Origin of electric dipole moments in free niobium clusters

PRL 93, 246105 (2004)

Kristopher Andersen, Warren Pickett University of California at Davis

Vijay Kumar, Yoshiyuki Kawazoe Tohoku University, Japan

Motivation

- "Ferroelectric" $Nb_N (5 \le N \le 200)$ clusters
 - Moro et al., Science 300, 1265 (2003)
 - Moro et al., PRL 93, 086803 (2004)
- What's the origin of the electric dipole moment?
- How does it depend on temperature?
- Possible connections to...
 - Mesoscopic superconductivity (Moro et al.)
 - Metallic ferroelectricity (Batista et al.)
 - Quantum electric dipoles (Allen et al.)

Methods

- First-principles density functional theory
 - Planewave method using Abinit 4.2.4
 - PBE96 GGA functional
 - Nb (4s, 4p, 4d) norm-conserving pseudopotential
 - Generated with FHI98PP
 - 45 E_H planewave cutoff energy
 - All-electron method using Gaussian98
 - B3PW91 Hybrid Functional
- Relaxed (locally optimized) structures $N \le 15$
 - V. Kumar and Y. Kawazoe, PRB 65, 125403 (2002)
 - Exception: $Nb_{13} \rightarrow new structure$

Electric Dipole Comparison to Experiment

Data: Moro et al., Science **300**, 1265 (2003)

Asymmetry

Principal moments of inertia and axes correlate with the magnitude and *direction* of the electric dipole

Bond Charge

Energy and Time Scales

T(N) = Transition TempT(11) = 110 KT(100) = 10 K

Thermal Energy	20–300 K
Dipole Energy (μΕ)	1 K (per Debye)
Vibrational Energy (hcv _{min})	65 K
Magnetic Anisotropy	2 K
Electric Energy Level Spacing Δ_{E} Rotational Energy Level Spacing Δ_{R} Period of Rotation (τ)	1000 K <mark>0.2 K (at T = 20 K)</mark> 10 ⁻¹¹ s

Temperature Dependence **Classical Simulations**

Experiment

Reference: Dugourd et al., Chem. Phys. Lett. 336, 511 (2001)

Simulation

Nb₁₂ (2.0 D)

300 K

Conclusion

- Calculated permanent electric dipoles generally agree with experiment.
- Dipole moment strongly correlates with the asymmetry of the cluster.
 - Quantified using inertial moments.
 - Asymmetry is enhanced by directional bonding.
- Electric dipole may be masked at higher temperatures due to thermal averaging.
 - Vibrational excitations are negligible.