A novel ground state of KOs₂O₆ lattice?

Jan Kuneš, Warren E. Pickett University of California, Davis

Collaboration: T. Jeong

Why AOs_2O_6 ?

 Physics on the triangular lattice: superconductivity - LiTi₂O₄, LiV₂O₄, Na_xCoO₂.H₂O, Cd₂Re₂O₇; charge ordering - Culr₂S₄, Tl₂Ru₂O₇
 KOs₂O₆ vs RbOs₂O₆, CsOs₂O₆ - isoelectronic materials with surprisingly different physical properties (superconductivity, transport and low temperature thermodynamics)

Why?

Superconductivity

	a (Å)	T _c (K)
KOs ₂ O ₆	10.101	9.6
RbOs ₂ O ₆	10.114	6.3
CsOs ₂ O ₆	10.149	3.2

KOSO - non-s-wave pairing (T_1 NMR, muons), H_{c2} above Pauli limit ROSO,COSO - BCS type superconductivity Superconductivity suppressed by pressure ~ 5 GPa (suppression of N(E_F) - Saniz private commun.)

Hiroi *et al.* J. Phys. Soc. Jpn. **73** 1651 (2004)

Yonezawa *et al.* J. Phys.Soc. Jpn. **73** 819 (2004), cond-mat/0404220

Muramatsu et al. cond-mat/0407610

Conductivity

KOSO - non-Fermi liquid behavior vs. FL behavior in ROSO and COSO

 $\overline{\mathrm{KOs}_2\mathrm{O}_6}$

Specific heat

- > Large enhancement of linear specific heat coefficient (λ ~4 ROSO, COSO; λ ~12 KOSO)
- Einstein modes identified in ROSO, COSO
- Large D-W factors associated with A
- Second peak in KOSO :

Z. Hiroi et al. cond-mat/0502043

Lattice structure

O: Os-O-Os bonds

Os: OsO₆ octahedra Os pyrochlore lattice

A: cavities inside the pyrochlore cage A - diamond lattice

30 O p O p + Os dDOS (states/ev/cell) 20 10 0 -10 -5 0 5 10 Energy (eV)

Bandstructure

Na, K, Rb, Cs - symmetric mode

Stability of alkali site

Site symmetry: 1=0, 3, 4, 6,...

 $E(\Delta)$ - polynomial fit (exp. ≥ 2)

> On-site potential = Os-O cage + average K-K interaction

K-K correlation

K-K interaction Calculated force acting of a static K ion, while its neighbors are displaced

 No on-site term => anisotropic generalized Potts model q=4 on bipartite lattice (classical)
 On-site singlet-triplet splitting => off-diagonal terms (quantum)

Summary

- Dynamics of alkali ion is strongly size dependent
- K dynamics is anharmonic
- On-site ground state is a singlet-triplet split (\Delta ~ 8 K) => Schottky anomaly in specific heat
- K motion survives to low temperatures:
- NFL conductivity
- large D-W factor (anomalous T dependence)
- quadrupolar contribution to nuclear spin relaxation

JK, T. Jeong, and W. E. Pickett Phys. Rev. B 70 17510 (2004)

Future outlook

Is there a phase transition in our model ?
What type ?
Find classical ground state (degeneracy) => identify the order parameter.
Mean field solution.
Classical Monte-Carlo simulation.