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// B-doped diamond superconductor
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EKkimov et al., Nature 428, 542 (2004)
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assisted chemical vapor
deposition (MPCVP)

* Tc= 7.4K

Takano et al., APL 85, 2851 (2004).
(NIMS, Waseda U in Japan)
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// Approach

+ By Fontaine, the activation energy depends on ¢; .
0.37 eV for low concentration
[ 0 eV for above ¢, /6
= a degenerate metal for a larger concentration

. Our viewpoint: The maijority fraction of the hole carriers reside in
states overlapping the diamond VB, and behave as degenerate
valence band holes.

+ Virtual crystal approximation (VCA)
[nuclear charge Z=(1-x)Zc + xZs for the B-doped diamond]

t LAPW (Wien 2K) (P. Blaha et al., Comput. Phys. Commun. 59, 399 (1990))
RmtKmax=7.0 with a sphere radius 1.2, 1156 irreducible k-point

t FPLO (K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743 (1999))
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// 2.5% B-doped diamond

+ ErF=-0.61 eV from the VBM (calculated)

+ The Fermi surfaces consist of 3 zone-centered
spheroids.

\ MgB: B-doped diamond
t the very strongly covalent bonding states
Anal- carrier + These states should be sensitively coupled to the
ogy states bond-stretching mode.
(Qo=1332 ¢m '~ 0.16 eV in diamond)
DOS 2D 3D
Differ-
ence Bong: 2 of the 9 phonon 3 of the 6 phonon
stretching d q
R modes modes
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// Electron-Phonon coupling constant A

rigorously, Obtaining A

P (0)<1b2> N (0)1 1. Calculate the Q=0
= b o

P Bk deformation potentials
M < 2> s o
@ 0
e //: carbon mass 2. CaICUIate the phonon
. e <\zb(k,k')\2> S softening and use the

FS averaged el.-ph. matrix lattice dynamical result

element squared for band b 2 2
w, =Q, +2Q,Rell(0,0)

ronarimpormalzed | | 0 =} 0 =08 -20uN (O)MF

* N(0)=0.06 states/eV/cell/spin M: el.-ph. matrix element

detemind by /ms
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// Deformation Energy (D)
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Blowup VCA band of 2.5% B-
doped diamond without and
with stretched C-C bonds
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By Khan and Allen, Dis the shift
in the VB edge w.r.t the bond-
stretching motion of scale

U, =h/2MQ, =0.034 A

(Eupper-Elower)k=0/AQbond=21 eV/A

:{ D1 = 14 eV/IA (single band)
D2 = 7 eVIA (2-fold band)

s Ims=10 eV/A

rms el.-ph. Matrix element

M =, /Qu,. =0.70 eV

rms

( where @, = 0.68Q2; )

J
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// continued

+ el.-ph. coupling constant A = 0.55
+ neglecting very minor strong-coupling corrections,

0, A "
T =0 e e
C 1.26Xp{ /(1+/1 “ﬂ

+ Using the conventional value ﬂ* =0.15 with Wo=0.128 eV,
Tc= 9K (good agreement with the observed 4~7K)

+ Te=4K would require A=0.48 or 4 =~ 0.20.
(relatively small changes)



Phonon Softening

For the doped case, much
more complex due to
disappearing some piece of
e

From the coefficient of the
2" order terms,
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A AP = [ Qharm = 1308 cm_1 }
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Energy of distortion for the
frozen-in bond-stretch mode

for intrinsic and 2.5% B-doped

diamond

M=0.67 eV
> A=0.53+0.03
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// Other theoretical works

+ L. Boeri et al. (Stuttgart, Germany), PRL 93, 237002 (2004).
From the same viewpoint as ours (VCA)

+ H.J. Xiang et al. (Hefei, China), PRB 70, 212504 (2004).
2x2x2 and 3x3x2 diamond supercell

+ X. Blase et al. (LPMCN, France), PRL 93, 237004 (2004).
3x3x3 (54 atom) supercell

= a half of A originates in strongly localized defect-related
vibrational modes.
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// Discussion

Our treatment neglects some
complicating features.

Jahn-Teller splitting: just

0.8cm™' for the isolated B
substitutional impurity

Anharmonicity: The correction
need not change the effective

Wph largely, as shown in MgB..

Nonadiabatic effect:

Wph/EF = 0.25

(a new system to investigate
the effects)
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// Conclusion

+ Analogy to MgB:2: deformation potentials due to bond-
stretching are extremely large.

+ the electron-phonon coupling strength A ~ 0.55
+ A renormalization of the optic mode frequency by -20%
+ Tc ~ 5-10K (consistent with the experiments)

+ CPA shows a band like VCA, except small disorder
broadening.

+ Phonon coupling is the likely candidate for the pairing
mechanism.
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