2005 APS March Meeting

Los Angeles

Origin of superconductivity in B-doped Diamond

UC Davis

Kwan-Woo Lee Warren E. Pickett

PRL <u>93, 237003 (2004)</u>

Acknowledgements to: Z. Fisk, J. Kunes, K. Koepernik

Outline

- Experimental data
- Approach & Comparison with MgB2
- Theoretical background
- Results

 el.-ph. coupling constant obtained from two methods
- Other theoretical works
- Conclusion

B-doped diamond superconductor

 synthesized at high P (100,000 atm) and T (2500-2800K)

•
$$c_{SC} = 5 \times 10^{21} cm^{-3} = 25 c_{MI}$$

 $\left(c_{MI} = 2 \times 10^{20} cm^{-3}\right)$
• Tc $\approx 4 K$

Ekimov et al., Nature <u>428</u>, 542 (2004) (Russian AS, LANL)

 grown by microwave plasmaassisted chemical vapor deposition (MPCVP)

• Tc ≈ 7.4K

Takano et al., APL 85, 2851 (2004). (NIMS, Waseda U in Japan)

Approach

- * By Fontaine, the activation energy depends on c_{B} .
 - $\begin{bmatrix} 0.37 \text{ eV for low concentration} \\ 0 \text{ eV for above } c_{sc} / 6 \end{bmatrix}$

 - \Rightarrow a degenerate metal for a larger concentration
- .: Our viewpoint: The majority fraction of the hole carriers reside in states overlapping the diamond VB, and behave as degenerate valence band holes.
- Virtual crystal approximation (VCA) [nuclear charge Z=(1-x)Zc + xZB for the B-doped diamond]
- LAPW (Wien 2K) (P. Blaha et al., Comput. Phys. Commun. <u>59</u>, 399 (1990)) RmtKmax=7.0 with a sphere radius 1.2, 1156 irreducible k-point
- FPLO (K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743 (1999))

2.5% B-doped diamond

- $E_F = -0.61 \text{ eV}$ from the VBM (calculated)
- The Fermi surfaces consist of 3 zone-centered spheroids.

		MgB ₂	B-doped diamond
Anal- ogy	carrier states	 the very strongly covalent bonding states These states should be sensitively coupled to the bond-stretching mode. (Ω₀ =1332 Cm⁻¹ ≈ 0.16 eV in diamond) 	
Differ- ence	DOS	2D	3D
	Bond- stretching mode	2 of the 9 phonon modes	3 of the 6 phonon modes

Electron-Phonon coupling constant λ

- $\langle \omega^2 \rangle \sim \omega_0^2$: renormalized bond-stretch freq.
- N(0)=0.06 states/eV/cell/spin

Obtaining λ

- 1. Calculate the Q=0 deformation potentials
- 2. Calculate the phonon softening and use the lattice dynamical result

$$\omega_Q^2 = \Omega_Q^2 + 2\Omega_Q \operatorname{Re}\Pi(Q, 0)$$

- $\omega_0^2 = \omega_{Q\to 0}^2 \Longrightarrow \Omega_0^2 2\Omega_0 N(0) |\mathbf{M}|^2$
- M: el.-ph. matrix element detemind by *Irms*

Deformation Energy (D)

Blowup VCA band of 2.5% Bdoped diamond without and with stretched C-C bonds By Khan and Allen, *D* is the shift in the VB edge w.r.t the bondstretching motion of scale $u_0 = \sqrt{\hbar/2M\Omega_0} = 0.034$ Å

 $(\mathcal{E}_{upper}-\mathcal{E}_{lower})_{k=0}/\Delta d_{bond}=21eV/Å$ $\int D_{1} = 14 eV/Å \text{ (single band)}$ $D_{2} = 7 eV/Å \text{ (2-fold band)}$ ∴ Irms = 10 eV/Å

rms el.-ph. Matrix element

$$M = \sqrt{\omega_0 / \Omega_0} u_0 I_{rms} = 0.70 \quad \text{eV}$$
(where $\omega_0^2 = 0.68\Omega_0^2$)

continued

- el.-ph. coupling constant $\lambda = 0.55$
- neglecting very minor strong-coupling corrections,

$$T_{c} = \frac{\omega_{0}}{1.2} \exp\left[-1/\left(\frac{\lambda}{1+\lambda} - \mu^{*}\right)\right]$$

- Using the conventional value $\mu^* = 0.15$ with $\omega_0 = 0.128$ eV, T_c = 9K (good agreement with the observed 4~7K)
- T_c = 4K would require λ = 0.48 or $\mu^* \approx 0.20$. (relatively small changes)

Phonon Softening

Energy of distortion for the frozen-in bond-stretch mode for intrinsic and 2.5% B-doped diamond For the doped case, much more complex due to disappearing some piece of FS.

 From the coefficient of the 2nd order terms,

$$\left\{ \begin{array}{ll} \Omega_{harm} = 1308 \quad cm^{-1} \\ \omega_0 &= 1070 \quad cm^{-1} \end{array} \right\} \\ M = 0.67 \text{ eV} \\ \lambda = 0.53 \pm 0.03 \end{array}$$

Other theoretical works

- L. Boeri et al. (Stuttgart, Germany), PRL <u>93</u>, 237002 (2004).
 From the same viewpoint as ours (VCA)
- H.J. Xiang et al. (Hefei, China), PRB <u>70</u>, 212504 (2004).
 2x2x2 and 3x3x2 diamond supercell
- X. Blase et al. (LPMCN, France), PRL <u>93</u>, 237004 (2004).
 3x3x3 (54 atom) supercell
 - \Rightarrow a half of λ originates in strongly localized defect-related vibrational modes.

Discussion

Our treatment neglects some complicating features.

- Jahn-Teller splitting: just 0.8 cm⁻¹ for the isolated B substitutional impurity
- Anharmonicity: The correction need not change the effective ω_{ph} largely, as shown in MgB₂.
- Nonadiabatic effect:

 $\omega_{ph}/E_F = 0.25$

(a new system to investigate the effects)

Conclusion

- Analogy to MgB₂: deformation potentials due to bondstretching are extremely large.
- the electron-phonon coupling strength $\lambda \sim 0.55$
- A renormalization of the optic mode frequency by -20%
- T_c ~ 5-10K (consistent with the experiments)
- CPA shows a band like VCA, except small disorder broadening.
- Phonon coupling is the likely candidate for the pairing mechanism.