Cubic Lithium Nitride to 200 GPa

Amy Lazicki1,2, Choong-Shik Yoo1, Warren Pickett2, Richard Scalettar2

1Lawrence Livermore National Laboratory
2University of California at Davis

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48, and funded by SSAAP and SEGRF
Acknowledgements

- Members of High Pressure Group at LLNL: Hyunchae Cynn, William Evans, Magnus Lipp, Bruce Baer, Valentin Iota, Jae-Hyun Klepeis, Ken Visbeck, Brian Maddox, Geun Woo Lee, Zsolt Jenei

- HPCAT (sector 16 of the APS) at which all experiments were performed; we thank Maddury Somayazulu and Micheal Hu for technical assistance and scientific input.

- Andy McMahan (LLNL), Deepa Kasinathan (UCD) and Jan Kunes (UCD) for help with theoretical aspects
OUTLINE

Background

Results from
 • X-Ray Diffraction
 • X-Ray Raman Scattering
 • Total energy DFT calculations

Conclusions
Li$_3$N (previously known info)

- Two low pressure phases had been observed:
 - α phase is a superionic conductor via hopping of Li$^{1+}$ ions within Li$_2$N layers, in which N ions exist in 3- ionic state.
 - β phase is metastable at 0 GPa, stable up to < 35 GPa.
 - high pressure cubic phase was predicted by theory.

Technological applications:
- possible electrolyte material for lithium-based batteries
- possible hydrogen storage material

Thrust of this research:
Determine structure, equation of state, stability of any novel high pressure phase.
X-Ray Diffraction Results

- mixed phase at 0 GPa
- transition to transparent cubic phase between 35 and 45 GPa
- signal from argon pressure medium and rhenium gasket obscure the details
γ-Li3N – a new cubic phase

- Pattern well understood as a combination of Cu and Li3N in cubic Fm3m phase.
- Peak broadening at 200 GPa very minimal even under non-hydrostatic conditions – very little internal stresses/strains.

- Cubic Li3N takes on simple rocksalt structure, with Li1+ ions tetrahedrally coordinated with 4 nitrogen ions in all tetrahedral holes in lattice.

Rietveld-refined XRD structure data
Inelastic X-Ray (Raman) Scattering

• Yields the same information as XAS, but experiment can be done with hard x-rays—(becomes possible to examine k-edges of low-Z materials in bulk)

Experimental set-up (16IDD, HPCAT, APS)

x-ray transparent Be gasket

incident beam energy scanned from 380 – 430 eV above elastic scattering energy (9.6870 eV) to probe nitrogen k-edge

\[E_i - E_j \approx 10 \text{ keV}\]

\[\Delta E = E_i - E_j\]
The x-ray raman spectra can be understood as transitions to low-lying conduction states with nitrogen p character – differences between the XRS and PDOS are indications of the presence of core-hole interactions (excitons) and non-dipole allowed transitions.
Equation of State

- cubic phase of Li$_3$N remains very compressible up to 200 GPa (maximum pressure achieved in this experiment)

- B_0, V_0 from fit to non-hydrostatic higher-pressure data agree well with results from fit to lower-pressure hydrostatic data.

<table>
<thead>
<tr>
<th>Crystal structure</th>
<th>V_0 (Å3/atom)</th>
<th>B_0 (GPa)</th>
<th>B_0'</th>
<th>B_0 collapse</th>
<th>V_0 collapse</th>
<th>Transition pressure (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment (this work)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6$_3$/mmc</td>
<td>8.6 ± 0.2</td>
<td>71 ± 19</td>
<td>3.9 ± 0.9</td>
<td>8 ± 0.5%</td>
<td>40 ± 5</td>
<td></td>
</tr>
<tr>
<td>Fm3m</td>
<td>7.7 ± 0.2</td>
<td>78 ± 13</td>
<td>4.2 ± 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory (this work)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6$_3$/mmc</td>
<td>8.61 ± 0.02</td>
<td>68 ± 3</td>
<td>3.6 ± 0.1</td>
<td>6.7%</td>
<td>40.4</td>
<td></td>
</tr>
<tr>
<td>Fm3m</td>
<td>7.79 ± 0.02</td>
<td>73.1 ± 0.8</td>
<td>3.85 ± 0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment (Ho, et al)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PRB 59, 6083 (1999))</td>
<td>P6$_3$/mmc</td>
<td>8.76</td>
<td>74 ± 6</td>
<td>3.7 ± 0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory (Ho, et al)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PRB 59, 6083 (1999))</td>
<td>P6$_3$/mmc</td>
<td>7.72</td>
<td>78.17</td>
<td>3.77</td>
<td>8%</td>
<td>37.9</td>
</tr>
<tr>
<td>P4$_3$m</td>
<td>7.02</td>
<td>82.75</td>
<td>3.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory (Schon et al)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(J. Mater. Chem. 11, 69 (2001))</td>
<td>P6$_3$/mmc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.6 ± 5.4</td>
</tr>
<tr>
<td>Fm3m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
γ-Li$_3$N is a good candidate for an internal pressure indicator for ultra-high pressure applications

- simple cubic crystal structure
- stable up to at least 200 GPa with minimal peak broadening even under non-hydrostatic conditions
- compressibility compares well with other common pressure standards
- low-Z composition makes it particularly suitable for low-Z applications

Possible problem: reactivity, especially at high pressures, is unknown.

Equation of state data was then fit to modified 3rd order Birch-Murnaghan equation:

\[
P = \begin{cases}
p_r - \frac{1}{2} (3B_r - 5P_r) \left[1 - \left(\frac{V}{V_r} \right)^{-\frac{2}{3}} \right] + \frac{9}{8} B_r \left(B'_r - 4 + \frac{35P_r}{9B_r} \right) \left[1 - \left(\frac{V}{V_r} \right)^{-\frac{2}{3}} \right]^2 \\
\end{cases}
\left(\frac{V}{V_r} \right)^{-\frac{5}{3}}
\]

Bulk Modulus of γ-phase and comparison to common pressure indicators*

\[
B = -V \frac{\partial P}{\partial V}
\]

DFT Calculation Results

Equation of State

- Total energy calculations yield V_0, B_0, B_0' consistent with experiment – Li$_3$N is well described by theoretical model.

- Widening of the band gap indicates insulating cubic phase, explains color change from opaque to transparent across hexagonal-cubic phase transition.

Comparison with experimental results

<table>
<thead>
<tr>
<th>crystal structure</th>
<th>V_0 (Å3/atom)</th>
<th>B_0 (GPa)</th>
<th>B_0'</th>
<th>volume collapse</th>
<th>transition pressure (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment (this work)</td>
<td>P6$_3$/mmc</td>
<td>8.6 ± 0.2</td>
<td>71 ± 19</td>
<td>3.9 ± 0.9</td>
<td>8 ± 0.5 %</td>
</tr>
<tr>
<td></td>
<td>Fm3m</td>
<td>7.7 ± 0.2</td>
<td>78 ± 13</td>
<td>4.2± 0.2</td>
<td>40.4</td>
</tr>
<tr>
<td>Theory (this work)</td>
<td>P6$_3$/mmc</td>
<td>8.61 ± 0.02</td>
<td>68 ±3</td>
<td>3.6 ± 0.1</td>
<td>6.7%</td>
</tr>
<tr>
<td></td>
<td>Fm3m</td>
<td>7.79 ± 0.02</td>
<td>73.1 ± 0.8</td>
<td>3.85 ± 0.01</td>
<td>40.4</td>
</tr>
</tbody>
</table>
Predicted Metallization

\(P = 40 \text{ GPa} \)
(transition to cubic phase)

\(P \sim 760 \text{ GPa} \)
43% of unit cell volume at transition
(maximum band gap)

\(P \sim 7.9 \text{ TPa} \)
16% of unit cell volume at transition.
(metallization)
Conclusions

The high pressure cubic phase of Li$_3$N identified in this study has several interesting properties including:

- Structural transition similar to graphite-diamond and hexagonal-cubic boron nitride
- Unusually high phase stability at megabar pressures
- High compressibility on the order of standard pressure indicators used in diamond anvil cell research
- Metallization at ultra-high gigabar pressures, on the order of closed-shell wide-gap insulators Ne, MgO and NaCl which metallize at 134 TPa, 20.7 TPa, & 0.455 TPa, respectively