Cubic Lithium Nitride to 200 GPa

Amy Lazicki^{1,2}

Choong-Shik Yoo¹, Warren Pickett², Richard Scalettar²

¹Lawrence Livermore National Laboratory ²University of California at Davis

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48, and funded by SSAAP and SEGRF

Acknowledgements

|--|

 Members of High Pressure Group at LLNL: Hyunchae Cynn, William Evans, Magnus Lipp, Bruce Baer, Valentin Iota, Jae-Hyun Klepeis, Ken Visbeck, Brian Maddox, Geun Woo Lee, Zsolt Jenei

High Pressure Collaborative Access Team

• HPCAT (sector 16 of the APS) at which all experiments were performed; we thank Maddury Somayazulu and Micheal Hu for technical assistance and scientific input.

HPCA1

 Andy McMahan (LLNL), Deepa Kasinathan (UCD) and Jan Kunes (UCD) for help with theoretical aspects

OUTLINE

Background

Results from

- X-Ray Diffraction
- X-Ray Raman Scattering
- Total energy DFT calculations

Conclusions

Li₃N (previously known info)

• Two low pressure phases had been observed:

~0.5 GPa

(β) P6₃/mmc

- α phase is a superionic conductor via hopping of Li¹⁺ ions within Li₂N layers, in which N ions exist in 3- ionic state.
- β phase is metastable at 0 GPa, stable up to < 35 GPa.
- high pressure cubic phase was predicted by theory.

Technological applications:

- possible electrolyte material for lithium-based batteries
- possible hydrogen storage material

Thrust of this research:

Determine structure, equation of state, stability of any novel high pressure phase.

X-Ray Diffraction Results

- mixed phase at 0 GPa
- transition to transparent cubic phase between 35 and 45 GPa
- signal from argon pressure medium and rhenium gasket obscure the details

γ -Li3N – a new cubic phase

Rietveld-refined XRD structure data

 cubic Li₃N takes on simple rocksalt structure, with Li¹⁺ ions tetrahedrally coordinated with 4 nitrogen ions in all tetrahedral holes in lattice.

- pattern well understood as a combination of Cu and Li₃N in cubic Fm3m phase
- peak broadening at 200 GPa very minimal even under nonhydrostatic conditions – very little internal stresses/strains

Inelastic X-Ray (Raman) Scattering

 Yields the same information as XAS, but experiment can be done with hard x-rays— (becomes possible to examine k-edges of low-Z materials in bulk)

Experimental set-up (16IDD, HPCAT, APS)

incident beam energy scanned from 380 – 430 eV above elastic scattering energy (9.6870 eV) to probe nitrogen k-edge

 The x-ray raman spectra can be understood as transitions to low-lying conduction states with nitrogen p character – differences between the XRS and PDOS are indications of the presence of core-hole interactions (excitons) and non-dipole allowed transitions.

Equation of State

- cubic phase of Li₃N remains very compressible up to 200 GPa (maximum pressure achieved In this experiment)
- B₀, V₀ from fit to non-hydrostatic higher-pressure data agree well with results from fit to lowerpressure hydrostatic data.

	crystal				volume	transition
	structure	$V_0 ~(A^3/atom)$	$B_0 (GPa)$	B_0 '	$\operatorname{collapse}$	pressure (GPa)
Experiment (this work)	$P6_3/mmc$	8.6 ± 0.2	71 ± 19	3.9 ± 0.9	$8\pm0.5~\%$	40 ± 5
	Fm3m	7.7 ± 0.2	78 ± 13	4.2 ± 0.2		
Theory (this work)	$P6_3/mmc$	8.61 ± 0.02	68 ± 3	3.6 ± 0.1	6.7%	40.4
	Fm3m	7.79 ± 0.02	73.1 ± 0.8	3.85 ± 0.01		
Experiment (Ho, et al)	$P6_3/mmc$	8.76	74 ± 6	3.7 ± 0.7		
(PRB 59, 6083 (1999))						
Theory (Ho, et al)	$P6_3/mmc$	7.72	78.17	3.77	8%	37.9
(PRB 59, 6083 (1999))	P43m	7.02	82.75	3.84		
Theory (Schon et al)	$P6_3/mmc$					27.6 ± 5.4
(J. Mater. Chem. 11, 69 (2001))	Fm3m					

Equation of state data was then fit to modified 3rd order Birch-Murnaghan equation*

$$P = \left\{ P_r - \frac{1}{2} \left(3B_r - 5P_r \right) \left[1 - \left(\frac{V}{V_r} \right)^{-\frac{2}{3}} \right] + \frac{9}{8} B_r \left(B_r' - 4 + \frac{35P_r}{9B_r} \right) \left[1 - \left(\frac{V}{V_r} \right)^{-\frac{2}{3}} \right]^2 \right\} \left(\frac{V}{V_r} \right)^{-\frac{5}{3}}$$

 γ -Li₃N is a good candidate for an internal pressure indicator for ultrahigh pressure applications

- simple cubic crystal structure
- stable up to at least 200 GPa with minimal peak broadening even under non-hydrostatic conditions
- compressibility compares well with other common pressure standards
- low-Z composition makes it particularly suitable for low-Z applications

Possible problem: reactivity, especially at high pressures, is unknown.

*N. Sata, G. Shen, M. L. Rivers, S. R. Sutton, PRB 65, 104114 (2002)

	crystal				volume	transition
	structure	$V_0 ~(A^3/atom)$	$B_0 (GPa)$	B_0 '	$\operatorname{collapse}$	pressure (GPa)
Experiment (this work)	$P6_3/mmc$	8.6 ± 0.2	71 ± 19	3.9 ± 0.9	$8\pm0.5~\%$	40 ± 5
	Fm3m	7.7 ± 0.2	78 ± 13	4.2 ± 0.2		
Theory (this work)	$P6_3/mmc$	8.61 ± 0.02	68 ± 3	3.6 ± 0.1	6.7%	40.4
	Fm3m	7.79 ± 0.02	73.1 ± 0.8	3.85 ± 0.01		

Predicted Metallization

Conclusions

The high pressure cubic phase of Li₃N identified in this study has several interesting properties including:

- Structural transition similar to graphite-diamond and hexagonal-cubic boron nitride
- Unusually high phase stability at megabar pressures
- High compressibility on the order of standard pressure indicators used in diamond anvil cell research
- Metallization at ultra-high gigabar pressures, on the order of closed-shell wide-gap insulators Ne, MgO and NaCI which metallize at 134 TPa, 20.7 TPa, & 0.455 TPa, respectively