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Li3N (previously known info) 
• Two low pressure phases had been observed: 

• α phase is a superionic conductor via hopping of Li1+ ions within Li2N 
layers, in which N ions exist in 3- ionic state.

• β phase is metastable at 0 GPa, stable up to < 35 GPa.
• high pressure cubic phase was predicted by theory.

~0.5 GPa

(α) P6/mmm (β) P63/mmc

Technological applications:
• possible electrolyte material for lithium-based batteries
• possible hydrogen storage material
Thrust of this research:

Determine structure, equation of state, stability of any 
novel high pressure phase.



X-Ray Diffraction Results

• mixed phase at
0 GPa

• transition to 
transparent cubic
phase between
35 and 45 GPa

• signal from
argon pressure
medium and 
rhenium gasket
obscure the
details



γ-Li3N – a new cubic phase

• pattern well understood as a 
combination of Cu and Li3N 
in cubic Fm3m phase

• peak broadening at 200 GPa 
very minimal even under non-
hydrostatic conditions – very little 
internal stresses/strains

• cubic Li3N takes on simple rocksalt 
structure, with Li1+ ions tetrahedrally
coordinated with 4 nitrogen ions in all
tetrahedral holes in lattice.

Rietveld-refined XRD structure data



Inelastic X-Ray (Raman)
Scattering ~10 keV

Ei Ej

X-Ray
Raman

~400 eV

X-Ray
Absorption

k-shell

energy loss: E = Ei - Ej

• Yields the same information as XAS, but
experiment can be done with hard x-rays—
(becomes possible to examine k-edges of
low-Z materials in bulk)

Experimental set-up (16IDD, HPCAT, APS)

DAC

DETECTOR

ANALYZER – Si (660)

x-ray transparent
Be gasket

incident beam energy scanned
from 380 – 430 eV above
elastic scattering energy 
(9.6870 eV) to probe nitrogen k-edge



X-Ray Raman Results
Nitrogen k-edge spectra of Li3N

• The x-ray raman spectra can be understood as transitions to 
low-lying conduction states with nitrogen p character – differences 
between the XRS and PDOS are indications of the presence of core-hole 
interactions (excitons) and non-dipole allowed transitions. 
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Equation of State

• cubic phase of Li3N remains
very compressible up to 200 GPa
(maximum pressure achieved
In this experiment)

• B0, V0 from fit to non-hydrostatic
higher-pressure data agree well
with results from fit to lower-
pressure hydrostatic data. 



γ-Li3N is a good candidate for an
internal pressure indicator for ultra-
high pressure applications

• simple cubic crystal structure
• stable up to at least 200 GPa with

minimal peak broadening even 
under non-hydrostatic conditions

• compressibility compares well with
other common pressure standards

• low-Z composition makes it
particularly suitable for low-Z
applications

Possible problem:  reactivity, 
especially at high pressures, is 
unknown.

Bulk Modulus of γ-phase and comparison
to common pressure indicators*

Equation of state data was then fit to modified 3rd order 
Birch-Murnaghan equation*

*N. Sata, G. Shen, M. L. Rivers, S. R. Sutton, PRB 65, 104114 (2002)



DFT Calculation Results

Density of states

Equation of State • Total energy calculations yield 
V0, B0, B0’ consistent with experiment –
Li3N is well described by theoretical model.

• widening of the 
band gap indi-
cates insulating 
cubic phase,
explains color
change from
opaque to trans-
parent across
hexagonal-cubic 
phase transition.Comparison with 

experimental results



charge density
at transition

near
metallization

P = 40 GPa
(transition to
cubic phase)

P ~ 760 GPa
43% of unit cell 
volume at transition 

(maximum band gap)

P ~ 7.9 TPa
16% of unit cell
volume at transition.

(metallization)
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Conclusions

The high pressure cubic phase of Li3N identified in this study 
has several interesting properties including:

• Structural transition similar to graphite-diamond and
hexagonal-cubic boron nitride

• Unusually high phase stability at megabar pressures

• High compressibility on the order of standard pressure 
indicators used in diamond anvil cell research

• Metallization at ultra-high gigabar pressures, on the order
of closed-shell wide-gap insulators Ne, MgO and NaCl
which metallize at 134 TPa, 20.7 TPa, & 0.455 TPa, 
respectively


