
constitutes a second contribution WK to the weight associated
with the configuration. Thus, the total weight is Wtot
=WPWIHMWK. Because all of the matrix elements are posi-
tive in one dimension, the WLQMC algorithm does not ex-
hibit a sign problem.

In the case Ĥ= Ĥel+ ĤHolstein, the trace and intermediate
states include not only fermion occupation labels, but also a

complete set of phonon position eigenstates. As with Ĥel, the
exponential of the phonon kinetic and potential energies is
discretized and split apart. The result is that in addition to the
electronic contributions WPWK there is a final phonon piece,

Wph��xi,	� = exp�1

2
��

i,	
�0

2xi,	
2 + � xi,	+1 − xi,	

�
�2� .

Let us then summarize the basic features of the simula-
tion. The degrees of freedom being summed over are two
space-time arrays of occupation numbers ni,	,↑ and ni,	,↓, and,
in the Holstein case, a space-time array of phonon coordi-
nates xi,	, with i=1,2 , . . . ,N and 	=1,2 , . . . ,2M. �The factor
of 2 comes from the checkerboard decomposition.� The total
weight of the configuration is Wtot=WPWKWph. The elemen-
tal Monte Carlo moves consist of local distortions of the
continuous world lines, together with updates of the phonon
degrees of freedom. Moves are accepted or rejected accord-
ing to the Metropolis algorithm: a random number 0
r
1
is generated and the move is accepted if r
Wtot� /Wtot.

The WLQMC algorithm can suffer from long autocorre-
lation times. Other approaches such as the stochastic series
expansion method49–51 and loop algorithms52 can be used to
speed up the evolution in phase space. Here we confine our-
selves only to introducing global moves53 in the phonon de-
grees of freedom to address even more serious large autocor-
relation times there.

We conclude with a discussion of the observables we will
measure. The various components of the energy exhibit sharp
features as the phase boundaries are crossed. Real space spin,
charge �relative to the mean�, and bond operators are defined
by

m�l,	� = nl,	,↑ − nl,	,↓,
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FIG. 1. �Color online� Spin density wave �top�, charge density
wave �middle�, and bond ordered wave �bottom� susceptibilities
versus staggered site energy � for U=6t, V=1.5t, �t=8, and N
=8,16,32. The SDW-CDW transition occurs at close to the t=0
value, �=U /2−V. BOW correlations are enhanced in the interme-
diate region. In the inset to the middle panel, the scaled �CDW is
shown for �=1. The scaled susceptibilities cross at �c / t=1.278,
indicated by the vertical dotted line.

ii-2 i-1 i+1 i+2 i+3

FIG. 2. Illustration of a BOW phase. The thick lines indicate a
high kinetic energy while the thin lines indicate a small kinetic
energy.
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n�l,	� = nl,	,↑ + nl,	,↓ − 1,

k�l,	� = �
�

�cl+1,�
† �	�cl,��	� + cl,�

† �	�cl+1,��	�� .

The associated correlation functions are

cspin�l,	� = �m�l,	�m�0,0�
 ,

ccharge�l,	� = �n�l,	�n�0,0�
 ,

cbond�l,	� = �k�l,	�k�0,0�
 ,

where �0,0� is some reference site in our system. The local
moment is defined as �mz

2
=cspin�0,0�.
We will also look at the Fourier transforms of these quan-

tities. The equal time spin structure factor is
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FIG. 3. �Color online� Spin density wave �top�, charge density
wave �middle�, and bond ordered wave �bottom� susceptibilities
versus staggered site energy � for U=6t, V=0.0t, �0.5t�, 3.0t, and
N=32.
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FIG. 4. �Color online� Total �a�, kinetic �b�, intersite Coulomb
�c�, and on-site Coulomb �d� energies at fixed U=6t and different V.
The inverse temperature is fixed at �t=8 and the lattice size at N
=32. The kinetic energy is largest in the region where there is a
balance between the CDW and SDW insulating tendencies, in good
correspondence with the behavior of �BOW. The intersite interaction
energy falls abruptly on entry to the CDW state, and the on-site
energies rise steeply as the pairs form.
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Sspin�q� =
1

N
�

l

eiqlcspin�l,0� ,

with analogous definitions for Scharge and Sbond. The corre-
sponding zero-frequency susceptibility is

�spin�q� =
1

N
�

	
�

l

eiqlcspin�l,	� ,

again with analogous definitions for �charge and �bond.
At half filling, the largest responses in the Hubbard model

are at wave vector q=. In a disordered phase, c�l ,0� decays
exponentially to zero with the site separation l, and the struc-
ture factor is independent of lattice size N. If true long range
order develops, then the structure factor grows linearly with
lattice size, with the factor eil providing the necessary
phases so that the oscillating c�l� add constructively. The
susceptibility similarly examines the asymptotics in imagi-
nary time, diverging with � when c�l ,	� remains nonzero for
large 	.

III. RESULTS: EXTENDED IONIC HUBBARD
HAMILTONIAN

In the extended Hubbard Hamiltonian with U=6t and V
=1.5t, we are well within the SDW phase since U�2V. In
Fig. 1 we see that as � is increased, the SDW susceptibility
decreases and the CDW susceptibility grows. Indeed, �CDW
rises dramatically in the vicinity of �=U /2−V, as suggested
by the strong coupling analysis. The transition becomes in-
creasingly sharp as the lattice size is increased. Because the
CDW correlations break a discrete symmetry, true long range
order is possible at T=0. With our normalization conventions
we expect the CDW structure factor and susceptibility to
grow linearly with lattice size after the onset of long range
order. This is borne out in the middle panel of Fig. 1. The
inset to this panel shows a scaled version of the raw data for
�CDW. A crossing of the curves for different lattice sizes N
allows us to determine the location of the critical point.

The SDW correlations that are dominant at small � break
a continuous symmetry, and hence in one dimension decay
with a power law at T=0, that is, cspin�l ,0��1/ l. This behav-
ior accounts for the relatively less rapid growth of the SDW
susceptibility with lattice size.

It is important to make another distinction between the
CDW and SDW phases, the phases that arise as broken sym-
metries from the interaction terms V and U, and the stag-
gered density which is caused by the one-body term �. This
staggered potential � breaks translational invariance so that
there is a small degree of CDW order even in the SDW
phase. By contrast, in a competition solely between U and V
at �=0, no CDW order would exist in the SDW phase.

The bottom panel of Fig. 1 shows the BOW correlations.
In a BOW phase the kinetic energy on the links oscillates
between two values as one traverses the chain �see Fig. 2�.
SDW correlations are immediately plausible after observing
that U leads to singly occupied sites �moment formation� and
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FIG. 5. �Color online� Phase diagram in the intersite V and
staggered site energy � plane, with U=6t and �t=8. Line with
symbols is the result of the WLQMC simulations in this paper. We
also show the exact result �line without symbols� for t=0. As ex-
pected, the strong coupling limit works well at large V, but there are
significant deviations as V becomes smaller.
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STATIC VERSUS DYNAMIC FLUCTUATIONS IN THE… PHYSICAL REVIEW B 76, 125103 �2007�

125103-5



that neighboring spins that are antiparallel have a second-
order lowering of their energy ��E�2��−t2 /U� relative to
neighboring spins that are parallel. Analogous reasoning ap-
plies to CDW correlations. A picture of the less familiar
BOW order is the following: consider a CDW pattern of
doubly occupied and empty sites. A fermion hopping from
doubly occupied site i onto neighboring empty site i+1 will
prevent, through the interaction U, the hopping of a second
electron from doubly occupied site i+2 onto i+1. Instead, an
electron on site i+2 would prefer to hop to i+3. Thus the
bonds �i , i+1� and �i+2, i+3� have high kinetic energy,
while the intermediate bond �i+1, i+2� has low kinetic en-
ergy. This way of understanding the origin of BO invokes
both CDW and SDW correlations, making it plausible that
the BOW might form on the boundary between the two.

Since the BOW phase also breaks a discrete translational
symmetry, the associated ground state order should be long
ranged. As mentioned in the Introduction, in the extended
Hubbard model ��=0� the original picture of the phase dia-
gram was one with only SDW and CDW regions, with a
weak coupling second-order transition changing at a tricriti-
cal point to a strong coupling first-order transition.5–8 Recent
QMC simulations with the stochastic series expansion �SSE�
have suggested instead that, at weak coupling, as V is in-
creased at fixed U there are two separate transitions: a SDW-
BOW transition of the Kosterlitz-Thouless type, followed by
a second-order BOW-CDW transition. These transitions
merge at a multicritical point into a single, direct, first-order
SDW-CDW transition line at strong coupling.11 The multi-
critical point was found to be at �Um ,Vm�
= �4.7±0.1,2.51±0.04�.

Aspects of this conclusion had been challenged by density
matrix renormalization group calculations.54–56 In particular,
the suggestion is that the BOW phase exists only precisely
on the SDW-CDW transition line, as opposed to being
present in an extended region. Moreover, rather than starting
at U=V=0 and reaching out to the multicritical point, the
BOW line was concluded to begin at finite, nonzero coupling
and also extend somewhat beyond the numerical value for
the multicritical point obtained using the SSE. Further SSE
calculations13 and functional RG treatments15 appear to con-
firm earlier SSE work.

We do not propose here to add to this discussion, since
our main focus is on the shift in the SDW-CDW phase
boundary. Indeed, the value of U in Fig. 1 is large enough
that we would likely be above the BOW region of the phase
diagram. Nevertheless, the bottom panel of Fig. 1 does indi-
cate a pronounced maximum in �BOW near the SDW-CDW
transition, hinting that such order may be present at weaker
coupling. If long range BO were to exist, we would expect to
see �BOW grow linearly with N, as does �CDW. This is clearly
not the case for the parameters and lattice sizes of Fig. 1.

In Fig. 3 we fix U=6t and the lattice size at N=32, and
sweep � for different choices of V. As expected, the size of
� required to destroy the SDW phase decreases as the inter-
site interaction V, which cooperates with �, rises. As with
the data of Fig. 1, the fall of �SDW coincides closely with the
rise of �CDW. In each case the transition is marked also by a
maximum in �BOW. The sharpness of the peak in �BOW di-

minishes as V grows, which is consistent with the SSE �Ref.
55� and density matrix �DM� RG �Ref. 54� calculations on
the extended Hubbard model which �although they disagree
in certain respects� both conclude that BO is not present at
strong coupling. We note that a Mott-insulator–BO transition
has also been suggested by Zhang et al. in the V=0 limit
with �=2.0 and Uc=5.95±0.01.40

The behavior of the total energy, Fig. 4�a�, is featureless
through the sweep upward in �. However, abrupt evolution
of the individual components of the energy, Figs. 4�b�–4�d�,
accompanies the transitions in the susceptibilities. The en-
ergy associated with V decreases sharply upon exiting the
SDW phase where adjacent sites are occupied, while the en-
ergy associated with U jumps upward with the development
of double occupancy. The kinetic energy is relatively benign,
but, like �BOW, reaches maxima along the SDW-CDW tran-
sition line. Evidently, the near balance between the insulating
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FIG. 7. �Color online� Spin density wave �top�, charge density
wave �middle�, and bond ordered wave �bottom� susceptibilities
versus electron-phonon coupling � for U=6t, V=0.0t �0.5t�, 3.0t,
�0=2t, and N=32.
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tendencies of U and V allows greater fluctuation in the elec-
tron positions.

The values of � at which the different susceptibilities
change abruptly, and at which features in the energy are also
evident, enable us to draw the phase diagram in the V-�
plane for fixed U=6t shown in Fig. 5. At �=0 our QMC
results match quite nicely the DMRG results of

Jeckelmann,54 who finds Vc=3.155±0.005 for U=6t. This
�=0 transition point is not too far shifted from the strong
coupling value Vc=U /2=3t when U=6t.

As the staggered potential � becomes greater, our QMC
phase boundary bends more away from the t=0 line Vc
=U /2−�. The SDW phase appears to terminate at �
=2.46±0.05 in the absence of intersite repulsion V. While

15

20

25

30

35

40

0 1 2 3 4 5 6

K
E

el
ec

el
ec

el
ec

el
ec

λ/t

(a)

0

40

80

120

160

0 1 2 3 4 5 6

P
E

ph
on

on
ph

on
on

ph
on

on
ph

on
on

λ/t

(e)

0

20

40

60

80

0 1 2 3 4 5 6

E
VVVV

λ/t

(b)

-300

-200

-100

0

0 1 2 3 4 5 6
E

el
-p

h
el

-p
h

el
-p

h
el

-p
h

λ/t

(f)

V=0.0t
V=0.5t
V=1.0t
V=1.5t
V=2.0t
V=2.5t
V=3.0t

0

20

40

60

80

100

0 1 2 3 4 5 6

E
UUUU

λ/t

(c)

-40

0

40

80

120

0 1 2 3 4 5 6

E
to

t
to

t
to

t
to

t

λ/t

(g)

12

13

14

15

16

0 1 2 3 4 5 6

K
E

ph
on

on
ph

on
on

ph
on

on
ph

on
on

λ/t

(d)

FIG. 8. �Color online� �a� Kinetic �hopping�, �b� intersite Coulomb, �c� on-site Coulomb, �d� kinetic �phonon�, �e� potential �phonon�, �f�
electron-phonon coupling, and �g� total energies versus coupling constant � for U=6t, V=0.0t �0.5t�, 3.0t, �t=8, �0=2t, and N=32. The
fluctuations in the phonon kinetic energy are significantly smaller than those for all other energies for these parameters.
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labeled as CDW, the large � phase in the V=0 limit is per-
haps more properly termed a band insulator, where the alter-
nating charge density is a consequence of the staggered one-
body potential as opposed to many-body effects.

IV. RESULTS: EXTENDED HUBBARD-HOLSTEIN
HAMILTONIAN

Having completed our discussion of the case of the inter-
play of a static alternating external potential with the corre-
lation terms U ,V in the extended Hubbard Hamiltonian, we
now give analogous results for the case when we couple to
dynamical �Holstein� lattice distortions. Figure 6 is a com-
panion to Fig. 1, showing the evolution of the spin, charge,
and bond susceptibilities with electron-phonon coupling �
�rather than staggered potential �� for different system sizes
N. As discussed earlier, � has a similar qualitative effect to
�, since it weakens the on-site repulsion U and hence drives
CDW formation. There are significant quantitative differ-
ences between the two situations. The SDW-CDW transition
as a function of electron-phonon coupling � appears to be
much more abrupt. Recall that � breaks the lattice symmetry
explicitly, selecting out a single preferred sublattice. It in-
duces CDW order even within the SDW phase and as a con-
sequence the change through the transition is less dramatic.
The Holstein interaction, in contrast, spontaneously breaks
the translational symmetry when it drives CDW order. We
note further that BOW order is less sharply peaked at the
SDW-CDW boundary.

Figure 7 is a companion to Fig. 3, similarly showing the
susceptibilities as a function of electron-phonon coupling
constant � for a collection of values of V at a single lattice
size N=32 and �0=2t. As V increases, a smaller � is suffi-
cient to drive CDW formation. There appears to be some
variation of the sharpness of the evolution of the suscepti-
bilities near �c as V is varied, with the most abrupt behavior
occurring for intermediate V. In the extended Hubbard model
��=0�, the transitions become monotonically more steep
with increasing V. Indeed, as noted earlier, they change from
continuous to discontinuous beyond the tri- �multi�critical

point. The fluctuations of �CDW at large � in Fig. 7 �middle
panel� often occur in QMC studies of electron-phonon
Hamiltonians and are associated with long equilibration
times which occur when the electrons and lattice degrees of
freedom are strongly coupled.

As with ĤIHM, the components of the energy �Fig. 8� lend
important supporting evidence for the locations of the tran-
sition points. The behavior of EV and EU is the same as that
observed previously in Fig. 4, and is more or less clear: in
the SDW phase most sites are singly occupied and there is a
significant contribution to EV, which then drops abruptly in
the CDW phase where doubly occupied and empty sites al-
ternate. In contrast, EU is small in the SDW phase since sites
are singly occupied, but then increases sharply in the CDW
phase. What is perhaps less intuitive is the evolution of the
phonon contributions to the energy. As � grows, the t=0
analysis suggests a smooth quadratic increase, Ephonon

pot

=�2 /2�0
2. Instead, the phonon potential energy remains rela-

tively flat throughout the SDW region, and then jumps up as
the CDW is entered. The phonon kinetic energy is especially
interesting, showing a well-defined minimum in the transition
region. The origin of this effect is not clear. Ephonon

kin is mea-
sured by the fluctuations of the phonon coordinates in imagi-
nary time. Naively, one might expect kinetic lattice fluctua-
tions to be largest in the SDW-CDW transition region where
the system is undecided between which type of order to as-
sume. In the case of the electron kinetic energy we see pre-
cisely this effect in Fig. 8�a�. The opposite appears to be the
case for the phonon kinetic energy.

Finally, Fig. 9 shows the phase diagram in the V-� plane
at fixed U=6t. It shares the same general features as Fig. 5
with a SDW phase near the origin that is destroyed when
either the intersite repulsion V or the electron phonon cou-
pling � increases sufficiently. Figure 9 describes how large a
value of electron-phonon coupling � is required to convert
the SDW phase, favored by U, to the CDW phase, favored
by V, and is representative of how � affects the extended
Hubbard model phase diagram at all intermediate to large
interaction strengths. It is important to note that, unlike Fig.
5, the QMC phase boundary does not bend away from the
t=0 line Vc=U /2−�2 /4�0. Instead, the boundary is uni-
formly shifted to increase the critical intersite repulsion, fa-
voring SDW order. Again, the �=0 point on our phase
boundary �Vc=3.124±0.011� agrees well with Jeckelmann’s
DMRG treatment. �See above discussion of Fig. 5.�

For finite � we can compare against the phase diagram of
Sil and Bhattacharyya who study the same extended Hub-
bard model coupled to Holstein phonons.42 They draw the
phase boundary in the U-V plane for different electron-
phonon couplings. Translating to the units used in our paper,
for U=6t and V=2t, their data suggest that the CDW phase
is destroyed at �c�2.8. Our Fig. 9 gives �c�3.0 at V=2t for
the same parameters. Likewise, Sil and Bhattacharyya find
that for �=5.6 there is no SDW phase at U=3t. This is again
nicely consistent with our data, which suggest that when �
=5.04±0.06 there is CDW order.

V. SUMMARY

In this paper we have presented world-line quantum
Monte Carlo simulations of the extended one-dimensional
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FIG. 9. �Color online� This figure shows the phase diagram for
intersite V and electron-phonon coupling � with U=6t, �0=2t, and
�t=8. Line with symbols is the result of the WLQMC simulations
in this paper. The functional form of the fit is V=a�2+b. We show
the exact result �line without symbols� for the t=0 phase.
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Hubbard Hamiltonian to which coupling to static staggered
�ionic Hubbard� or dynamic �Holstein� lattice degrees of
freedom is added. The evolution of the susceptibilities to
different types of order and the components of the energy
were examined. For both static and dynamic couplings the
region of charge density wave order in the phase diagram is
found to be stabilized, and the phase boundaries are pinned
down. Bond order is shown to be enhanced in the vicinity of
the spin density to charge density transition.

The results obtained in this work also show good agree-
ment with previous studies. The zero-coupling limit �� ,�
=0� results conform well with Jeckelmann’s DMRG results.
For dynamic couplings, the results compare favorably with
the results of Sil et al.

A comparison of the QMC phase boundaries with their
counterpart in the t=0 limit shows a markedly different be-
havior between the two types of coupling. For static cou-
plings, the CDW phase is enhanced in the QMC calculation.
Conversely, there is an enhancement of the SDW correla-
tions with Holstein phonons.

ACKNOWLEDGMENTS

We acknowledge support from the DOE under Grant No.
DE-FG01-06NA26204 and the NSF Grant No. REU PHY-
0243904, and useful input from G. K. Pips.

1 Conjugated Conducting Polymers, edited by H. G. Keiss
�Springer-Verlag, Berlin, 1992�.

2 T. Ishiguro and K. Yamaji, Organic Superconductors �Springer-
Verlag, Berlin, 1990�.

3 V. J. Emery, in Highly Conducting One Dimensional Solids, ed-
ited by J. Devreese, R. Evrard, and V. van Doren �Plenum, New
York, 1979�.

4 J. Sólyom, Adv. Phys. 28, 201 �1979�.
5 J. E. Hirsch, Phys. Rev. Lett. 53, 2327 �1984�.
6 J. E. Hirsch, Phys. Rev. B 31, 6022 �1985�.
7 J. W. Cannon and E. Fradkin, Phys. Rev. B 41, 9435 �1990�.
8 J. W. Cannon, R. T. Scalettar, and E. Fradkin, Phys. Rev. B 44,

5995 �1991�.
9 M. Nakamura, J. Phys. Soc. Jpn. 68, 3123 �1999�.

10 M. Nakamura, Phys. Rev. B 61, 16377 �2000�.
11 P. Sengupta, A. W. Sandvik, and D. K. Campbell, Phys. Rev. B

65, 155113 �2002�.
12 M. Tsuchiizu and A. Furusaki, Phys. Rev. Lett. 88, 056402

�2002�.
13 A. W. Sandvik, L. Balents, and D. K. Campbell, Phys. Rev. Lett.

92, 236401 �2004�.
14 M. Tsuchiizu and A. Furusaki, Phys. Rev. B 69, 035103 �2004�.
15 K.-M. Tam, S.-W. Tsai, and D. K. Campbell, Phys. Rev. Lett. 96,

036408 �2006�.
16 The model with random, rather than alternating, static distortions

is often referred to as the binary alloy Hubbard Hamiltonian.
The possibility of a Mott transition away from half filling has
recently been discussed �see Ref. 15�.

17 S. S. Kancharla and E. Dagotto, Phys. Rev. Lett. 98, 016402
�2007�.

18 N. Paris, K. Bouadim, F. Hebert, G. G. Batrouni, and R. T. Scal-
ettar, Phys. Rev. Lett. 98, 046403 �2007�.

19 K. Byczuk, M. Ulmke, and D. Vollhardt, Phys. Rev. Lett. 90,
196403 �2003�.

20 K. Byczuk, W. Hofstetter, and D. Vollhardt, Phys. Rev. B 69,
045112 �2004�.

21 A. Garg, H. R. Krishnamurthy, and M. Randeria, Phys. Rev. Lett.
97, 046403 �2006�.

22 D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,
Phys. Rev. Lett. 81, 3108 �1998�.

23 P. Buonsante and A. Vezzani, Phys. Rev. A 70, 033608 �2004�.

24 P. Buonsante, V. Penna, and A. Vezzani, Phys. Rev. A 70,
061603�R� �2004�.

25 P. Buonsante and A. Vezzani, Phys. Rev. A 72, 013614 �2005�.
26 V. G. Rousseau, M. Rigol, F. Hebert, D. P. Arovas, G. G. Ba-

trouni, and R. T. Scalettar, Phys. Rev. B 73, 174516 �2006�.
27 N. R. Thomas, A. C. Wilson, and C. J. Foot, Phys. Rev. A 65,

063406 �2002�.
28 S. Friebel, C. DAndrea, J. Walz, M. Weitz, and T. W. Hänsch,

Phys. Rev. A 57, R20 �1998�.
29 P. Ahmadi, V. Ramareddy, and G. S. Summy, New J. Phys. 7, 4

�2005�.
30 S. Peil, J. V. Porto, B. Laburthe Tolra, J. M. Obrecht, B. E. King,

M. Subbotin, S. L. Rolston, and W. D. Phillips, Phys. Rev. A 67,
051603�R� �2003�.

31 J. Hubbard and J. B. Torrance, Phys. Rev. Lett. 47, 1750 �1981�.
32 T. Egami, S. Ishihara, and M. Tachiki, Science 261, 1307 �1993�.
33 G. Ortiz and R. M. Martin, Phys. Rev. B 49, 14202 �1994�.
34 R. Resta and S. Sorella, Phys. Rev. Lett. 74, 4738 �1995�.
35 R. Resta and S. Sorella, Phys. Rev. Lett. 82, 370 �1999�.
36 M. Fabrizio, A. O. Gogolin, and A. A. Nersesyan, Phys. Rev.

Lett. 83, 2014 �1999�.
37 T. Wilkens and R. M. Martin, Phys. Rev. B 63, 235108 �2001�.
38 C. D. Batista and A. A. Aligia, Phys. Rev. Lett. 92, 246405

�2004�.
39 Y. Z. Zhang, C. Q. Wu, and H. Q. Lin, Phys. Rev. B 66, 035115

�2002�.
40 Y. Z. Zhang, C. Q. Wu, and H. Q. Lin, Phys. Rev. B 67, 205109

�2003�.
41 J. Riera and D. Poilblanc, Phys. Rev. B 62, R16243 �2000�.
42 S. Sil and B. Bhattacharyya, Phys. Rev. B 54, 14349 �1996�.
43 J. E. Hirsch, R. L. Sugar, D. J. Scalapino, and R. Blankenbecler,

Phys. Rev. B 26, 5033 �1982�.
44 H. F. Trotter, Proc. Am. Math. Soc. 10, 545 �1959�.
45 M. Suzuki, Phys. Lett. 113A, 299 �1985�.
46 R. M. Fye, Phys. Rev. B 33, 6271 �1986�.
47 R. M. Fye and R. T. Scalettar, Phys. Rev. B 36, 3833 �1987�.
48 M. Barma and B. S. Shastry, Phys. Rev. B 18, 3351 �1978�.
49 A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 �1991�.
50 A. W. Sandvik, J. Phys. A 25, 3667 �1992�.
51 A. W. Sandvik, Phys. Rev. B 59, R14157 �1999�.
52 N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, J. Exp.

STATIC VERSUS DYNAMIC FLUCTUATIONS IN THE… PHYSICAL REVIEW B 76, 125103 �2007�

125103-9



Theor. Phys. 87, 310 �1998�.
53 In addition to moves that change a phonon coordinate at a single

space-time point, we also include moves that modify the phonon
coordinates at all imaginary times for a given spatial site.

54 E. Jeckelmann, Phys. Rev. Lett. 89, 236401 �2002�.
55 A. W. Sandvik, P. Sengupta, and D. K. Campbell, Phys. Rev. Lett.

91, 089701 �2003�.
56 E. Jeckelmann, Phys. Rev. Lett. 91, 089702 �2003�.

CRAIG et al. PHYSICAL REVIEW B 76, 125103 �2007�

125103-10


